Quantum Optics with Ultracold Atoms (Optional Course)
Lecturer: Giovanna Morigi
 Exercises and tutorium: Thomas Fogarty
Lecture:
Thursday 12:30 - 14:00 Uhr, Gebäude E2 6, E.04
 Friday 8:30 - 10:00 Uhr, Gebäude E2 6, Seminarraum 4.18
The first lecture takes place on Thursday, October 22 at 8.30am in Geb. E2.6, Seminar Room 4.18.
Rescheduled date: there is a lecture on Tuesday, January 26, at 14:00 in building E2.6 in room E12.
Content
- Bose-Einstein statistics and condensation:
 The ideal Bose gas: Thermodynamics and Statistics
 
- Quantum degenerate atomic gases
 2.1 Trapping and cooling
 2.2 Collisions
 
- Bose-Einstein condensation in interacting systems
 3.1 Definition of Bose-Einstein condensation in an interacting system
 3.2 An imperfect Bose gas
 3.3 Order parameter
 
- Second quantization
 4.1 The Schroedinger equation in first quantization
 4.2 Many-particle Hilbert space
 4.3 Fields
 
- Bose-Einstein condensation in second quantization
 5.1 Bogoliubov approximation
 5.2 The Gross-Pitaevskii equation
 5.3 Small amplitude oscillations
 5.4 Quantization of elementary oscillations
 
- Superfluidity
 6.1 Landau’s criterion
 6.2 BEC and superfluidity
 6.3 Hydrodynamic theory of superfluids at zero temperature
 6.4 Quantum hydrodynamics
 
- BEC and coherence: Interference between two condensates
 
- BEC in optical lattices
 8.1 One particle in a periodic potential
 8.2 Wannier functions
 8.3 Equilibrium properties of BEC in optical lattices
 8.4 Bose-Hubbard model, the Mott-insulator/Superfluid quantum phase transition
 
- Outlook: Ultracold Fermi gases, BEC/BCS transition, quantum simulators with ultracold atoms.
Literature
- A. J. Leggett, Quantum Liquids
- L. Pitaevskii, S. Stringari, Bose-Einstein Condensation
- C. J. Pethick andH. Smith, Bose-Einstein Condensation in Dilute Gases
- S. Sachdev, Quantum Phase Transitions
- K. Huang, Statistical Mechanics
- A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems
