Publications of the team

  1. V. Lazić, Metrics with minimal singularities and the Abundance conjecture, arXiv:2406.18233
  2. V. Lazić, Z. Xie, Rigid currents in birational geometry, arXiv:2402.05807
  3. V. Lazić, A few remarks on effectivity and good minimal models, to appear in Pure Appl. Math. Q., arXiv:2401.14190
  4. V. Lazić, Programming the Minimal Model Program: a proposal, Beitr. Algebra Geom. (2024), https://doi.org/10.1007/s13366-024-00742-1
  5. N. Tsakanikas, Z. Xie, Comparison and uniruledness of asymptotic base loci, arXiv:2309.01031
  6. V. Lazić, Z. Xie, Nakayama-Zariski decomposition and the termination of flips, arXiv:2305.01752
  7. I. Stenger, Z. Xie, Cones of divisors on P3 blown up at eight very general points, arXiv:2303.12005
  8. M. Hoff, I. Stenger, J. I. Yáñez, Movable cones of complete intersections of multidegree one on products of projective spaces, arxiv:2207.11150
  9. V. Lazić, S. Matsumura, Th. Peternell, N. Tsakanikas, Z. Xie, The Nonvanishing problem for varieties with nef anticanonical bundle, Doc. Math. 28 (2023), no. 6, 1393–1440.
  10. M. Hoff, I. Stenger, On the numerical dimension of Calabi-Yau 3-folds of Picard number 2, Int. Math. Res. Not. IMRN (2023), no. 12, 10736–10758.
  11. Z. Xie, Anticanonical geometry of the blow-up of P4 in 8 points and its Fano model, Math. Z. (2022), 2077–2110.
  12. M. Hoff, Giovanni Staglianò, Explicit constructions of K3 surfaces and unirational Noether-Lefschetz divisors, J. Algebra 611 (2022), 630–650.
  13. M. Hoff, A note on syzygies and normal generation for trigonal curves, arXiv:2108.06106
  14. V. Lazić, N. Tsakanikas, Special MMP for log canonical generalised pairs (with an appendix joint with Xiaowei Jiang), Selecta Math. New Ser. 28 (2022), no. 5, Paper No. 89
  15. H. T. A. Nguyen, M. Hoff, T. L. Hoang, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87–103.
  16. G. Chen, N. Tsakanikas, On the termination of flips for log canonical generalized pairs, Acta Math. Sin. Engl. Ser. 39 (2023), 967–994.
  17. V. Lazić, J. Moraga, N. Tsakanikas, Special termination for log canonical pairs, Asian J. Math. 27 (2023), no. 3, 423–440.
  18. V. Lazić, F.-O. Schreyer, Birational geometry and the canonical ring of a family of determinantal 3-folds, Rend. Istit. Mat. Univ. Trieste 54 (2022), Art. No. 9
  19. V. Lazić, Abundance for uniruled pairs which are not rationally connected, Enseign. Math. (2023), https://doi.org/10.4171/LEM/1065
  20. V. Lazić, F. Meng, On Nonvanishing for uniruled log canonical pairs, Electron. Res. Arch. 29 (2021), no. 5, 3297–3308.
  21. E. Floris, V. Lazić, A travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55.
  22. V. Lazić, N. Tsakanikas, On the existence of minimal models for log canonical pairs, Publ. Res. Inst. Math. Sci. 58 (2022), no. 2, 311–339.
  23. V. Lazić, Th. Peternell, On Generalised Abundance, II, Peking Math. J. 3 (2020), no. 1, 1−46.
  24. V. Lazić, Th. Peternell, Maps from K-trivial varieties and connectedness problems, Annales Henri Lebesgue 3 (2020), 473−500.
  25. E. Floris, V. Lazić, On the B-Semiampleness Conjecture, Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12
  26. V. Lazić, Th. Peternell, On Generalised Abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389.
  27. V. Lazić, K. Oguiso, Th. Peternell, The Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (L. Ji, S.-T. Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185.
  28. D. Martinelli, S. Schreieder, L. Tasin, On the number and boundedness of minimal models of general type, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1183-1210.
  29. V. Lazić, Th. Peternell, Rationally connected varieties − on a conjecture of Mumford, Sci. China Math. 60 (2017), no. 6, 1019−1028.
  30. S. Schreieder, L. Tasin, Kähler structures on spin 6-manifolds, Math. Ann. 373 (2019), 397−419.
  31. V. Lazić, Th. Peternell, Abundance for varieties with many differential forms, Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1
  32. V. Lazić, K. Oguiso, Th. Peternell, Nef line bundles on Calabi-Yau threefolds, I, Int. Math. Res. Not. IMRN (2020), no. 19, 6070−6119.
  33. C. Bisi, P. Cascini, L. Tasin, A remark on the Ueno-Campana's threefold, Michigan Math. J. 65 (2016), no. 3, 567−572.
  34. S. Schreieder, L. Tasin, Algebraic structures with unbounded Chern numbers, J. Topol. 9 (2016), 849−860.
  35. P. Cascini, L. Tasin, On the Chern numbers of a smooth threefold, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7923–7958.
  36. T. Dorsch, V. Lazić, A note on the abundance conjecture, Algebr. Geom. 2 (2015), no. 4, 476−488.
  37. V. Lazić, K. Oguiso, Th. Peternell, Automorphisms of Calabi-Yau threefolds with Picard number three, Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290.
  38. P. Cascini, V. Lazić, On the number of minimal models of a log smooth threefold, J. Math. Pures Appl. 102 (2014), 597−616.
  39. V. Lazić, Around and beyond the canonical class, Birational Geometry, Rational Curves, and Arithmetic (F. Bogomolov, B. Hassett, Y. Tschinkel, eds.), Simons Symposia, Springer New York, 2013, pp. 171−203.
  40. V. Lazić, Th. Peternell, On the Cone conjecture for Calabi-Yau manifolds with Picard number two, Math. Res. Lett. 20 (2013), no. 6, 1103−1113.
  41. A.-S. Kaloghiros, A. Küronya, V. Lazić, Finite generation and geography of models, Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. Pure Math., vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp. 215−245.
  42. P. Cascini, V. Lazić, The Minimal Model Program revisited, Contributions to Algebraic Geometry (P. Pragacz, ed.), EMS Series of Congress Reports, EMS Publishing House, 2012, pp. 169−187.
  43. P. Cascini, V. Lazić, New outlook on the Minimal Model Program, I, Duke Math. J. 161 (2012), no. 12, 2415−2467.
  44. A. Corti, V. Lazić, New outlook on the Minimal Model Program, II, Math. Ann. 356 (2013), no. 2, 617−633.
  45. V. Lazić, Adjoint rings are finitely generated, arXiv:0905.2707 (supersedes arXiv:0707.4414 and arXiv:0812.3046; a simplified proof published in Duke Math. J. 161 (2012))
  46. V. Lazić, Towards finite generation of the canonical ring without the MMP, arXiv:0812.3046
  47. A. Corti, A.-S. Kaloghiros, V. Lazić, Introduction to the Minimal Model Program and the existence of flips, Bull. London Math. Soc. 43 (2011), no. 3, 415−448.
  48. V. Lazić, On Shokurov-type b-divisorial algebras of higher rank, arXiv:0707.4414

Address

Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken
Germany

Kontakt