Funded projects
Between September 2013 and September 2020, Vladimir Lazić's Emmy Noether Group Gute Strukturen in der höherdimensionalen birationalen Geometrie was funded by the Deutsche Forschungsgemeinschaft.
Members
Nikolaos Tsakanikas, PhD student, Universität des Saarlandes, 10.2017−09.2019 |
Corinne Bedussa, PhD student, Universität Bonn, 01.2016−08.2017 |
Luca Tasin, postdoc, Universität Bonn, 12.2014−09.2016 |
Tobias Dorsch, postdoc, Universität Bonn, 10.2013−08.2014 |
Publications
- V. Lazić, J. Moraga, N. Tsakanikas, Special termination for log canonical pairs, arXiv:2007.06458
- V. Lazić, F.-O. Schreyer, Birational geometry and the canonical ring of a family of determinantal 3-folds, arXiv:1911.10954
- V. Lazić, Abundance for uniruled pairs which are not rationally connected, arXiv:1908.06945
- V. Lazić, F. Meng, On Nonvanishing for uniruled log canonical pairs, Electron. Res. Arch. 29 (2021), no. 5, 3297–3308, arXiv:1907.11991
- E. Floris, V. Lazić, A travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (E. Colombo, B. Fantechi, P. Frediani, D. Iacono, R. Pardini, eds.), Springer INdAM Series, vol. 39, Springer, 2020, pp. 37−55, arXiv:1907.10490
- V. Lazić, N. Tsakanikas, On the existence of minimal models for log canonical pairs, to appear in Publ. Res. Inst. Math. Sci., arXiv:1905.05576
- V. Lazić, Th. Peternell, On Generalised Abundance, II, Peking Math. J. 3 (2020), no. 1, 1−46, arXiv:1809.02500
- V. Lazić, Th. Peternell, Maps from K-trivial varieties and connectedness problems, Annales Henri Lebesgue 3 (2020), 473−500, arXiv:1808.01115
- E. Floris, V. Lazić, On the B-Semiampleness Conjecture, Épijournal Géom. Algébrique, Volume 3 (2019), Article Nr. 12, arXiv:1808.00717
- V. Lazić, Th. Peternell, On Generalised Abundance, I, Publ. Res. Inst. Math. Sci. 56 (2020), no. 2, 353−389, arXiv:1808.00438
- V. Lazić, K. Oguiso, Th. Peternell, The Morrison−Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau manifolds & Picard-Fuchs Equations (Lizhen Ji, Shing-Tung Yau, eds.), Advanced Lectures in Mathematics, vol. 42, International Press, 2018, pp. 157−185, arXiv:1611.00556
- D. Martinelli, S. Schreieder, L. Tasin, On the number and boundedness of minimal models of general type, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1183-1210, arXiv:1610.08932
- V. Lazić, Th. Peternell, Rationally connected varieties − on a conjecture of Mumford, Sci. China Math. 60 (2017), no. 6, 1019−1028, arXiv:1608.04706
- S. Schreieder, L. Tasin, Kähler structures on spin 6-manifolds, Math. Ann. 373 (2019), 397−419, arXiv:1606.09237
- V. Lazić, Th. Peternell, Abundance for varieties with many differential forms, Épijournal Géom. Algébrique, Volume 2 (2018), Article Nr. 1, arXiv:1601.01602
- V. Lazić, K. Oguiso, Th. Peternell, Nef line bundles on Calabi-Yau threefolds, I, Int. Math. Res. Not. IMRN, Vol. 2020, No. 19, 6070−6119, arXiv:1601.01273
- C. Bisi, P. Cascini, L. Tasin, A remark on the Ueno-Campana's threefold, Michigan Math. J. 65 (2016), no. 3, 567−572, arXiv:1512.06639
- S. Schreieder, L. Tasin, Algebraic structures with unbounded Chern numbers, J. Topol. 9 (2016), 849−860, arXiv:1505.03086
- P. Cascini, L. Tasin, On the Chern numbers of a smooth threefold, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7923–7958, arXiv:1412.1686
- T. Dorsch, V. Lazić, A note on the abundance conjecture, Algebraic Geometry 2 (2015), no. 4, 476−488, arXiv:1406.6554
- V. Lazić, K. Oguiso, Th. Peternell, Automorphisms of Calabi-Yau threefolds with Picard number three, Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., vol. 74, Mathematical Society of Japan, Tokyo, 2017, pp. 279−290, arXiv:1310.8151
Between July 2015 and March 2017 Vladimir Lazić was a Principal Investigator (together with Daniel Greb and Daniel Huybrechts) in the Subproject M08-9 Birational geometry of hyperkähler manifolds of the SFB/TR 45 Periods, moduli spaces and arithmetic of algebraic varieties funded by the Deutsche Forschungsgemeinschaft.
