Service Center X-ray Diffraction
Tasks and goals of the service center
The Service Center X-ray diffraction offers single crystal and powder X-ray diffraction experiments as central service. It is included into research and teaching in the chemistry department and adjacent disciplines. It supplys the necessary databases and programs needed for the data evaluation and representation.
-
-
Single crystal X-ray diffraction
-
Powder X-ray diffraction
-
► Single crystal X-ray diffraction
Employee Service Center X-ray Diffraction - single crystal X-ray diffraction
With the establishment of the Service Center for X-ray Diffraction, the possibility to conduct single crystal X-ray diffraction experiments is now possible as central service for all groups on campus, surrounding research centers and in the industry.
This method allows the determination of the (molecular) solid state structure for the position and realtive arrangement of the individual atoms. For this, diffraction patterns of the crystal are recorded, from which the electron distribution can be extracted via Fourier synthesis.
Via this technique, the unambiguous proof the spacial atomic arrangement can be conducted, given a suitable single crystal exists.
Possibilities
The service offered ranges from the selection of suitable single crystals to the recording of a data set to the evaluation of the data along with the representation if the data as tables and drawings for publication.
Two single crystal X-ray diffractometers are available in the Service Center. An older Bruker X8 ApexII with CCD detector and a newer Bruker D8 Venture with a micro focus source for both Mo- and Cu-radiation. The more efficient X-ray source along with an advanced detector technology enables a rapid data acquisition and the measurement of significantly smaller single crystals. The permanent availability of Cu-radiation allows a determination if the "absolute configuration" of enantiomeric pure organic compounds. Both instruments are equipped with a cryogenic device for structure detemination down to 100 K
The quality of the data set and the linked quality of the structure solution and refinement are not only tied to the instrument but also significantly to the grade of the selected crystal. Enhancing the crystals quality during the crystallization step will be rewarded. However, since both instruments are equipped with area detectors, the tolerance with respect to lower quality crystals is enhanced. Therefore a preliminary structure determination is even possible on these specimens with the results, however, not being publishable.
An up to date license for the Cambridge Structural Database is available and allows the comparison of collected data with published results as well as statistical data evaluation.
Structure determination of biomolecules (protein crystallography) is not possible in the Service Center.
Powder X-ray diffraction allows for a non-destructive investigation of (usually) crystalline samples. With its help, the purity of the sample or the present phases (phase analysis) along with lattice parameters of the identified and refined compounds can be evaluated. If a sample contains more than one phase, the respective ratios can be determined via Rietveld refinement. Besides plain phase analysis, also a microstructure analysis (crystallite size, texture, strain) can be carried out. In case of a known crystal structure, besides the lattice parameters also the atomic positions and the isotropic thermal displacement parameters can be determined. Finally, temperature dependent measurements allow the characterization of e.g. structural phase transitions.
Measurements
The Service Center supports the planning of measurements, conducts them, including sample preparation and also performs a full refinement of the measurement data. A briefing for independent use of the instruments is possible if an increased use is anticipated.
Infrastructure
There are currently two powder diffractometers available, all currently equipped with a Cu tube. In addition to the Bruker D8 ADVANCE diffractometer, which is mainly available for contract measurements, samples can also be measured on a PANalytical X'Pert Pro device. This can be equipped with a high-temperature chamber from mri (temperature range 300-1273 K).
Sensitive samples can be protected from the atmosphere either with the aid of a “dome” or by melting them into a capillary.
Numerous non-ambient options are also available for the Bruker D8:
- Anton Paar Anton Paar high temperature chamber HTK1200N (300-1473 K, 1 bar)
- Anton Paar reaction chamber XRK900 (300-1173 K, 10 bar); measurements under the influence of various gases (Ar, N2, O2) also possible at increased pressure (up to 10 bar) or in a dynamic vacuum
- Anton Paar cryogenic chamber TTK600 (110-873 K, in vacuum)
Bruker D8 ADVANCE Diffractometer
- Bragg-Brentano geometry, measuring range 2θ ca. 3,5-150°
- Cu radiation (40 kV, 40 mA)
- detector: Lynxeye 1D
- primary beam path: variable divergence slits, Ni filter, soller collimator
- secondary beam path: variable divergence slits, soller collimator
- auto sampler (6 racks each 15 samples)
- other equipment: Anton Paar high-temperature oven chamber HTK1200N (300-1473 K, 1 bar), Anton Paar reactor chamber XRK900 (300-1173 K, 10 bar), Anton Paar low temperature chamber TTK600 (110-873 K in vacuum), capillary sample holder
PANalytical X‘Pert Pro-MPD
- Bragg-Brentano geometry, measuring range 2θ ca. 5-150°
- Cu radiation (40 kV, 40 mA)
- detector: PIXcel1D
- primary beam path: soller collimator (horizontal, 0,02 o. 0,04 rad), variable divergence slit
- secondary beam path: soller collimator (horizontal, 0,02 o. 0,04 rad), variable anti-scatter slit
- other equipment: Anton Paar high-temperature oven chamber HTK1200N (300-1473 K, 1 bar) – not in use
User regulations, measurement orders & process
User regulations
For all measurements performed in the X-ray diffraction service center, the new user regulations will apply from February 1st 2021.
These can be dowloaded here (version of January 27th 2021).
Measurement applications
As of February 1st 2021, a measurement application form must be filled out for measurements and submitted with the samples.
Form for single crystal diffraction measurements
Form for powder diffraction measurements
Measurement procedure
As far as possible, the samples are processed in the order in which they are received. However, the expertise of the operator decides on the specific sequence. Please clarify the measurement conditions in advance by e-mail.
single crystal X-ray diffraction: scxrd(at)uni-saarland.de
powder X-ray diffraction: pxrd(at)uni-saarland.de
Sample drop-off
Single crystal X-ray diffraction:
Samples can be dropped off in building C4.1, room 3.01. Please call beforehand and bring the completed measurement form.
Since only a small single crystal is needed, the sample quantity is usually small. However, a larger quantity of crystals should be available for selection, since the quality of the crystal is directly proportional to the result. Material that is not needed is returned.
It is advantageous to leave the crystals in the solution. In other words, condense only until crystals form and then deliver well sealed. Solvent molecules are often included in the lattice, which easily escape due to their weak bonding, which then leads to the disintegration of the crystals. In addition, impurities still in the solution can cause the crystals to stick to the vessel wall after the solvent has been completely removed. As a result, they can no longer be removed undamaged. The size of the vessel should be in reasonably rational proportion to the amount of sample. It is no pleasure to fish out a few tiny crystals from a large flask, which are then still sitting almost unreachably on the side of the wall.
There are special procedures for substances that are sensitive to air and moisture. The procedure is agreed on a case-by-case basis.
Powder diffraction:
Samples can be dropped off in building C4.1, room 4.01. Please make an appointment in advance and bring the measurement application form completely filled out.
The required sample quantity depends on the substance class and the desired measurement method. Details will be clarified in the preliminary discussion.
There are special procedures for substances that are sensitive to air and moisture. Here, too, the procedure will be discussed on a case-by-case basis.
Publications
In the case of publications, the contributions of the service center are to be considered according to scientific practice. All manuscripts containing X-ray powder data measured at the Service Center must be submitted for review. In this way, factual errors related to the presentation of the data can be avoided. Figures as well as a crystallographic summary (cif file - Crystallographic Information File) will be provided.
Successful publications or patents based on results of the services provided must be communicated to the responsible persons of the service center.
Text blocks for powder X-ray diffraction experiments - PDF - docx
The DFG funding titles should also be mentioned in the acknowledgements:
- INST 256/349-1 - Bruker D8 Advance powder diffractometer
- INST 256/506-1 - Bruker D8 Venture single crystal diffractometer
Lectures at Saarland University
The following lectures and classes focus (partially) on X-ray diffraction:
- Festkörperchemie und Strukturchemie (solid state and structural chemistry, AC05), winter term, held by Prof. Kickelbick and Dr. Janka
- Strukturchemie und Kristallographie (structural chemistry and crystallography, AC10), winter term, held by Prof. Kickelbick and Dr. Janka
- Praktikum Kristallographie und Strukturchemie (lab class: crystallography and structural chemistry, ACK), winter term, held by Dr. Janka
Databases and programs
The service center for X-ray diffraction offers access to the CSD (The Cambridge Structural Database) and the Pearson database. In these, structural data of organic and metal-organic or coordination compounds and inorganic (solid state) compounds are deposited. In addition a powder diffraction database (PDF-2) is available.
