

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

MODULE DESCRIPTIONS

Data Science and Artificial Intelligence MSc

17th December 2024

List of module categories and modules

1	Stan	nmvorlesungen Informatik	3
	1.1	Algorithms and Data Structures	4
	1.2	Compiler Construction	5
	1.3	Complexity Theory	6
	1.4	Computer Algebra	7
	1.5	Computer Graphics	8
	1.6	Continuous Optimization	10
	1.7	Convex Analysis and Optimization	12
	1.8	Cryptography	14
	1.9	Cyber-Physical Systems	15
	1.10	Data Networks	17
	1.11	Digital Transmission & Signal Processing	19
	1.12	Distributed Systems	21
	1.13	Geometric Modelling	22
	1.14	Human Computer Interaction	24
	1.15	Introduction to Computational Logic	25
	1.16	Operating Systems	26
	1.17	Optimization	28
	1.18	Semantics	29
	1.19	Software Engineering	30
	1.20	Verification	32
2	Stan	nmvorlesungen DSAI	33
-		Artificial Intelligence	
	2.2	Automated Reasoning	
	2.2	Database Systems	
	2.4	Image Processing and Computer Vision	
	2.4	Information Retrieval and Data Mining	
	2.5	Machine Learning	
	2.0		74

	2.7	Neural Networks: Theory and Implementation	43
3	Vert	tiefungsvorlesungen DSAI	44
	3.1	Ethics for Nerds	45
	3.2	Mathematische Satistik	47
	3.3	Security	48
	3.4	Stochastik I	49
	3.5	Stochastik II	50
	3.6	Trusted AI Planning	51
4	Sem	ninar DSAI	53
	4.1	Seminar	54
5	Mas	ter-Seminar und -Arbeit	56
	5.1	Master Seminar	57
	5.2	Master Thesis	58

Module Category 1

Stammvorlesungen Informatik

Algorithms and Data Structures

AlgoDat

st. semester std. st. sem.	cycle at least every two years	duration 1 semester	sws	ects 9		
•	Prof. Dr. Kurt Mehlhorn Prof. Dr. Raimund Seidel Prof. Dr. Kurt Mehlhorn					
entrance requirements assessments / exams	 For graduate students: C, C++, Java Regular attendance of classes and tutorials Passing the midterm and the final exam A re-exam takes place during the last two weeks before the start of lectures in the following semester. 					
course types / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)					
total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)					
grade language	Will be determined from performan exact modalities will be announced English					

aims / competences to be developed

The students know standard algorithms for typical problems in the area's graphs, computational geometry, strings and optimization. Furthermore, they master a number of methods and data-structures to develop efficient algorithms and analyze their running times.

content

- graph algorithms (shortest path, minimum spanning trees, maximal flows, matchings, etc.)
- computational geometry (convex hull, Delaunay triangulation, Voronoi diagram, intersection of line segments, etc.)
- strings (pattern matching, suffix trees, etc.)
- generic methods of optimization (tabu search, simulated annealing, genetic algorithms, linear programming, branchand-bound, dynamic programming, approximation algorithms, etc.)
- data-structures (Fibonacci heaps, radix heaps, hashing, randomized search trees, segment trees, etc.)
- methods for analyzing algorithms (amortized analysis, average-case analysis, potential methods, etc.

literature & reading

Compiler Construction

st. semester 1	std. st. sem. 4	cycle at least every two years	duration 1 semester	sws 6	ects 9	
	-	Prof. Dr. Sebastian Hack Prof. Dr. Sebastian Hack				
entrar	nce requirements	For graduate students: none				
asse	essments / exams	 Regular attendance of classes and tutorials Written exam at the end of the course, theoretical exercises, and compiler- laboratory project. A re-exam takes place during the last two weeks before the start of lectures in the following semester. 				
course type	es / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
	grade	Will be determined from performan exact modalities will be announced		-		
	language	English				

aims / competences to be developed

The students learn, how a source program is lexically, syntactically, and semantically analyzed, and how they are translated into semantically equivalent machine programs. They learn how to increase the efficiency by semantics-preserving transformations. They understand the automata-theoretic foundations of these tasks and learn, how to use the corresponding tools.

content

Lexical, syntactic, semantic analysis of source programs, code generation for abstract and real machines, efficiency-improving program transformations, foundations of program analysis.

literature & reading

Will be announced before the start of the course on the course page on the Internet.

5

CC

Complexity Theory

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. Dr. Markus Bläser			
	lecturers	Prof. Dr. Raimund Seidel Prof. Dr. Markus Bläser			
enti	rance requirements	undergraduate course on theory of chen Informatik) is highly recomme		Grundzüge d	der Theoretis-
as	ssessments / exams	 Regular attendance of classes assignments exams (written or oral) 	s and tutorials		
course ty	/pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be calculated from the results i by the Lecturer at the beginning of		d/or exams, a	as announced
	language	English			

aims / competences to be developed

The aim of this lecture is to learn important concepts and methods of computational complexity theory. The student shall be enabled to understand recent topics and results in computational complexity theory.

content

Relation among resources like time, space, determinism, nondeterminism, complexity classes, reduction and completeness, circuits and nonuniform complexity classes, logarithmic space and parallel complexity classes, Immerman-Szelepcsenyi theorem, polynomial time hierarchy, relativization, parity and the polynomial methods, Valiant-Vazirani theorem, counting problems and classes, Toda's theorem, probabilistic computations, isolation lemma and parallel algorithms for matching, circuit identity testing, graph isomorphism and interactive proofs.

literature & reading

Arora, Barak: Computational Complexity – A Modern Approach, Cambridge University Press Oded Goldreich: Computational Complexity – A Conceptual Approach, Cambridge University Press Dexter Kozen: Theory of Computation, Springer Schöning, Pruim: Gems of Theoretical Computer Science, Springer

Computer Algebra CA							
st. semester 1	std. st. sem. 4	cycle at least every two years	duration 1 semester	sws 6	ects 9		
ent	lecturers	Prof. Dr. Frank-Olaf Schreyer Prof. Dr. Frank-Olaf Schreyer For graduate students: none					
	ssessments / exams						
course t		<pre>4 h lectures + 2 h tutorial = 6 h (weekly)</pre>					
		90 h of classes + 180 h private study = 270 h (= 9 ECTS)					
	-	Will be determined from performar exact modalities will be announced		•	cal tasks. The		

language English

aims / competences to be developed

Solving problems occuring in computer algebra praxis The theory behind algorithms

content

Arithmetic and algebraic systems of equations in geometry, engineering and natural sciences

- integer and modular arithmetics, prime number tests
- polynomal arithmetics and factorization
- fast Fourier-transformation, modular algorithms
- resultants, Gröbnerbasen
- · homotopy methods for numerical solving
- real solutions, Sturm chains and other rules for algebraic signs Arithmetic and algebraic systems of equations in geometry, engineering and natural sciences
- integer and modular arithmetics, prime number tests
- polynomal arithmetics and factorization
- fast Fourier-transformation, modular algorithms
- resultants, Gröbnerbasen
- homotopy methods for numerical solving
- real solutions, Sturm chains and other rules for algebraic signs

literature & reading

Computer Graphics

st. semester std. st. sem. 1 4	cycle at least every two years	duration 1 semester	sws 6	ects 9
lecturers	Prof. Dr. Philipp Slusallek Prof. Dr. Philipp Slusallek Solid knowledge of linear algebra is re	ecommended.		
assessments / exams				
course types / weekly hours total workload	<pre>+ 2 h tutorial = 6 h (weekly) 90 h of classes + 180 h private study</pre>			
grade language	= 270 h (= 9 ECTS)The grade is derived from the above nounced at the beginnning of each see English		ible chang	es will be an-

CG

aims / competences to be developed

This course provides the theoretical and practical foundation for computer graphics. It gives a wide overview of topics, techniques, and approaches used in various aspects of computer graphics but has some focus on image synthesis or rendering. The first part of the course uses ray tracing as a driving applications to discuss core topics of computer graphics, from vector algebra all the way to sampling theory, the human visual system, sampling theory, and spline curves and surfaces. A second part then uses rasterization approach as a driving example, introducing the camera transformation, clipping, the OpenGL API and shading langue, plus advanced techniques.

As part of the practical exercises the students incrementally build their own ray tracing system. Once the basics have been covered, the students participate in a rendering competition. Here they can implement their favorite advanced algorithm and are asked to generate a high-quality rendered image that shows their techniques in action.

content

- Introduction
- Overview of Ray Tracing and Intersection Methods
- Spatial Index Structures
- Vector Algebra, Homogeneous Coordinates, and Transformations
- Light Transport Theory, Rendering Equation
- BRDF, Materials Models, and Shading
- Texturing Methods
- Spectral Analysis, Sampling Theory
- Filtering and Anti-Aliasing Methods

- Recursive Ray Tracing & Distribution Ray-Tracing
- Human Visual System & Color Models
- Spline Curves and Surfaces
- Camera Transformations & Clipping
- Rasterization Pipeline
- OpenGL API & GLSL Shading
 Volume Rendering (opt.)

Will be announced in the lecture.

0	Continuous O	ptimization				OPT		
	st. semester	std. st. sem.	cycle	duration	SWS	ECTS		
	1	4	at least every two years	1 semester	6	9		
		responsible	Prof. Dr. Peter Ochs					
		lecturers	Prof. Dr. Peter Ochs					
entrance requirements			Undergraduate mathematics (e.g. <i>Mathematik für Informatiker I</i> , <i>II</i> and <i>III</i>) and some elementary programming knowledge is recommended.					
	as	sessments / exams	 Regular attendance of classes Solving accompanying exercis Successful partcipation in the 	ses				
	course ty	pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)					
		total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)					
		grade	Will be determined from performan exact modalities will be announced					
		languaga	Faclish					

language English

aims / competences to be developed

After taking this course, students will have an overview of classical optimization methods and analysis tools for continuous optimization problems, which allows them to model and solve practical problems. Moreover, in the tutorials, some experience will be gained to implement and numerically solve practical problems.

content

- 1. Introduction
 - Mathematical Optimization
 - Applications
 - Performance of Numerical Methods
 - Existence of a Solution
 - The Class of Convex Optimization Problems
- 2. Unconstrained Optimization
 - Optimality Conditions
 - Descent Methods
 - Gradient Descent Method
 - Conjugate Gradient Method
 - Newton's Method
 - Quasi-Newton Methods
 - Gauss-Newton Method
 - Computing Derivatives
- 3. Constrained Optimization
 - Motivation

- Optimality Conditions for Constrained Problems
- Method of Feasible Directions
- Linear Programming
- Quadratic Programming
- Sequential Quadratic Programming (SQP)
- Penalty and Barrier Methods

- J. Nocedal und S. J. Wright: Numerical Optimization. Springer, 2006.
- F. Jarre und J. Stoerr: Optimierung. Springer, 2004.
- D. Bertsekas: Nonlinear Programming. Athena Scientific, 1999.
- Y. Nesterov: Introductory Lectures on Convex Optimization A Basic Course. Kluwer Academic Publisher, 2004.
- T. Rockafellar and R. J.-B. Wets: Variational Analysis. Springer-Verlag Berlin Heidelberg, 1998.

Convex Analysis and Optimization

st. semester	std. st. sem.	cycle	duration	SWS	ECTS	
1	4	at least every two years	1 semester	6	9	
	-	Prof. Dr. Peter Ochs Prof. Dr. Peter Ochs				
entra	entrance requirements Undergraduate mathematics (e.g. <i>Mathematik für Informatiker I, II</i> and <i>III</i>) and some elementary programming knowledge is recommended.					
ass	essments / exams	 Regular attendance of classes and tutorials Solving accompanying exercises Successful participation in the final or re-exam 				
course typ	oes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
	grade	Will be determined from performan exact modalities will be announced		-	cal tasks. The	
	languago	English				

CAO

language English

aims / competences to be developed

After taking the course, students know about the most relevant concepts of convex analysis and convex optimization. They are able to read and understand related scientific literature. Moreover, they can rate the difficulty of convex optimization problems arising in applications in machine learning or computer vision and select an efficient algorithm accordingly. Moreover, they develop basic skills in solving practical problems with Python.

content

- 1. Introduction
 - Introduction
 - Applications
- 2. Convex Geometry
 - Foundations
 - Convex Feasibility Problems
- 3. Convex Analysis Background
 - Preliminaries
 - Convex Functions
- 4. Smooth Convex Optimization
 - Optimality Conditions
 - Gradient Descent Method
 - Lower complexity bounds
 - Accelerated and Inertial Algorithms

5. Non-smooth Convex Analysis

- Continuity of Convex Functions
- Convexity from Epigraphical Operations
- The Subdifferential
- 6. Non-smooth Convex Optimization
 - Fermat's Rule
 - Duality in Optimization and Primal / Dual Problems
 - Algorithms
 - Lower complexity bounds
 - Saddle Point Problems

literature & reading

- T. Rockafellar: Convex Analysis. Princeton University Press, 1970.
- Y. Nesterov: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, 2004.
- D.P. Bertsekas: Convex Analysis and Optimization. Athena Scientific, 2003.
- S. Boyd: Convex Optimization. Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2011.
- T. Rockafellar and R. J.-B. Wets: Variational Analysis. Springer-Verlag Berlin Heidelberg, 1998.

Cryptography	/				Crypto	
st. semester	std. st. sem.	cycle	duration	sws	ECTS	
_	4	at least every two years	1 semester	6	9	
	responsible	Dr. Nico Döttling				
	lecturers	Prof. Dr. Cas Cremers Dr. Nico Döttling Dr. Antoine Joux Dr. Lucjan Hanzlik Dr. Julian Loss				
ent	rance requirements	For graduate students: Basic knowledge in theoretical computer science required, background knowledge in number theory and complexity theory helpful				
а	ssessments / exams	 Oral / written exam (depending on the number of students) A re-exam is normally provided (as written or oral examination). 				
course t	ypes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
	grade	Will be determined from performan exact modalities will be announced			cal tasks. The	
	language	English				

aims / competences to be developed

The students will acquire a comprehensive knowledge of the basic concepts of cryptography and formal definitions. They will be able to prove the security of basic techniques.

content

- Symmetric and asymmetric encryption
- Digital signatures and message authentication codes
- Information theoretic and complexity theoretic definitions of security, cryptographic reduction proofs
- Cryptographic models, e.g. random oracle model
- Cryptographic primitives, e.g. trapdoor-one-way functions, pseudo random generators, etc.
- Cryptography in practice (standards, products)
- Selected topics from current research

literature & reading

st. semester	std. st. sem.	cycle at least every two years	duration 1 semester	sws 6	ects 9	
	-	Prof. Dr. Martina Maggio Prof. Dr. Martina Maggio				
ent	trance requirements					
а	ssessments / exams	 Written exam at the end of the course. A re-exam takes place before the start of the following semester. 				
course t	ypes / weekly hours	4 h lectures + 2 h tutorials = 6 h (weekly)				
	total workload	75 h lectures + 15 h mandatory assignment + 180 h individual study = 270 h (= 9 ECTS)	s			
	grade	Will be determined from performand ities will be announced at the begin	-	nments. The	exact modal-	
	language	English				

aims / competences to be developed

Cvber-Physical Systems

By completing the Cyber-Physical Systems course, students will acquire the ability to model, analyze, control, and implement embedded systems that interact with the physical world, equipping them to design reliable and efficient systems for a variety of applications in modern technology.

content

Cyber-Physical Systems are embedded systems that integrate computation with physical processes. These systems are ubiquitous in our daily lives, powering technologies such as smart watches, household appliances, mobile phones, and automotive control systems. In fact, the majority of modern computing devices are embedded systems, with an estimated 98% of new CPUs being embedded in larger systems.

This course provides a comprehensive foundation for understanding, designing, and programming cyber-physical systems, emphasizing their theoretical and practical aspects. It is structured into three interconnected parts:

- 1. *Models:* Students will learn how to represent the physical systems that embedded systems interact with, exploring dynamical systems in both continuous and discrete time. Additionally, the course will briefly introduce more advanced models, which combine discrete state systems with dynamical systems.
- 2. *Control:* This module focuses on principles for modifying the behavior of physical systems through computation. Students will study and apply control techniques such as state feedback and PID control, learning how these methods influence the interaction between embedded systems and their environments.
- 3. *Implementation:* The final course part addresses practical challenges in embedded systems programming. Topics include scheduling, communication, and fault tolerance. This ensures that students are equipped to implement robust and efficient embedded systems in real-world scenarios.

By the end of this course, students will possess the skills needed to design and implement cyber-physical systems that meet specific functional and performance requirements, preparing them for roles in cutting-edge industries where embedded systems play a critical role, such as the automotive industry and for research in the cyber-physical systems domain.

Will be announced before the start of the course on the course page on the Internet.

additional information

This module was formerly also known as *Embedded Systems*.

Data Networks

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. DrIng. Holger Hermanns			
	-	Prof. DrIng. Holger Hermanns Prof. Dr. Anja Feldmann			
entra	ance requirements	For graduate students: none			
 assessments / exams Regular attendance of classes and tutorials Qualification for final exam through mini quizzes during classes Possibility to get bonus points through excellent homework Final exam A re-exam takes place during the last two weeks before the start of lease in the following semester. 					
course ty	pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be determined from performan exact modalities will be announced			cal tasks. The
	language	English			

aims / competences to be developed

After taking the course students have

- a thorough knowledge regarding the basic principles of communication networks,
- the fundamentals of protocols and concepts of protocol,
- Insights into fundamental motivations of different pragmatics of current network solutions,
- · Introduction to practical aspects of data networks focusing on internet protocol hierarchies

content

Introduction and overview

Cross section:

- Stochastic Processes, Markov models,
- Fundamentals of data network performance assessment
- Principles of reliable data transfer
- Protokols and their elementary parts
- Graphs and Graphalgorithms (maximal flow, spanning tree)
- Application layer:
- Services and protocols
- FTP, Telnet
- Electronic Mail (Basics and Principles, SMTP, POP3, ..)
- World Wide Web (History, HTTP, HTML)

- Transport Layer:
- Services and protocols
- Addressing
- Connections and ports
- Flow control
- QoS
- Transport Protocols (UDP, TCP, SCTP, Ports)
- Network layer:
- Services and protocols
- Routing algorithms
- Congestion Control
- Addressing
- Internet protocol (IP)
- Data link layer:
- Services and protocols
- Medium access protocols: Aloha, CSMA (-CD/CA), Token passing
- Error correcting codes
- Flow control
- Applications: LAN, Ethernet, Token Architectures, WLAN, ATM
- Physical layer
- Peer-to-Peer and Ad-hoc Networking Principles

Digital Transmission & Signal Processing

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. DrIng. Thorsten Herfet			
	lecturers	Prof. DrIng. Thorsten Herfet			
entra	nce requirements	The lecture requires a solid foundat calculus) and probability theory. Th dispensably necessary for telecomm and by this open this potential field	e course will, howev unications and pote	ver, refresh th ntial intensif	nose areas in- ication courses
ass	essments / exams	s Regular attendance of classes and tutorials Passing the final exam in the 2nd week after the end of courses. Eligibility: Weekly exercises / task sheets, grouped into two blocks corresponding to first and second half of the lecture. Students must provide min. 50% grade in each of the two blocks to be eligible for the exam.			
course typ	oes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Final exam mark			
	language	English			

DTSP

aims / competences to be developed

Digital Signal Transmission and Signal Processing refreshes the foundation laid in "Signals and Systems" [Modulkennung]. Including, however, the respective basics so that the various facets of the introductory study period (Bachelor in Computer Science, Vordiplom Computer- und Kommunikationstechnik, Elektrotechnik or Mechatronik) and the potential main study period (Master in Computer Science, Diplom-Ingenieur Computer- und Kommunikationstechnik or Mechatronik) will be paid respect to.

content

As the basic principle, the course will give an introduction into the various building blocks that modern telecommunication systems do incorporate. Sources, sinks, source and channel coding, modulation and multiplexing are the major keywords, but we will also deal with dedicated pieces like A/D- and D/A-converters and quantizers in a little bit more depth.

The course will refresh the basic transformations (Fourier, Laplace) that give access to system analysis in the frequency domain, it will introduce derived transformations (z, Hilbert) for the analysis of discrete systems and modulation schemes and it will briefly introduce algebra on finite fields to systematically deal with error correction schemes that play an important role in modern communication systems.

literature & reading

additional information

This module was formerly also known as *Telecommunications I*.

Distributed Systems

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. Peter Druschel, Ph.D.			
	lecturers	Prof. Peter Druschel, Ph.D. Allen Clement, Ph.D			
enti	rance requirements	Operating Systems or Concurrent F	programming		
a	ssessments / exams	 Regular attendance at classes and tutorials. Successful completion of a course project in teams of 2 students. (Proj assignments due approximately every 2 weeks.) Passing grade on 2 out of 3 written exams: midterm, final exam, and a exam that takes place during the last two weeks before the start of lectu in the following semester. Final course grade: 50% project, 50% best 2 out of 3 exams. 			am, and a re-
course ty	ypes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be determined from performa exact modalities will be announce		•	cal tasks. The
	language	English			

DS

aims / competences to be developed

Introduction to the principles, design, and implementation of distributed systems.

content

- Communication: Remote procedure call, distributed objects, event notification, Inhalt dissemination, group communication, epidemic protocols.
- Distributed storage systems: Caching, logging, recovery, leases.
- Naming. Scalable name resolution.
- Synchronization: Clock synchronization, logical clocks, vector clocks, distributed snapshots.
- Fault tolerance: Replication protocols, consistency models, consistency versus availability trade-offs, state machine replication, consensus, Paxos, PBFT.
- Peer-to-peer systems: consistent hashing, self-organization, incentives, distributed hash tables, Inhalt distribution networks.
- Data centers. Architecture and infrastructure, distributed programming, energy efficiency.

literature & reading

Geometric Modelling

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. Dr. Hans-Peter Seidel			
	lecturers	Prof. Dr. Hans-Peter Seidel Dr. Rhaleb Zayer			
entra	ance requirements	calculus and basic programming sk	kills		
as	sessments / exams	 Regular attendance and participation. Weekly Assignments (10% bonus towards the course grade; bonus points ca only improve the grade; they do not affect passing) Passing the written exams (mid-term and final exam). The mid-term and the final exam count for 50% each, but 10% bonus fror assignments will be added. A re-exam takes place at the end of the semester break or early in the new semester. 			
course ty	pes / weekly hours	<pre>4 h lectures + 2 h tutorial = 6 h (weekly) Practical assignments in groups of Tutorials consists of a mix of theore</pre>		gnments.	
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be based on the performance in tailed terms will be announced by t		•	asks. The de-
	language	English			

aims / competences to be developed

Gaining knowledge of the theoretical aspect of geometric modelling problems, and the practical solutions used for modelling and manipulating curves and surfaces on a computer. From a broader perspective: Learning how to represent and interact with geometric models in a discretized, digital form (geometric representations by functions and samples; design of linear function spaces; finding "good" functions with respect to a geometric modelling task in such spaces).

content

- Differential geometry Fundamentals
- Interpolation and Approximation
- Polynomial Curves
- Bezier and Rational Bezier Curves
- B-splines, NURBS
- Spline Surfaces
- Subdivision and Multiresolution Modelling
- Mesh processing
- Approximation of differential operators
- Shape Analysis and Geometry Processing

Will be announced before the term begins on the lecture website.

Human Computer Interaction

st. semester std. st. sem. 1 4	cycle at least every two years	duration 1 semester	sws 6	ects 9	
-	Prof. Dr. Jürgen Steimle Prof. Dr. Jürgen Steimle				
entrance requirements	s undergraduate students: Programmierung 1 and 2 graduate students: none				
assessments / exams	 Regular attendance of classes and tutorials Successful completion of exercises and course project Final exam A re-exam takes place (as written or oral examination). 				
course types / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
grade	Will be determined from performance exact modalities will be announced at			l tasks. The	
language	English				

HCI

aims / competences to be developed

This course teaches the theoretical and practical foundations for human computer interaction. It covers a wide overview of topics, techniques and approaches used for the design and evaluation of modern user interfaces.

The course covers the principles that underlie successful user interfaces, provides an overview of input and output devices and user interface types, and familiarizes students with the methods for designing and evaluating user interfaces. Students learn to critically assess user interfaces, to design user interfaces themselves, and to evaluate them in empirical studies.

content

- Fundamentals of human-computer interaction
- User interface paradigms, input and output devices
- Desktop & graphical user interfaces
- Mobile user interfaces
- Natural user interfaces
- User-centered interaction design
- Design principles and guidelines
- Prototyping

literature & reading

Introduction to Computational Logic

st. semester std. st. sem. 1 4	cycle at least every two years	duration 1 semester	sws 6	ects 9
lecturers	Prof. Dr. Gert Smolka Prof. Dr. Gert Smolka			
entrance requirements assessments / exams				
course types / weekly hours	<pre>4 h lectures + 2 h tutorial = 6 h (weekly)</pre>			
total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
grade	Will be determined from performance exact modalities will be announced at			l tasks. The
language	English			

aims / competences to be developed

- structure of logic languages based on type theory
- distinction notation / syntax / semantics
- structure and formal representation of mathematical statements
- structure and formal representation of proofs (equational and natural deduction)
- solving Boolean equations
- proving formulas with quantifiers
- implementing syntax and deduction

content

Type Theory:

- functional representation of mathematical statements
- simply typed lambda calculus, De Bruijn representation and substitution, normalization, elimination of lambdas
- Interpretations and semantic consequence
- Equational deduction, soundness and completeness
- Propositional Logic
- Boolean Axioms, completeness for 2-valued interpretation
- resolution of Boolean equations, canonical forms based on decision trees and resolution

Predicate Logic (higher-order):

- quantifier axioms
- natural deduction
- prenex and Skolem forms

literature & reading

Operating Systems

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1	4	at least every two years	1 semester	6	9
	responsible	Prof. Peter Druschel, Ph.D.			
	lecturers	Prof. Peter Druschel, Ph.D. Björn Brandenburg, Ph.D			
enti	rance requirements	For graduate students: none			
as	ssessments / exams	Regular attendance at classes and Successful completion of a course Passing 2 written exams (midterm A re-exam takes place during the la following semester.	project in teams of 2 s and final exam)		ectures in the
course ty	/pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be determined from performate exact modalities will be announce		•	cal tasks. The
	language	English			

0S

aims / competences to be developed

Introduction to the principles, design, and implementation of operating systems

content

Process management:

- Threads and processes, synchronization
- Multiprogramming, CPU Scheduling
- Deadlock

Memory management:

- Dynamic storage allocation
- Sharing main memory
- Virtual memory

I/O management:

- File storage management
- Naming
- Concurrency, Robustness, Performance

Virtual machines

Optimization					Opti	
st. semester 1	std. st. sem.	cycle at least every two years	duration 1 semester	sws	ects 9	
	responsible	Prof. Dr. Kurt Mehlhorn				
	lecturers	Prof. Dr. Kurt Mehlhorn Dr. Andreas Karrenbauer				
entra	nce requirements	For graduate students: none				
ass	essments / exams	 Regular attendance of classes and tutorials Solving accompanying exercises, successful partcipation in midterm and final exam Grades: Yes The grade is calculated from the above parameters according to the following scheme: 20%, 30%, 50% A re-exam takes place during the last two weeks before the start of lectures in the following semester. 				
course typ	oes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
	grade	Will be determined from performar exact modalities will be announced				
	language	English				

Onti

aims / competences to be developed

The students learn to model and solve optimization problems from theory as from the real world

content

Ontimization

Linear Programming: Theory of polyhedra, simplex algorithm, duality, ellipsoid method * Integer linear programming: Branchand-Bound, cutting planes, TDI-Systems * Network flow: Minimum cost network flow, minimum mean cycle cancellation algorithm, network simplex method * Matchings in graphs: Polynomial matching algorithms in general graphs, integrality of the matching polytope, cutting planes * Approximation algorithms: LP-Rounding, greedy methods, knapsack, bin packing, steiner trees and forests, survivable network design

literature & reading

Semantics

st. semester std. st. sem. 1 4	cycle at least every two years	duration 1 semester	sws 6	ects
lecturers	Prof. Dr. Gert Smolka Prof. Dr. Gert Smolka			
assessments / exams	 ts For graduate students: core lecture Introduction to Computational Logic Regular attendance of classes and tutorials. Passing the midterm and the final exam 			
course types / weekly hours total workload	+ 2 h tutorial = 6 h (weekly)			
grade	 + 180 h private study = 270 h (= 9 ECTS) Will be determined from performan exact modalities will be announced 		•	
language	English			

aims / competences to be developed

Understanding of

- Logical structure of programming languages
- Formal models of programming languages
- Type and module systems for programming languages

content

Theory of programming languages, in particular:

- Formal models of functional and object-oriented languages
- Lambda Calculi (untyped, simply typed, System F, F-omega, Lambda Cube, subtyping, recursive types, Curry-Howard Correspondence)
- Algorithms for type checking and type reconstruction

literature & reading

Software Engineering

st. semester	std. st. sem. 4	cycle at least every two years	duration 1 semester	sws 6	ects 9	
	-	Prof. Dr. Sven Apel				
entr	ance requirements	 Prof. Dr. Sven Apel Knowledge of programming constrained and Programmierung 2) Basic knowledge of software applied in the lecture Software 	processes, design, a			
as		 ns Beside the lecture and weekly practical exercises, there will be a number of assignments in the form of mini-projects for each student to work on (every two to three weeks). The assignments will be assessed based on the principles covered in the lecture. Passing all assignments is a prerequisite for taking the final written exam. The final grade is determined only by the written exam. Further examination details will be announced by the lecturer at the beginning of the course. In short: Passing all assignments (prerequisite for the written exam) Passing the written exam 				
course ty		4 h lectures + 2 h exercises = 6 h (weekly)				
		90 h of classes and exerc + 180 h private study and as = 270 h (= 9 ECTS)				
	-	The grade is determined by the wr requisite for taking the written exa final grade. Further examination de beginning of the course.	m. The assignments	do not cont	tribute to the	
	language	English				

