Quantum Optics and Ultracold Atoms
Prof. Dr. Giovanna Morigi
Vorlesung
- Mittwoch 16:00 - 18:00 Uhr, Gebäude E2 6, Raum 1.06
- Donnerstag 16:00 - 18:00 Uhr, Gebäude E2 6, Raum 1.06
Vorlesungsbeginn: Mittwoch, 06. November.
Material zur Vorbereitung wird zu einem späteren Zeitpunkt hier hochgeladen.
Content
- Bose-Einstein statistics and condensation:
The ideal Bose gas: Thermodynamics and Statistics
- Quantum degenerate atomic gases
2.1 Trapping and cooling
2.2 Collisions
- Bose-Einstein condensation in interacting systems
3.1 Definition of Bose-Einstein condensation in an interacting system
3.2 An imperfect Bose gas
3.3 Order parameter
- Second quantization
4.1 The Schroedinger equation in first quantization
4.2 Many-particle Hilbert space
4.3 Fields
- Bose-Einstein condensation in second quantization
5.1 Bogoliubov approximation
5.2 The Gross-Pitaevskii equation
5.3 Small amplitude oscillations
5.4 Quantization of elementary oscillations
- Superfluidity
6.1 Landau’s criterion
6.2 BEC and superfluidity
6.3 Hydrodynamic theory of superfluids at zero temperature
6.4 Quantum hydrodynamics
- BEC and coherence: Interference between two condensates
- BEC in optical lattices
8.1 One particle in a periodic potential
8.2 Wannier functions
8.3 Equilibrium properties of BEC in optical lattices
8.4 Bose-Hubbard model, the Mott-insulator/Superfluid quantum phase transition
- Outlook: Ultracold Fermi gases, BEC/BCS transition, quantum simulators with ultracold atoms.
Literature
- A. J. Leggett, Quantum Liquids
- L. Pitaevskii, S. Stringari, Bose-Einstein Condensation
- C. J. Pethick andH. Smith, Bose-Einstein Condensation in Dilute Gases
- S. Sachdev, Quantum Phase Transitions
- K. Huang, Statistical Mechanics
- A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems