Forschung/Research

We are interested in cellular processes involving reactive oxygen species (ROS). ROS can perform signaling functions, but they can also have harmful effects on cellular components in the form of oxidative stress. Our model systems are human and mural neuronal cell lines as well as the fruit fly Drosophila melanogaster.

    • Forschung am Modellorganismus Drosophila melanogaster

      The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the (in)effectiveness of the antioxidative defense mechanisms. Primary sources of ROS are the respiratory electron transfer and the activity of NADPH oxidases (NOX), while Superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role, SODs are the subject of research on human ovarian dysfunction, but the sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function (Project: Dr. E. Steinmetz).

    • Forschung an neuronalen Zelllinien

      Our brain requires a continuous supply of glucose. An altered glucose homeostasis, caused for example by incorrect treatment of diabetes mellitus, leads to metabolic stress, which can contribute to the long-term development of neurodegenerative diseases. The availability of glucose affects essential components such as ATP or NADPH, as well as signaling pathways and molecules like AMPK or Reactive Oxygen and Nitrogen Species (RONS). To study the effects of metabolic stress in a physiological setting, the human neuroblastoma cell line SH-SY5Y, a commonly used model to study neurodegenerative diseases, is used (Project: MSc L. Kronenberger)

    • Enhanced oxidative stress is a contributing factor in the pathogenesis of several neurodegenerative disorders such as Alzheimer´s disease. Beneficial effects have been demonstrated for medium-chain fatty acids (MCFAs) nutritionally administered as medium-chain triglycerides (MCTs) or coconut oil (CO). The observed effects on cognitive impairment are generally attributed to the hepatic metabolism of MCFAs, where resulting ketone bodies serve as an alternate energy source to compensate for the impaired glucose utilisation in the human brain (Project: Dr. J.Mett)

    • Glutamin im Energie- und Neurotransmitterstoffwechsel in Neuroblastomzelllinien Glutamin zählt zu den wichtigsten Aminosäuren im Körper. Es dient als Energiequelle und zur Synthese lebenswichtiger Proteine. Glutamat ist der wichtigste exzitatorische Neurotransmitter in Neuronen und dient als Vorläufer für den inhibitorischen Neurotransmitter GABA. Eine Glutamin-Glutamat Homöostase ist von entscheidender Bedeutung für eine optimale Funktion des Gehirns. Neben Glukose und Pyruvat konnte auch Glutamin als wichtigster Energielieferant für Zellen identifiziert werden. Insbesondere Krebszellen greifen vermehrt auf Glutamin als Energiequelle zurück. Ziel des Projektes ist es, den Glutaminstoffwechsel der Neuroblastomzelllinie SH-SY5Y (human) und Krebszellinie Neuro2A (murin) genauer zu verstehen (Project: BSc A. Pietzko).

Publikationen

2021

The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease. Antioxidants, 2021, doi: 10.3390/antiox10121991

The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Sci Rep. 2021, doi: 10.1038/s41598-021-85523-9.

 

2022
2023
2024

Metabolic Profiling of SH-SY5Y and Neuro2A Cells in Relation to Fetal Calf Serum (FCS) Concentration in Culture Media. Metabolites, 2024, doi: 10.3390/metabo14040188.

Orthologs of NOX5 and EC-SOD/SOD3: dNox and dSod3 Impact Egg Hardening Process and Egg Laying in Reproductive Function of Drosophila melanogaster. IJMS, 2024, doi: 10.3390/ijms25042105.