SE

aims / competences to be developed

- The students know and apply modern software development techniques.
- They are aware of key factors contributing to the complexity of real-world software systems, in particular, software variability, configurability, feature interaction, crosscutting concerns, and how to address them.
- They know how to apply established design and implementation techniques to master software complexity.
- They are aware of advanced design and implementation techniques, including collaboration-based design, mixins/traits, aspects, pointcuts, advice.
- They are aware of advanced quality assurance techniques that take the complexity of real-world software systems into account: variability-aware analysis, sampling, feature-interaction detection, predictive performance modeling, etc.
- They appreciate the role of non-functional properties and know how to predict and optimize software systems regarding these properties.
- They are able to use formal methods to reason about key techniques and properties covered in the lecture.

content

- Domain analysis, feature modeling
- Automated reasoning about software configuration using SAT solvers
- Runtime parameters, design patterns, frameworks
- Version control, build systems, preprocessors
- Collaboration-based design
- Aspects, pointcuts, advice
- Expression problem, preplanning problem, code scattering & tangling, tyranny of the dominant decomposition, inheritance vs. delegation vs. mixin composition
- Feature interaction problem (structural, control- & data-flow, behavioral, non-functional feature interactions)
- Variability-aware analysis and variational program representation (with applications to type checking and static program analysis)
- Sampling (random, coverage)
- Machine learning for software performance prediction and optimization

literature & reading

- Feature-Oriented Software Product Lines: Concepts and Implementation. S. Apel, et al., Springer, 2013.
- Generative Programming: Methods, Tools, and Applications: Methods, Techniques and Applications. K. Czarnecki, et al., Addison-Wesley, 2000.
- Mastering Software Variability with FeatureIDE. J. Meinicke, et al., Springer, 2017.

		. •
Ver	TIC a	ition

st. semester	std. st. sem.	cycle at least every two years	duration 1 semester	sws	ects 9
	•	Prof. DrIng. Holger Hermanns Prof. DrIng. Holger Hermanns Prof. Bernd Finkbeiner, Ph.D			
	ance requirements sessments / exams	 For graduate students: none Regular attendance of classes Passing the final exam A re-exam takes place during in the following semester. 		efore the sta	art of lectures
course ty	pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	-	Will be determined from performar exact modalities will be announced			cal tasks. The
	language	Linguon			

aims / competences to be developed

The students become familiar with the standard methods in computer-aided verification. They understand the theoretical foundations and are able to assess the advantages and disadvantages of different methods for a specific verification project. The students gain first experience with manual correctness proofs and with the use of verification tools.

content

- models of computation and specification languages: temporal logics, automata over infinite objects, process algebra
- deductive verification: proof systems (e.g., Floyd, Hoare, Manna/Pnueli), relative completeness, compositionality
- model checking: complexity of model checking algorithms, symbolic model checking, abstraction case studies

literature & reading

Module Category 2

Stammvorlesungen DSAI

Artificial Intelligence

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1-3	4	at least every two years	1 semester	6	9
	responsible	Prof. Dr. Jörg Hoffmann			
	lecturers	Prof. Dr. Jörg Hoffmann			
enti	rance requirements	Programming 1, Programming 2, Fu and Elements of Machine Learning o mended.			-
a	ssessments / exams	 Regular attendance of classes Solving of weekly assignment Passing the final written exam A re-exam takes place during in the following semester. 	S	efore the sta	art of lectures
course ty	ypes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be determined from the perfor announced at the beginning of the		e exact mod	alities will be

language English

aims / competences to be developed

Knowledge about basic methods in Artificial Intelligence

content

Search:

- Uninformed- and informed search procedures
- Monte-Carlo tree search

Planning:

- Formalism and complexity
- Critical-path heuristics
- Delete relaxation heuristics
- Abstraction heuristics

Markov decision processes:

- Discounted reward and expected cost
- Value iteration
- Informed search
- Reinforcement learning

Games:

- Adversarial search
- Learning from self-play

Russel & Norvig Artificial Intelligence: A Modern Approach; further reading will be announced before the start of the course on the course page on the Internet.

A	utomated Rea	asoning				AR	
	st. semester	std. st. sem.	cycle	duration	SWS	ECTS	
	1-3	4	at least every two years	1 semester	6	9	
		responsible	Prof. Dr. Christoph Weidenbach				
		lecturers	Prof. Dr. Christoph Weidenbach				
	entra	nce requirements	Introduction to Computational Logic	C			
assessments / exams		essments / exams	 Regular attendance of classes Weekly assignments Practical work with systems Passing the final and mid-tern A re-exam takes place during in the following semester. 	n exam	efore the sta	art of lectures	
	course typ	oes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)				
		total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
		grade	Will be determined from performan exact modalities will be announced			cal tasks. The	
			E P. L				

language English

aims / competences to be developed

The goal of this course is to provide familiarity with logics, calculi, implementation techniques, and systems providing automated reasoning.

content

Propositional Logic – CDCL, Superposition - Watched Literals First-Order Logic without Equality – (Ordered) Resolution, Equations with Variables – Completion, Termination First-Order Logic with Equality – Superposition (SUP) - Indexing

literature & reading

Will be announced before the start of the course on the course page on the Internet.

Database Systems

st. semester	std. st. sem.	cycle	duration	SWS	ECTS	
1-3	4	at least every two years	1 semester	6	9	
	responsible	Prof. Dr. Jens Dittrich				
	lecturers	Prof. Dr. Jens Dittrich				
entra	nce requirements	especially Saarland University CS of Engineering (former Informationssy und Datenstrukturen as well as Neb	steme), Programmie	erung 1 and 2		
		For graduate students:				
		 motivation for databases and the relational data model; relational query languages, pa solid programming skills in Ja undergrad courses in algorith ming 	articularly relational ava and/or C++	algebra and	SQL;	
ass	sessments / exams	 Passing a two-hour written ex Successful demonstration of p dents are allowed); the project assignments 	orogramming project	t (teams of u		
		Grades are based on written exam; s tionally paper or electronic quizzes repetition exams.				
		A repetition exam takes place during in the following semester.	g the last two weeks	before the st	art of lectures	
course typ	oes / weekly hours	<pre>\$ 4 h lectures + 2 h tutorial = 6 h (weekly)</pre>				
		This class may be run as a flipped placed by self-study of videos/paper exercice supervised by the professo	rs; the other 2 hours i			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)				
	grade	Will be determined based on project	t, midterm and best	of endterm	and reexam.	
	language	English				

aims / competences to be developed

Database systems are the backbone of most modern information systems and a core technology without which today's economy – as well as many other aspects of our lifes – would be impossible in their present forms. The course teaches the architectural and algorithmic foundations of modern database management systems (DBMS), focussing on database systems internals rather than applications. Emphasis is made on robust and time-tested techniques that have led databases to be considered a mature technology and one of the greatest success stories in computer science. At the same time, opportunities for exciting research in this field will be pointed out.

In the exercise part of the course, important components of a DBMS will be treated and where possible implemented and their performance evaluated. The goal this is to work with the techniques introduced in the lecture and to understand them and their practical implications to a depth that would not be attainable by purely theoretical study.

content

The course "Database Systems" will introduce students to the internal workings of a DBMS, in particular:

- storage media (disk, flash, main memory, caches, and any other future storage medium)
- data managing architectures (DBMS, streams, file systems, clouds, appliances)
- storage management (DB-file systems, raw devices, write-strategies, differential files, buffer management)
- data layouts (horizontal and vertical partitioning, columns, hybrid mappings, compression, defragmentation)
- indexing (one- and multidimensional, tree-structured, hash-, partition-based, bulk-loading and external sorting, differential indexing, read- and write-optimized indexing, data warehouse indexing, main-memory indexes, sparse and dense, direct and indirect, clustered and unclustered, main memory versus disk and/or flash-based)
- processing models (operator model, pipeline models, push and pull, block-based iteration, vectorization, query compilation)
- processing implementations (join algorithms for relational data, grouping and early aggregation, filtering)
- query processing (scanning, plan computation, SIMD)
- query optimization (query rewrite, cost models, cost-based optimization, join order, join graph, plan enumeration)
- data recovery (single versus multiple instance, logging, ARIES)
- parallelization of data and queries (horizontal and vertical partitioning, shared-nothing, replication, distributed query processing, NoSQL, MapReduce, Hadoop and/or similar and/or future systems)
- read-optimized system concepts (search engines, data warehouses, OLAP)
- write-optimized system concepts (OLTP, streaming data)
- management of geographical data (GIS, google maps and similar tools)
- main-memory techniques

literature & reading

Will be announced before the start of the course on the course page on the Internet.