Since January 2021 Vladimir Lazić is a Principal Investigator (together with Frank-Olaf Schreyer and Ulrich Thiel) in the Project A23 Conjectures and new examples in birational geometry of the SFB/TRR 195 Symbolic Tools in Mathematics and their Application funded by the Deutsche Forschungsgemeinschaft.
Postdocs
Michael Hoff, Universität des Saarlandes, 04.2021−04.2022 |
Isabel Stenger, Universität des Saarlandes, 01.2021−09.2023 |
Tobias Metzlaff, RPTU, 01.2024–12.2024 |
Publications
- V. Lazić, Z. Xie, Rigid currents in birational geometry, arXiv:2402.05807
- V. Lazić, A few remarks on effectivity and good minimal models, to appear in Pure Appl. Math. Q., arXiv:2401.14190
- V. Lazić, Programming the Minimal Model Program: a proposal, Beitr. Algebra Geom. (2024), https://doi.org/10.1007/s13366-024-00742-1, arXiv:2310.01097
- J. Schmitt, The class group of a minimal model of a quotient singularity, arXiv:2309.05402
- V. Lazić, Z. Xie, Nakayama-Zariski decomposition and the termination of flips, arXiv:2305.01752
- I. Stenger, Z. Xie, Cones of divisors on P3 blown up at eight very general points, arXiv:2303.12005
- D. Eisenbud, F.-O. Schreyer, Hyperelliptic curves and Ulrich sheaves on the complete intersection of two quadrics, arXiv:2212.07227
- M. Hoff, I. Stenger, J. I. Yáñez, Movable cones of complete intersections of multidegree one on products of projective spaces, arXiv:2207.11150
- V. Lazić, S. Matsumura, Th. Peternell, N. Tsakanikas, Z. Xie, The Nonvanishing Problem for varieties with nef anticanonical bundle, Doc. Math. 28 (2023), no. 6, 1393–1440, arXiv:2202.13814
- F.-O. Schreyer, I. Stenger, Marked Godeaux surfaces with special bicanonical fibers, arXiv:2201.12065
- C. Bonnafé, U. Thiel, Computational aspects of Calogero-Moser spaces, Selecta Math. New Ser. 29 (2023), Paper No. 79, arXiv:2112.15495
- G. Bellamy, J. Schmitt, U. Thiel, On Parabolic Subgroups of Symplectic Reflection Groups, Glasg. Math. J. 65 (2023), no. 2, 401–413, arxiv:2112.01268
- M. Hoff, I. Stenger, On the numerical dimension of Calabi-Yau 3-folds of Picard number 2, Int. Math. Res. Not. IMRN (2023), no.12, 10736–10758, arxiv:2111.13521
- M. Hoff, Giovanni Staglianò, Explicit constructions of K3 surfaces and unirational Noether-Lefschetz divisors, J. Algebra 611 (2022), 630–650, arXiv:2110.15819
- M. Hoff, A note on syzygies and normal generation for trigonal curves, arXiv:2108.06106
- V. Lazić, N. Tsakanikas, Special MMP for log canonical generalised pairs (with an appendix joint with Xiaowei Jiang), Selecta Math. New Ser. 28 (2022), no. 5, Paper No. 89, arXiv:2108.00993
- H. T. A. Nguyen, Michael Hoff, T. L. Hoang, On cylindrical smooth rational Fano fourfolds, J. Korean Math. Soc. 59 (2022), no. 1, 87–103, arXiv:2101.04441
- G. Bellamy, J. Schmitt, U. Thiel, Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution, Math. Z. 300 (2021), no. 1, 661–681, arXiv:2010.00880
- F.-O. Schreyer, I. Stenger, An 8-dimensional family of simply connected Godeaux surfaces, Trans. Amer. Math. Soc. 376 (2023), 3419–3443, arXiv:2201.12065
- V. Lazić, F.-O. Schreyer, Birational geometry and the canonical ring of a family of determinantal 3-folds, Rend. Istit. Mat. Univ. Trieste 54 (2022), Art. No. 9, arXiv:1911.10954
Since April 2024 Vladimir Lazić is a Principal Investigator (together with Daniele Agostini, Samuel Boissière, Enrica Floris, Andreas Höring, Alex Küronya, Christian Lehn, Gianluca Pacienza and Alessandra Sarti) in the Project POK0: Positivity on K-trivial varieties funded by the Agence nationale de la recherche and the Deutsche Forschungsgemeinschaft.
Address
Fachrichtung Mathematik
Campus, Gebäude E2 4
Universität des Saarlandes
66123 Saarbrücken
Germany