For graphical representation and structural investigations, acces to the programs Diamond, Mercury and Platon is available.
2024
104 | M. Veith, T. Kirs, B. Morgenstern, V. Huch: Structural Studies of Piperidino-Alanes with Halide, Amide and Hydride as further Ligands at Aluminum Zeitschrist für anorganische und allgemeine Chemie, 2024, 650, e2024000090 DOI: 10.1002/zaac.202400090 |
103 | F. Dankert, J. Messelberger, U. Authesserre, A. Swain, D. Scheschkewitz, B. Morgenstern, D. Munz: A Lead(II) Substituted Triplet Carbene J. Am. Chem. Soc. 2024, 146, 29630−29636. doi:org/10.1021/jacs.4c10205 |
102 | E. C. J. Gießelmann, S. Engel, S. Pohl, M. Briesenick, L. P. Rüthing, C. Kloos, A. Koldemir, L. Schumacher, J. Wiethölter, J. Schmedt auf der Günne, G. Kickelbick, O. Janka: Rapid synthesis of a green emitting phosphor by sulfidation of intermetallic EuAl2 and its use in a hybrid material Chem. Mater. 2024, accepted. |
101 | A. Michaely, C. Luckas, R. Haberkorn, G. Kickelbick: Highly Exothermic and Fast Mechanochemical Redox and Intercalation Reactions of V2O5 with Sodium Hydride. Inorg. Chem. 2024, 63, 8099-8108. [DOI: 10.1021/acs.inorgchem.4c00200] |
100 | C. Odenwald, L. Niedner, R. Haberkorn, T. Sauerwald, O. Brieger, M. Nadig, G. Kickelbick: Continuous Microreactor-Based Synthesis of SnO2 Nanoparticles for Sensor Applications Z. Anorg. Allg. Chem. 2024, e202400145. [DOI: 10.1002/zaac.202400145] |
99 | E. C. J. Gießelmann, G. Kickelbick, O. Janka: Changing the reaction pathway of the CaAl2 oxidation using ball milling Dalton Trans. 2024, accepted. |
98 | A.-L. Thömmes, T. Büttner, B. Morgenstern, O. Janka, G. Kickelbick, B.-J. Niebuur, T. Kraus, M. Gallei, D. Scheschkewitz: Near-infinite-chain polymers with Ge=Ge double bonds Angew. Chem. Int. Ed. 2024, e202415103. [DOI: 10.1002/anie.202415103] |
97 | M. A. Mohamed, O. Janka, S. Harling, G. Kickelbick: Precursor-Based Syntheses of Mo(C,N,O)x, Molybdenum Carbide, Nitride and Oxide Applying a Microjet Reactor Solids 2024, 5, 443-459. [DOI: 10.3390/solids5030030] |
96 | J. A. Baldauf, J. Kösters, O. Janka, R. Pöttgen: Ta11Pt4 - A new coloring variant of the sigma-phase Z. Kristallogr. 2024, ahead of print. [DOI: 10.1515/zkri-2024-0094] |
95 | T. Rittner, J. Kim, A. Haben, R. Kautenburger, O. Janka, J. Kim, M. Gallei: One-pot Functionalization for the Preparation of Cobaltocene-Modified Redox-Responsive Porous Microparticles Chem. Eur. J. 2024, 30, e202402338. [DOI: 10.1002/chem.202402338] |
94 | S. Heinz, L. Gemmer, O. Janka, M. Gallei: Ferrocene-Modified Polyacrylonitrile-Containing Block Copolymers as Preceramic Materials polymers 2024, 16, 2142. [DOI: 10.3390/polym16152142] |
93 | F. Eustermann, F. Stegemann, O. Janka: Synthesis, Physical, and Magnetocaloric Properties of MgZn2‑Type Gd2Al3Rh Inorg. Chem. 2024, 63, 14086–14092. [DOI: 10.1021/acs.inorgchem.4c01887] |
92 | S. Engel, M. Koch, O. Janka: Nominal CaAl2Pt2 and Ca2Al3Pt – two new intermetallic compounds in the ternary system Ca–Al–Pt Z. Anorg. Allg. Chem. 2024, 650, e202400094. [DOI: 10.1002/zaac.202400094] |
91 | M. Radzieowski, E. C. J. Gießelmann, S. Engel, O. Janka: Structure, Physical and 27Al NMR Spectroscopic Properties of the Missing Members of the Equiatomic REAlRh (RE = Sm, Tb, Dy, Er, and Lu) series Z. Naturforsch. 2024, 79b, 459-467. [DOI: 10.1515/znb-2024-0053] |
90 | S. Engel, E. C. J. Gießelmann, L. Schumacher, Y. Zhang, F. Müller, O. Janka: Synthesis, Magnetic and NMR spectroscopic properties of the MAl5Pt3 series (M = Ca, Y, La-Nd, Sm-Er) Dalton Trans. 2024, 53, 12176-12188. [DOI: 10.1039/d4dt01296h] |
89 | M. Fries. F. Schäfer, O. Janka. J. Schmauch, A. Jung: Influence of Heat Treatment on Microstructure Evolution and Yield Surfaces of Ni/PU Hybrid Foams Adv. Eng. Mater. 2024, 2400235. [DOI: 10.1002/adem.202400235] |
88 | K. Renner, F. Eustermann, O. Niehaus, O. Janka: Magnetic properties of the solid solutions CePt1–xAuxAl (x = 0.1–0.9) Z. Naturforsch. 2024, 79b, 453-458. [DOI: 10.1515/znb-2024-0040] |
87 | S. Engel, O. Janka: New rare earth representatives adopting the Ce2Al16Pt9-type structure Z. Naturforsch. 2024, 79b, accepted. [DOI: 10.1515/znb-2024-0022] |
86 | M. Ivanova, J. Zaharieva, M. Tsvetkov, V. Lozanova, B. Morgenstern, R. Lyapchev: 8-(2-Methoxyphenyl)-6-methyl-2-(1-methyl-1H-benzo[d]imidazol2-yl)quinolin Molbank, 2024, 2024, M1874. |
85 | M. Hunsicker, J. Krebs, M. Zimmer, B. Morgenstern, V. Huch, D. Scheschkewitz: |
84 | J. A. König, B. Morgenstern, J. Jauch: |
83 | S. R. Lee, M. Dayras, J. Fricke, H. Guo, S. Balluff, F. Schalk, J. S. Yu, S. Y. Jeong, B. Morgenstern, B. Slippers, C. Beemelmanns, K. H. Kim: |
82 | D. Elenkova, Y. Dimitrova, M. Tsvetkov , B. Morgenstern, M. Milanova, D. Todorovsky, J. Zaharieva: |
81 | B. Borrisow, M. Tsvetkov, T. Zahariev, D. Elenkova, B. Morgenstern, D. Dimov, R. Kukeva, N. Trendafilova, I. Georgieva: |
80 | K. Breitwieser, M. Bevilacqua, S. Mullassery, F. Dankert, B. Morgenstern, S. Grandthyll, F. Müller, A. Biffis, |
79 | M. Tsvetkov, D. Elenkova, M. Kolarski, R. Lyapchev, B. Morgenstern, V. Videva, J. Zaharieva, M. Milanova: |