Image Processing and Computer Vision

st. semester 1-3	std. st. sem. 4	cycle at least every two years	duration 1 semester	sws 6	ects 9
	responsible	Prof. Dr. Joachim Weickert			
	lecturers	Prof. Dr. Joachim Weickert			
enti	rance requirements	Undergraduate mathematics (e.g. tary programming knowledge in C	Mathematik für Infor	matiker I-III)	and elemen-
a	ssessments / exams	 For the homework assignments one can obtain up to 24 points per week. A tively participating in the classroom assignments gives 12 more points p week, regardless of the correctness of the solutions. To qualify for both e ams one needs 2/3 of all possible points. Passing the final exam or the re-exam. A re-exam takes place during the last two weeks before the start of lectur in the following semester. 			y for both ex-
course ty	/pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Will be determined from the perfor grade counts.	rmance in the exam o	or the re-exa	m. The better
	language	English			

IPCV

aims / competences to be developed

Broad introduction to mathematical methods in image processing and computer vision. The lecture qualifies students for a bachelor thesis in this field. Together with the completion of advanced or specialised lectures (9 credits at least) it is the basis for a master thesis in this field.

content

Inhalt

- 1. Basics
 - 1.1 Image Types and Discretisation
 - 1.2 Degradations in Digital Images
- 2. Colour Perception and Colour Spaces
- 3. Image Transformations
 - 3.1 Continuous Fourier Transform
 - 3.2 Discrete Fourier Transform
 - 3.3 Image Pyramids
 - 3.4 Wavelet Transform
- 4. Image Compression
- 5. Image Interpolation
- 6. Image Enhancement
 - 6.1 Point Operations

- 6.2 Linear Filtering and Feature Detection
- 6.3 Morphology and Median Filters
- 6.3 Wavelet Shrinkage, Bilateral Filters, NL Means
- 6.5 Diffusion Filtering
- 6.6 Variational Methods
- 6.7 Deconvolution Methods
- 7. Texture Analysis
- 8. Segmentation
 - 8.1 Classical Methods
- 8.2 Variational Methods
- 9. Image Sequence Analysis
 - 9.1 Local Methods
- 9.2 Variational Methods
- 10. 3-D Reconstruction
 - 10.1 Camera Geometry
 - 10.2 Stereo
 - 10.3 Shape-from-Shading
- 11. Object Recognition
 - 11.1 Hough Transform
 - 11.2 Invariants
 - 11.3 Eigenspace Methods

literature & reading

Will be announced before the start of the course on the course page on the Internet.

Information Retrieval and Data Mining				
st. semester std. st. sem. 1-3	cycle	duration	sws	ECTS
1 -3 -	at least every two years	1 semester	U	
· · ·	Prof. Dr. Gerhard Weikum			
entrance requirements	 Good knowledge of undergraduate ory) and basic algorithms. 	e mathematics (linear	algebra, pr	obability the-
assessments / exams	 Regular attendance of classes Presentation of solutions in tu Passing 2 of 3 written tests (aff Passing the final exam (at the 	itor groups ter each third of the s	emester)	
course types / weekly hours	<pre>4 h lectures + 2 h tutorial = 6 h (weekly)</pre>			
total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
grade	• Will be determined by the performa exam. Details will be announced or		U 1	, and the final
language	e English			

aims / competences to be developed

The lecture teaches models and algorithms that form the basis for search engines and for data mining and data analysis tools.

content

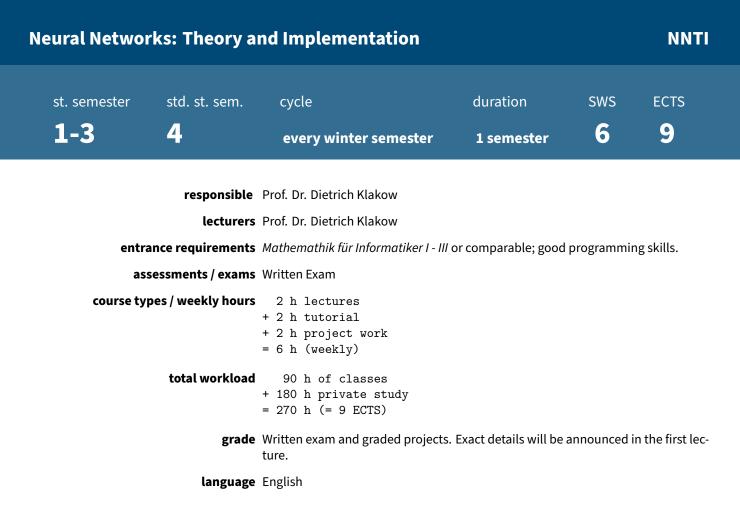
Information Retrieval (IR) and Data Mining (DM) are methodologies for organizing, searching and analyzing digital Inhalts from the web, social media and enterprises as well as multivariate datasets in these contexts. IR models and algorithms include text indexing, query processing, search result ranking, and information extraction for semantic search. DM models and algorithms include pattern mining, rule mining, classification and recommendation. Both fields build on mathematical foundations from the areas of linear algebra, graph theory, and probability and statistics.

literature & reading

Will be announced on the course web site.

Machine Learr	ning				ML
st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1-3	4	at least every two years	1 semester	6	9
	responsible	Prof. Dr. Isabel Valera			
	lecturers	Prof. Dr. Isabel Valera			
entrance requirements		The lecture gives a broad introduct lecture the students should be able		-	
as	sessments / exams	 Regular attendance of classes 50% of all points of the exercitive exam. Passing 1 out of 2 exams (final 	ses have to be obtain	ned in order	to qualify for
course ty	pes / weekly hours	4 h lectures + 2 h tutorial = 6 h (weekly)			
	total workload	90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	grade	Determined from the results of the exact grading modalities are annou		•	
	language	English			

aims / competences to be developed


The lecture gives a broad introduction into machine learning methods. After the lecture the students should be able to solve and analyze learning problems.

content

- Bayesian decision theory
- Linear classification and regression
- Kernel methods
- Bayesian learning
- Semi-supervised learning
- Unsupervised learning
- Model selection and evaluation of learning methods
- Statistical learning theory
- Other current research topics

literature & reading

Will be announced before the start of the course on the course page on the Internet.

aims / competences to be developed

The participants will be introduced to the key ideas of basic classification algorithms and in particular neural networks. A focus is also the implementation and applications to relevant problems. To achieve this, there will be theoretical exercises as well as project work.

content

- Classification
- Regression
- Linear Classifiers
- Perceptron
- Support Vector Machines
- Multy-Layer Perceptrons
- Deep Learning Software
- Autoencoders
- LSTMs
- Recurrent Neural Networks
- Sequence-to-sequence learning

literature & reading

Ian Goodfellow and Yoshua Bengio and Aaron Courville Deep Learning MIT Press, 2016 http://www.deeplearningbook.org Module Category 3

