Faculty of Mathematics Moritz Weber Marcel Scherer Jonas Metzinger

Fakultät für Mathematik und Informatik

Operator Algebras Problem set 2 To be submitted by Wednesday, April 23, 4 pm.

Exercise 1 (4 Points)

- (a) Prove that Example 2.3 is indeed a C^* -algebra, that is, prove that, for any compact Hausdorff space X, C(X) is a commutative unital C^* -algebra.
- (b) Show that for any two compact Hausdorff spaces X and Y and any continuous mapping $h: X \to Y$, the map $\alpha_h: C(Y) \to C(X)$ defined by $f \mapsto f \circ h$ is a *-homomorphism.
- (c) Prove that in the situation of (b), if h is a homeomorphism, the map α_h is an isometric *-isomorphism.

Exercise 2 (4 Points)

Let A be a non-unital C^{*}-algebra. A *double centralizer* of A is a pair (L, R) of linear maps $L, R : A \to A$ satisfying L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b for all $a, b \in A$. The *multiplier algebra* M(A) of A is defined as

 $M(A) = \{(L,R) \text{ double centralizer of } A\}$

with the operations

$$(L_1, R_1) + (L_2, R_2) = (L_1 + L_2, R_1 + R_2)$$
$$(L_1, R_1) * (L_2, R_2) = (L_1 L_2, R_2 R_1)$$
$$(L, R)^* = (R^*, L^*)$$
$$\lambda(L, R) = (\lambda L, \lambda R)$$

for $\lambda \in \mathbb{C}$ and (L, R); $(L_1, R_1), (L_2, R_2) \in M(A)$. (Note, for a linear map $T : A \to A$, the map $T^* : A \to A$ is defined as $T^*(x)(T(x^*))^*$.) We define a norm on M(A) via

$$||(L,R)|| = ||L|| + ||R||$$

for $(L, r) \in M(A)$.

(a) Show that M(A) is a unital C^* -algebra and that the map

$$\phi: A \to M(A), a \mapsto (L_a, R_a),$$

where $L_a(x) = ax$ and $R_a(x) = xa$ for $x \in A$ is an isometric *-homomorphism. Furthermore, prove that $\phi(A)$ is an ideal in M(A). Thus every non-unital C*-algebra can be embedded as an ideal in a unital C*-algebra. (b) Prove that M(A) is the largest unitization of A, that is, if B is a unital C^* -algebra and $A \subset B$ as an ideal, then there exists a *-homomorphism from B to M(A) which extends the embedding $A \subset M(A)$.

Talk (0 Points)

- (a) Explain that $A = \bigoplus_{k=1}^{N} M_{n_k}(\mathbb{C})$ is a C^* -algebra, where $n_k \in \mathbb{N}$ and $M_{n_k}(\mathbb{C})$ is the algebra of $n_k \times n_k$ matrices.
- (b) Show (or at least motivate) that any finite-dimensional C^* -algebra is of the form as in (a). This is known as the Theorem of Artin-Wedderburn

Recommended literature: Gerald Murphy " $C^{\ast}\mbox{-algebras}$ and Operator Theory", Theorem 6.3.8