78 | W. Hofer, F. Deschner, G. Jézéquel, L. P. de Carvalho, N. Abdel-Wadood, L. Pätzold, S. Bernecker, B. Morgenstern, A. M. Kany, M. Große, M. Stadler, M. Bischoff, A. K. H. Hirsch, J. Held, J. Herrmann, R. Müller: Functionalization of Chlorotonils: Dehalogenil as Promising Lead Compound for In Vivo Application Angewandte Chemie, Int. Ed. 2024, 63, e202319765. https://doi.org/10.1002/anie.202319765 |
77 | I.-A. Bischoff, S. Danés, P. Thoni, D. M. Andrada, C. Müller, J. Lambert, B. Morgenstern, M. Zimmer, A. Schäfer: A lithium–aluminium heterobimetallic dimetallocene Nat. Chem. 2024, accepted. DOI: 10.1038/s41557-024-01531-y |
76 | E. C. J. Gießelmann, S. Engel, J. Baldauf, J. Kösterns, S. F. Matar, G. Kickelbick, O. Janka: Searching for Laves Phase Superstructures: Structural and 27Al NMR spectroscopic investigations in the Hf-V-Al System Inorg. Chem. 2024, accepted. DOI: 10.1021/acs.inorgchem.4c00391 |
75 | L. Giarrana, M. Zimmer, B. Morgenstern, D. Scheschkewitz: Tetrylene-Functionalized Si7-Siliconoids Inorganic Chem. 2024, ahead of print doi: 10.1021/acs.inorgchem.4c00474 |
74 | D. Schmitt, O. Janka, R. Leiner, G. Kickelbick, M. Gallei: Preparation of preceramic ferrocene-modified microparticles for the development of uniform porous iron oxide particles and their sustainable recycling Mater. Adv. 2024, 5, 3037-3050. DOI: 10.1039/D3MA01131C |
73 | L. Niedner, G. Kickelbick Amphiphilic titania Janus nanoparticles containing ionic groups prepared in oil-water Pickering emulsion Nanoscale 2024, 16, 7396-7408. DOI: 10.1039/D3NR04907H |
72 | E. C. J. Giesselmann, S. Engel, J. G. Volpini, H. Huppertz, G. Kickelbick, O. Janka: Mechanistic studies on the formation of ternary oxides by thermal oxidation of the cubic laves phase CaAl2 Inorg. Chem. Front. 2024, 11, 286-297. 10.1039/D3QI01604H |
71 | S. Engel, L. Schumacher, O. Janka: Modifying the valence phase transition in Eu2Al15Pt6 via the solid solutions Eu2Al15(Pt1–xTx)6 (T = Pd, Ir, Au; x = 1) Z. Naturforsch. B 2024, 79b, 21-27. DOI: 10.1515/znb-2023-0072 |
2023
70 | S. Pohl, G. Kickelbick: |
69 | B. Oberhausen, A. Plohl, B.-J. Niebuur, S. Diebels, A. Jung, T. Kraus, G. Kickelbick |
68 | Y. Curto, M. Koch, G. Kickelbick: |
67 | M. Hunsicker, Ankur, B. Morgenstern, M. Zimmer, D. Scheschkewitz: |
66 | J.-F. Kannengießer, B. Morgenstern, O. Janka, G. Kickelbick: |
65 | I.-A. Bischoff, B. Morgenstern, M. Zimmer, A. Koldemir, R. Pöttgen, A. Schäfer: |
64 | P. Grewelinger, T. Wiesmeier, C. Präsang, B. Morgenstern, D. Scheschkewitz: |
63 | D. Rauber, F. Philippi, D. Schröder, B. Morgenstern, A. J. P. White, M. Jochum, T. Welton, C. W. M.Kay: |
62 | F. Hartmann, M. Bitsch, B.-J. Niebuur, M. Koch, T. Kraus, C. Dietz, R. W. Stark, C. R. Everett, P. Müller-Buschbaum, O. Janka, M. Gallei: |
61 | M. A. Mohamed, S. Arnold, O. Janka, A. Quade, J. Schmauch, V. Presser, G. Kickelbick: |