Vertiefungsvorlesungen DSAI

Ethics for Nerds

st. semester	std. st. sem.	cycle	duration	SWS	ECTS	
1-3	4	occasional / summer semester	1 semester	4	6	
	responsible	Prof. DrIng. Holger Hermanns				
	lecturers	Prof. DrIng. Holger Hermanns Kevin Baum Sarah Sterz				
	entrance requirements	We expect basic knowledge of proposit and interest to look at computer science				
	assessments / exams	The details of exam admission and grading are announced at the beginning of each iteration. Typically, participant are graded based on				
		 an exam or a re-exam (the better r a short essay where the participan in a topic from computer science. 		or against a	moral claim	
		To get the exam admission, participant weekly exercise sheets.	s usually have to <code>g</code>	get 50% of t	he points on	
cours	e types / weekly hours	2 h lectures + 2 h tutorial = 4 h (weekly)				
		(may be adjusted before the start of eac	h iteration of the	course)		
	total workload	60 h of classes + 120 h private study = 180 h (= 6 ECTS)				
	grade	Will be determined based on exam perfore exercise outcomes. The exact modalitie module.				
	language	English				

aims / competences to be developed

Many computer scientists will be confronted with morally difficult situations at some point in their career – be it in research, in business, or in industry. This module equips participants with the crucial assets enabling them to recognize such situations and to devise ways to arrive at a justified moral judgment regarding the question what one is permitted to do and what one should better not do. For that, participants will be made familiar with moral theories from philosophy, as well as different Codes of Ethics for computer scientists. Since one can quickly get lost when talking about ethics and morals, it is especially important to talk and argue clearly and precisely. In order to do prepare for that, the module offers substantial training regarding formal and informal argumentation skills enabling participants to argue beyond the level of everyday discussions at bars and parties. In the end, succesful participants are able to assess a morally controversial topic from computer science on their own and give a convincing argument for their respective assessments.

The module is intended to always be as clear, precise, and analytic as possible. What you won't find here is the meaningless bla-bla, needlessly poetic language, and vague and wordy profundity that some people tend to associate with philosophy.

content

This course covers:

- an introduction to the methods of philosophy, argumentation theory, and the basics of normative as well as applied ethics;
- relevant moral codices issued by professional associations like the ACM, the IEEE, and more;
- starting points to evaluate practices and technologies already in use or not that far away, including for instance: filter bubbles and echo chambers, ML-algorithms as predictive tools, GPS-tracking, CCTV and other tools from surveillance, fitness trackers, big data analysis, autonomous vehicles, lethal autonomous weapons systems and so on;
- an outlook on more futuristic topics like machine ethics, roboethics, and superintelligences;
- and more.

The content of the course is updated regularly to always be up-to-date and cover the currently most relevant topics, technologies, policies, and developments.

literature & reading

Will be announced before the start of the course on the course page.

Mathematische Satistik

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1-3	4	unregelmässig	1 Semester	6	9
	-	Prof. Dr. Henryk Zähle Dozent/inn/en der Mathemati	k		
entran	ce requirements	none			
asse	ssments / exams	Regelmäßige, aktive Teilnahm gen; Abschlussprüfung	e an der Vorlesung und	an den begle	itenden Übun-
course type	s / weekly hours	4 SWS Vorlesung + 2 SWS Übung = 6 SWS			
	total workload	60 h Vorlesung + 30 h Übungen + 180 h Eigenstudium (Vor- und Nachbe = 270 h (= 9 ECTS)	ereitung, Bearbeitu	ng Übungsau	ıfgaben)
	grade	Durch Klausur(en) und münd lesung bekannt gegeben.	liche Prüfung. Der Mod	lus wird zu B	eginn der Vor-
	language	Deutsch			

aims / competences to be developed

content

- Statistische Modelle; Modellwahl und Modellüberprüfung
- Punktschätzungen
- Bereichsschätzungen
- Hypothesentests

literature & reading

Bekanntgabe jeweils vor der Vorlesung auf der Vorlesungsseite im Internet

additional information

Methoden: Information durch Vorlesung; Vertiefung durch Eigentätigkeit (Nacharbeit, Übungen).

Anmeldung: Bekanntgabe jeweils rechtzeitig vor Semesterbeginn durch Aushang und im Internet.

Security

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1-3	4	at least every two years	1 semester	6	9
	rosponsible	Prof. Dr. Michael Backes			
	-				
		Prof. Dr. Michael Backes Prof. Dr. Cas Cremers			
entra	ance requirements	For graduate students: none			
as	sessments / exams	 Regular attendance of classes Passing the final exam A re-exam is normally provided 		examination)	
course ty		4 h lectures + 2 h tutorial = 6 h (weekly)			
		90 h of classes + 180 h private study = 270 h (= 9 ECTS)			
	-	Will be determined by the performar Details will be announced by the lec			
	languago	Englich			

language English

aims / competences to be developed

Description, assessment, development and application of security mechanisms, techniques and tools.

content

- Basic Cryptography,
- Specification and verification of security protocols,
- Security policies: access control, information flow analysis,
- Network security,
- Media security,
- Security engineering

literature & reading

Will be announced on the course website

st. semester std. st. sem. 1-3 4	cycle jedes Sommersemester	duration 1 Semester	sws 6	ects 9
responsible	Prof. Dr. Henryk Zähle Prof. Dr. Christian Bender			
lecturers	Dozent/inn/en der Mathematik			
entrance requirements	none			
assessments / exams	Regelmäßige, aktive Teilnahme an gen; Abschlussprüfung	der Vorlesung und ar	n den begleit	tenden Übun-
course types / weekly hours	4 SWS Vorlesung + 2 SWS Übung = 6 SWS			
total workload	60 h Vorlesung + 30 h Übungen + 180 h Eigenstudium (Vor- und Nachbereit = 270 h (= 9 ECTS)	tung, Bearbeitung	Übungsaut	fgaben)
grade	Durch Klausur(en) und mündliche lesung bekannt gegeben.	Prüfung. Der Modus	s wird zu Be	ginn der Vor-
language	Deutsch			

aims / competences to be developed

content

Stochastik I

- Maß- und Integrationstheorie
- Allgemeine Wahrscheinlichkeitsräume
- Zufallsvariablen und deren Verteilungen
- Bedingen auf Ereignisse
- Unabhängigkeit
- Erwartungswert, Varianz, Kovarianz, Korrelation
- Charakterisieren von Verteilungen auf euklidischen Räumen (Verteilungsfunktion, erzeugende Funktionen)
- Summen unabhängiger Zufallsvariablen
- Konvergenzbegriffe für Folgen von Wahrscheinlichkeitsmaßen und Folgen von Zufallsvariablen
- Grenzwertsätze für Summen unabhängiger reellwertiger Zufallsvariablen (Gesetze der großen Zahlen, zentraler Grenzwertsatz)
- Multivariate Normalverteilung, multivariater zentraler Grenzwertsatz

literature & reading

Bekanntgabe jeweils vor der Vorlesung auf der Vorlesungsseite im Internet.

additional information

Methoden: Information durch Vorlesung; Vertiefung durch Eigentätigkeit (Nacharbeit, Übungen).

Anmeldung: Bekanntgabe jeweils rechtzeitig vor Semesterbeginn durch Aushang und im Internet.

