Analytik
Die Herstellung und Analyse geeigneter Nanopartikel erfordert die Entwicklung neuer kontinuierlicher Synthesewege für Nanomaterialien. Die Overflächenfunktionalisierung von Nanopartikeln spielt in der Anwendung eine wichtige Rolle.
Laufende Projekte
Kolloidale Charakterisierung von Partikeln aus Stahl
Die herausragenden mechanischen Eigenschaften sowie die außerordentlich gute Schweißbarkeit niedriglegierter Stähle ist auf Karbonitrid-Nanopartikel zurückzuführen, die in den Stählen bei der Herstellung erzeugt werden.
In Kooperation mit der Dillinger Hütte, einem saarländischen Stahlproduzenten, untersuchen wir die chemische Zusammensetzung, Morphologie und Größenverteilung der im Stahl vorliegenden Partikel. Die Partikelcharakterisierung erfolgt mit Methoden, die wir für Kolloide entwickelt haben. Diese statistisch relevanten Methoden werden bisher in der Metallographie wenig eingesetzt.
Agglomeration von Nanopartikeln bei Mikrogravitation
Moderne Methoden der „Selbstanordnung“ erlauben es uns, aus Nanopartikeln auch größere Strukturen herzustellen, deren Geometrie zu einem gewissen Grad definiert ist. Das ist für Materialien sehr interessant: Zum Beispiel lassen sich so elektrisch leitfähige Metall-Nanopartikel in einer isolierenden Matrix anordnen, um die Leitfähigkeit zu maximieren oder minimieren, je nachdem, ob man ein Dielektrikum oder eine elektrischen Leiter benötigt.
Leider kommt dabei die Schwerkraft in die Quere: Größere Anordnungen von Metallpartikeln sind sehr filigran, aber schwer genug, um von ihrem eigenen Gewicht zerrissen zu werden, so dass beispielsweise die Konnektivität und damit Leitfähigkeit verloren geht. In Projekt ARNIM untersuchen wir mit Unterstützung des Deutschen Instituts für Luft- und Raumfahrt (DLR), ob man das durch Ausschalten der Schwerkraft verhindern kann. Dazu nutzen wir zunächst einen Fallturm (ZARM in Bremen) und „werfen“ Agglomerations-Experimente so, dass die Schwerkraft für wenige Sekunden aufgehoben wird. In Zukunft sind auch Experimente an Bord von Raketen oder der internationalen Raumstation geplant, die längere Agglomerationsversuche erlauben.
Stellt sich heraus, dass die Agglomerate tatsächlich von ihrem Gewicht zerstört werden, müssen wir sie verstärken – zum Beispiel durch Nutzung von Nanodrähten. Es könnte aber auch sein, dass es gar nicht die Schwerkraft ist, sondern Details des Agglomerationsprozesses. Diese Fragen stehen deshalb im Zentrum des Projektes.
-
-
Hybride Materialien
-
Aktive Nanokomposite
-
Lehre
more Lehre -
Publikationen
more Publikationen
-
Bioinspirierte & nachhaltige Strukturen
-
Analytik
-
Team
-
Kontakt
Prof. Dr. Tobias Kraus
Tel.: +49 681 9300-389
tobias.kraus(at)uni-saarland.de
Research Webpage:
Leibniz-INM
Sekretariat
Lei Zhang
Tel.: +49 681 9300-274
lei.zhang(at)leibniz-inm.de