60 | T. Büttner, O. Janka, V. Huch, D. Dhara, A. Jana, D. Scheschkewitz: |
59 | A. Feuerstein, B. Boßmann, T. Rittner, R. Leiner, O. Janka, M. Gallei, A. Schäfer: |
58 | E. C. J. Gießelmann, S. Engel, Israa El Saudi, L. Schumacher, M. Radzieowski, J. M. Gerdes, O. Janka: |
57 | E. C. J. Gießelmann, M. Radzieowski, S. F. Matar, O. Janka: |
56 | E. C. J. Gießelmann, S. Engel, W. Kostusiak, Y. Zhang, P. Herbeck-Engel, G. Kickelbick, O. Janka: |
55 | A. Michaely, O. Janka, E. C. J. Gießelmann, R. Haberkorn, H. T. A. Wiedemann, C. W. M. Kay, G. Kickelbick: |
54 | S. Engel, E. C. J. Gießelmann, L. E. Schank, G. Heymann, K. Brix, R. Kautenburger, H. P. Beck, O. Janka: |
53 | S. Engel, N. Zaremba, R. S. Touzani, O. Janka: |
52 | Y. Gao, J. Birkelbach, C. Fu, J. Herrmann, H. Irschik, B. Morgenstern, K. Hirschfelder, R. Li, Y. Zhang, R. Jansen, R. Müller: |
51 | N. Marigo, B. Morgenstern, A. Biffis, D. Munz: |
50 | M. Mohamed, J. Lambert, L. Wirtz, B. Morgenstern, A. Schäfer: |
49 | A.-L. Thömmes, B. Morgenstern, M. Zimmer, D. M. Andrada, D. Scheschkewitz: |
48 | J. Romanova, R. Lyapchev, M. Kolarski, M. Tsvetkov, D. Elenkova, B. Morgenstern, J. Zaharieva: |
47 | C. Müller, J. Schu, B. Morgenstern, M. Zimmer, M. Schmidtmann, A. Schäfer: |
46 | D. Mandal, T. I. Demirer, T. Sergeieva, B. Morgenstern, H. T. A. Wiedemann, C. W. M. Kay, D. M. Andrada: |
45 | T. Imagawa, L. Giarrana, D. M. Andrada, B. Morgenstern, M. Nakamoto, D. Scheschkewitz: |
44 | D. Rauber, F. Philippi, J. Becker, J. Zapp, B. Morgenstern, B. Kuttich, T. Kraus, R. Hempelmann, P. Hunt, T. Welton, W. M. Kay: |
2022
43 | M. A. Mohamed, S. Arnold, O. Janka, A. Quade, V. Presser, G. Kickelbick: |
42 | N. Zaremba, V. Pavlyuk, F. Stegemann, V. Hlukhyy, S. Engel, S. Klenner, R. Pöttgen, O. Janka: |
41 | H. Hübner, B.-J. Niebuur, O. Janka, L. Gemmer, M. Koch, T. Kraus, G. Kickelbick, B. Stühn, M. Gallei: |
40 | I.-A. Bischoff, R. S. Meme, M. S. Bhatti, B. Morgenstern, A. Schäfer: |
39 | R. Lyapchev, A. I. Koleva, I. Z. Koleva, K. Subev, I. Madzharova, K. B. Simeonova, N. Petkova-Yankova, B. Morgenstern, V. Lozanova, P. Y. Petrov, R. D. Nikolova: |
38 | L. Wirtz, K. Y. Ghulam, B. Morgenstern, A. Schäfer: |
37 | T. I. Demirer, B. Morgenstern, D. M. Andrada: |
36 | M. Hunsicker, N. E. Poitiers, V. Huch, B. Morgenstern, M. Zimmer, D. Scheschkewitz: |
35 | I.-A. Bischoff, B. Morgenstern, A. Schäfer: |
34 | A. Koner, B. Morgenstern, D. M. Andrada: |
33 | W. Hofer, E. Oueis, A. A. Fayad, F. Deschner, A. Andreas, L. P. de Carvalho, S. Hüttel, S. Bernecker, L. Pätzold, B. Morgenstern, N. Zaburannyi, M. Bischoff, M. Stadler, J. Held, J. Herrmann, R. Müller: |