Stochastik II

st. semester	std. st. sem.	cycle	duration	SWS	ECTS
1-3	4	jedes Wintersemester	1 Semester	6	9
	responsible	Prof. Dr. Henryk Zähle Prof. Dr. Christian Bender			
	lecturers	Dozent/inn/en der Mathematik			
entra	ance requirements	none			
as	sessments / exams	Regelmäßige, aktive Teilnahme a gen; Abschlussprüfung	n der Vorlesung und a	n den begleit	enden Übun-
course ty	pes / weekly hours	4 SWS Vorlesung + 2 SWS Übung = 6 SWS			
	total workload	60 h Vorlesung + 30 h Übungen + 180 h Eigenstudium (Vor- und Nachberen = 270 h (= 9 ECTS)	itung, Bearbeitung	g Übungsauf	fgaben)
	grade	Durch Klausur(en) und mündlich lesung bekannt gegeben.	e Prüfung. Der Modu	s wird zu Be	ginn der Vor-
	language	Deutsch			

aims / competences to be developed

content

- Bedingen auf Sigma-Algebren
- Grundlagen stochastischer Prozesse
- Poisson-Prozess
- Brown'sche Bewegung
- Martingaleigenschaft
- Markoveigenschaft

literature & reading

Bekanntgabe jeweils vor der Vorlesung auf der Vorlesungsseite im Internet.

additional information

Methoden: Information durch Vorlesung; Vertiefung durch Eigentätigkeit (Nacharbeit, Übungen).

Anmeldung: Bekanntgabe jeweils rechtzeitig vor Semesterbeginn durch Aushang und im Internet.

Trusted AI Planning

st. semester 1-3	std. st. sem. 4	cycle at least every two years	duration 1 semester	sws 4	ects 6
	responsible	Prof. Dr. Jörg Hoffmann			
	lecturers	Prof. Dr. Jörg Hoffmann			
entra	ance requirements	Programming 1, Programming 2, Fu and Elements of Machine Learning o mended. The Artificial Intelligence not necessary.	r other courses in ma	chine learni	ng are recom-
as	sessments / exams	 Regular attendance of classes Solving of weekly assignment Passing the final written exam A re-exam takes place during in the following semester. 	S	efore the sta	art of lectures
course ty	pes / weekly hours	2 h lectures + 2 h tutorial = 4 h (weekly)			
	total workload	60 h of classes + 120 h private study = 180 h (= 6 ECTS)			
	grade	Will be determined from the perfor announced at the beginning of the		e exact mod	alities will be
	language	English			

aims / competences to be developed

Knowledge about methods for learning, verifying and testing action policies in AI Planning; understanding of algorithmic techniques enabling these methods.

content

- Introduction to basic AI concepts needed in the course
- Partial-order reduction
- Dominance pruning
- SAT-based planning
- ASNet action policies
- Safety verification of neural action policies, basic methods
- Safety verification of neural action policies: policy predicate abstraction
- Testing methods for learned action policies, deterministic and probabilistic settings

literature & reading

There is no text book covering the course topics. Links to relevant publications and other material where available will be provided on the slides

additional information

This module was formerly also known as AI Planning.

Module Category 4

Seminar DSAI

Seminar

st. semester	std. st. sem.	cycle	duration	SWS	ECTS	
1-3	4	jedes Semester	1 Semester	2	7	
	-	udiendekan der Fakultät Ma udienbeauftragter der Infor		k		
	lecturers De	Dozent/inn/en der Fachrichtung				
entran	ce requirements G	Grundlegende Kenntnisse im jeweiligen Teilbereich des Studienganges.				
asse	ssments / exams	 Thematischer Vortrag mit anschließender Diskussion Aktive Teilnahme an der Diskussion Gegebenenfalls schriftliche Ausarbeitung oder Projekt 				
course type	s / weekly hours 2	SWS Seminar				
		30 h Präsenzstudium 180 h Eigenstudium 210 h (= 7 ECTS)				
	de	ird aus den Leistungen im V em Seminarprojekt ermittelt ligen Dozenten/in bekannt g	. Die genauen Modalitäte		•	
	language De	eutsch oder Englisch				

aims / competences to be developed

Die Studierenden haben am Ende der Veranstaltung vor allem ein tiefes Verständnis aktueller oder fundamentaler Aspekte eines spezifischen Teilbereiches der Informatik erlangt.

Sie haben weitere Kompetenz im eigenständigen wissenschaftlichen Recherchieren, Einordnen, Zusammenfassen, Diskutieren, Kritisieren und Präsentieren von wissenschaftlichen Erkenntnissen gewonnen.

content

Weitgehend selbstständiges Erarbeiten des Seminarthemas:

- Lesen und Verstehen wissenschaftlicher Arbeiten
- Analyse und Bewertung wissenschaftlicher Aufsätze
- Diskutieren der Arbeiten in der Gruppe
- Analysieren, Zusammenfassen und Wiedergeben des spezifischen Themas
- Erarbeiten gemeinsamer Standards für wissenschaftliches Arbeit
- Präsentationstechnik

Spezifische Vertiefung in Bezug auf das individuelle Thema des Seminars.

Der typische Ablauf eines Seminars ist üblicherweise wie folgt:

- Vorbereitende Gespräche zur Themenauswahl
- Regelmäßige Treffen mit Diskussion ausgewählter Beiträge
- ggf. Bearbeitung eines themenbegleitenden Projekts
- Vortrag und ggf. Ausarbeitung zu einem der Beiträge

literature & reading

Material wird dem Thema entsprechend ausgewählt.

additional information

Die jeweils zur Verfügung stehenden Seminare werden vor Beginn des Semesters angekündigt und unterscheiden sich je nach Studiengang.

Module Category 5

Master-Seminar und -Arbeit

Master Seminar

st. semester 3	std. st. sem.	cycle every semester	duration 1 semester	sws 2	естs 12		
	-	Dean of Studies of the Faculty of Mathematics and Computer Science Study representative of computer science					
	lecturers	s Professors of the department					
entra	nce requirements	s Acquisition of at least 30 CP					
ass	essments / exams	 Preparation of the relevant scientific literature Written elaboration of the topic of the master thesis Presentation about the planned topic with subsequent discussion Active participation in the discussion 					
course typ	es / weekly hours	s 2 h seminar (weekly)					
		<pre>d 30 h seminar + 40 h contact with supervisor + 290 h private study = 360 h (= 12 ECTS)</pre>					
	grade	le graded					
	language	English or German					

aims / competences to be developed

The Master seminar sets the ground for carrying out independent research within the context of an appropriately demanding research area. This area provides sufficient room for developing own scientific ideas.

At the end of the Master seminar, the basics ingredients needed to embark on a successful Master thesis project have been explored and discussed with peers, and the main scientific solution techniques are established.

The Master seminar thus prepares the topic of the Master thesis. It does so while deepening the students' capabilities to perform a scientific discourse. These capabilities are practiced by active participation in a reading group. This reading group explores and discusses scientifically demanding topics of a coherent subject area.

content

The methods of computer science are systematically applied, on the basis of the "state-of-the-art".

literature & reading

Scientific articles corresponding to the topic area in close consultation with the lecturer.

Master Thesis

st. semester

std. st. sem.

cycle

4	4	every semester	6 months	-	30		
	responsible	Dean of Studies of the Faculty of Mathematics and Computer Science Study representative of computer science					
	lecturers	Professors of the department					
	entrance requirements	Successful completion of the Master Seminar					
	assessments / exams	Written elaboration in form of a scientific paper. It describes the scientific findings as well as the way leading to these findings. It contains justifications for decisions regarding chosen methods for the thesis and discarded alternatives. The student's own substantial contribution to the achieved results has to be evident. In addition, the student presents his work in a colloquium, in which the scientific quality and the scientific independence of his achievements are evaluated.					
	course types / weekly hours	none					
	total workload	50 h contact with sup + 850 h private study = 900 h (= 30 ECTS)	ervisor				
	grade	Grading of the Master Thesis					

duration

SWS

ECTS

language English or German

aims / competences to be developed

In the master thesis the student demonstrates his ability to perform independent scientific work focusing on an adequately challenging topic prepared in the master seminar.

content

In the master thesis the student demonstrates his ability to perform independent scientific work focusing on an adequately challenging topic prepared in the master seminar.

literature & reading

According to the topic