32 | N. E. Poitiers, V. Huch, B. Morgenstern, M. Zimmer, D. Scheschkewitz: |
31 | A. Grünewald, B. Goswami, K. Breitwieser, B. Morgenstern, M. Gimferrer, F. W. Heinemann, D. M. Momper, C. W. M. Kay, D. Munz: |
30 | M. Lambert, N. E. Poitiers, V. Huch, A. Goforth, D. Scheschkewitz: |
29 | L. H. Staub, J. Lambert, C. Müller, B. Morgenstern, M. Zimmer, J. Warken, A. Koldemir, T. Block, R. Pöttgen, A. Schäfer: |
28 | N. Bachmann, L. Wirtz, B. Morgenstern, C. Müller, A. Schäfer: |
27 | I.-A. Bischoff, B. Morgenstern, A. Schäfer: |
26 | W. Haider, M. D. Calvin-Brown, I.-A. Bischoff, V. Huch, B. Morgenstern, C. Müller, T. Sergeieva, D. M. Andrada, A. Schäfer: |
25
| S. Baur, K. Brix, A. Feuerstein, O. Janka, R. Kautenburger: |
24
| S. Engel, J. Bönnighausen, F. Stegemann, R. S. Touzani, O. Janka: |
2021
23 | D. Elenkova, R. Lyapchev, J. Romanova, B. Morgenstern, Y. Dimitrova, D. Dimov, M. Tsvetkov, J. Zaharieva: |
22
| A. K. Boehm, S. Husmann, M. Besch, O. Janka, V. Presser, M. Gallei: |
21
| J.-F. Kannengießer, M. Briesenick, D. Meier, V. Huch, B. Morgenstern, G. Kickelbick: |
20
| L. Wirtz, J. Lambert, B. Morgenstern, A. Schäfer: |
19
| A. Koner, T. Sergeieva, B. Morgenstern, D. M. Andrada: |
18
| P. K. Majhi, M. Zimmer, B. Morgenstern, V. Huch, D. Scheschkewitz: |
17
| P. K. Majhi, M. Zimmer, B. Morgenstern, D. Scheschkewitz: |
16
| T. Büttner, K. Weisshaar, P. Willmes, V. Huch, B. Morgenstern, R. Hempelmann, D. Scheschkewitz: |
15
| L. Klemmer, A.-L. Thömmes, M. Zimmer, V. Huch, B. Morgenstern, D. Scheschkewitz: |
14
| M. Veith, F. Sahin, S. Nadig, V. Huch, B. Morgenstern: |
13
| P. Pinter, C. M. Schüßlbauer, F. A. Watt, N. Dickmann, R. Herbst-Irmer, B. Morgenstern, A. Grünwald, T. Ullrich, M. Zimmer, S. Hohloch, D. M. Guldi, D. Munz: |
12
| C. Müller, J. Warken, V. Huch, B. Morgenstern, I.-A. Bischoff, M. Zimmer, A. Schäfer: |
11
| S. Lauk, M. Zimmer, B. Morgenstern, V. Huch, C. Müller, H. Sitzmann, A. Schäfer: |
10
| A. T. Kell, N. M. Obeid, P. Bag, M. Zimmer, V. Huch, D. Scheschkewitz: |
9
| T. Stemler, C. Hoffmann, I. M. Hierlmeier, S. Maus, E. Krause, S. Ezziddin, G. Jung, M. D. Bartholomä: |
8
| P. K. Majhi, V. Huch, D. Scheschkewitz: |
7
| W. Cao, S. Yin, M. Bitsch, S. Liang, M. Plank, M. Opel, M. A. Scheel, M. Gallei, O. Janka, M. Schwartzkopf, S. V. Roth, P. Müller-Buschbaum: |
6
| E. Gießelmann, R. S. Touzani, B. Morgenstern, O. Janka: |
5
| B. Oberhausen, G. Kickelbick: |
4
| D. Meier, V. Huch, G. Kickelbick: |
3
| l. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser: |
2
| S. Pohl, O. Janka, E. Füglein, G. Kickelbick: |
1
| P. Shankhari, O. Janka, R. Pöttgen,B. P. T. Fokwa: |