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Introduction

In this Bachelor thesis, we aim to compute the K-theory of the free wreath product
of compact quantum groups with the quantum symmetry group S]J\r,, as done 2024 by
Fima and Troupel in [FT24]. By this we can also explicitly compute the K-theory of
the quantum hyperoctahedral group Hj([

In 1936 Murray and von Neumann introduced von Neumann algebras as “rings
of operators”, [Mur90]. Gelfand and Naimark, in 1943, formalised the concept
of C*-algebras as an abstraction of subalgebras of the algebra B(#) of bounded
linear operators on a Hilbert space H, [GN43]. Since then the theory of operator
algebras, consisting of both of them, has been a fruitful field in functional analysis.
As they often come with a non-commutativity, they can be used to describe a
physical quantum system. Overall, the theory of C*-algebras provides us with a
“machinery” that allows us to define and understand “non-commutative mathematics”,
for example such as non-commutative topology and non-commutative geometry, since
commutative C*-algebras are isomorphic to C'(X) for some compact set X by the
Gelfand-Naimark Theorem.

In the theory of C*-algebras, K-theory serves as an invariant theory. In 1961
Atiyah and Hirzebruch introduced the topological K-theory [AH61], but it quickly
became clear that basic definitions of K-theory are also useful for rings in a more
general way. By this, one obtained the algebraic K-theory and the K-theory of
C*-algebras, where the last is more a kind of analogue of the topological K-theory
of Atiyah and Hirzebruch. K-theory is useful to determine whether C*-algebras are
not isomorphic to each other.

The theory of “quantum group” will be important in this thesis. The term
“quantum group” does not have a single definition but refers to a variety of similar
objects, where the common idea underlying these objects is to extend the notion of a
group to the realm of non commutative geometry. There are two main approaches
to this subject: one is purely algebraic, while the other is more analytical. Our main
approach will be mostly analytical via the notion of compact quantum groups, or
“compact pseudo groups” which was first introduced in [Wor87] by Woronowicz in
1987 and then was further developed by him in [Wor98]. As Pontryagin developed a
duality theory for (locally) compact abelian groups in [Pon34], it turns out that the
Pontryagin duality theory on compact quantum groups is a kind of generalisation,
since the classical duality fails for non-abelian compact groups. This can somehow

vi



be seen as the starting point of Woronowicz. For this one has to look at the
representation theory of compact quantum groups.

The first examples of such quantum groups came mostly by “liberation”, i.e.
dropping the commutativity and by “deformation” of Lie algebras, such as SU4(2),
where we deform commutativity. Also discrete groups will give us examples, as we
will see. However a well-known example for liberation is the quantum symmetry
group S’JJ(,, introduced 1998 by Wang in [Wan98], which can be seen as a generalisation
of the space of continuous functions on the symmetric group Sy. Earlier in 1995
Wang also introduced the quantum versions of the orthogonal group Ox and the
unitary group Uy in [Wan95].

Another important concept in this thesis is the free wreath product by the quantum
symmetric group. Classically, the wreath product of a group G by S,,, denoted G5,
is defined using the natural action of Sy on IV copies of G. In analogy to algebraic
group theory, Bichon defined the free wreath product of compact quantum groups
with the quantum symmetric group S]J{, in [Bic04]. The free wreath product with
amalgamation was then defined by Freslon, [Fre23].

For a long time, it was unclear how operator algebras of this construction of the
free wreath product behave, until they were described by Fima and Troupel in [FT24]
in 2024. To achieve this, they used graphs of C*-algebras, which proved to be an
effective tool, in full analogy to the Bass-Serre theory for algebraic groups, where
graphs of groups were considered. To compute the K-theory of the free wreath
product, they also used methods from Kasparov’s K K-theory. As a special case,
they also determined the K-theory of the free hyperoctahedral quantum group H]T,

As an overview of the chapters, the following will serve:

In the first chapter, we want to review the basics regarding C*-algebras and
introduce important knowledge regarding K-theory of C*-algebras. We will refrain
from proofs in this chapter but will refer to sources.

The second chapter will focus on Kasparov’s K K-theory as a kind of generalisation
of K-theory. A theory that offers many technical hurdles and obstacles but still
yields fruitful results. Here, we want to consider K K-theory as a kind of extension
of K-theory of C*-algebras. Many definitions must be formulated particularly at
the beginning. The goal of this chapter will be to understand what the K K° and
KK?' groups are and what properties they possess. K K-equivalence will also be
considered.

In the third chapter, we want to look at compact quantum groups according to
Woronowizc [Wor87; Wor98| and their representation theory. A compact quantum
group is understood as a unital C*-algebra A equipped with a comultiplication
A: A - A® A fulfilling certain properties. These should be seen as a kind of
generalisation of compact groups, even though they are not groups themselves. To
understand these and introduce concepts of duality, such as Pontryagin duality
for abelian groups, it will show, that it is useful to look at representations. In
particular, we will introduce dual discrete compact quantum groups. However, it
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will also be shown repeatedly that it makes sense to look at some kind of algebraic
approach to compact quantum groups, which is done within the theory of Hopf
*-algebras. Moreover we introduce the free product and the free wreath product
(with amalgamation) of compact quantum groups.

The fourth chapter will be devoted to the theory of graphs of C*-algebras. The
idea will turn out to be a kind of quantum version of classical Bass-Serre theory. We
will introduce concepts such as the fundamental C*-algebra. Essentially, Chapter four
will be based on [FF14], which first introduced the theory of graphs of C*-algebras.
Moreover we want to find a way to express the free wreath product as a fundamental
C*-algebra.

In the final chapter, we want to focus on the main results. First, with the help of
K K-theory, incorporating the theory of graphs of C*-algebras, we want to prove the
following two 6-term exact sequences, as done in [FG18].

Theorem A. The following 6-term exact sequences hold,

Zs’gfr;‘
Pecr+g) KK (C, B) =5 @,y (o) KK (C, A)) —— KK°(C, P.)

T |

KKI(Cv P) «——— @pGV(Q) KKI(Cv Ap)%* 69eEE*(g) KKI(Cv Be),
and

®66E+(g) KKO(BG,C N — @pev(g) KKO(AP,C) — KKO(P.,C>

Sex —Tex

| T

Sex —Tex

KK'(P,,C) ———— @pev(g) KK (Ap, CF —— Bcpr(g) KK (B, O).
Then, we want to use these to compute the K-theory of the reduced and full
compact quantum group as done 2024 in [FT24].
Theorem B. For any compact quantum group G and every integer N € N we have,
Ko(Co(G e ST)) = Ko(Co(@)) @ ZN* ® Ko(Co(ST)) /2N
o [Ko(Co(G)FN" /22N> if N #3
— Ko(Co(G)BN? )23 if N=3"
K1(Co(G . SY)) = Ki(Co(G))*N @ Ky (Ca(SY))

Ki(Co(G)®N* ®Z if N>4
K1(Co(G))EN? ifN<3’

~

where Co(G) denotes either the reduced or full C*-algebra.

At least, we want to mention some applications and compute some explicit examples.
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Chapter I.

Preliminaries

In this chapter we review basic notions and definitions we need in this bachelor thesis.
We will start this chapter with an introduction to C'*-algebras, followed by an small
introduction to the K-theory of C*-algebras.

1. C*-algebras

In the topic of operator algebras C*-algebras are one of the main actors beside the
von Neumann algebras. This section is mainly based on [Bla06, Ch. 2] and [LVW20],
where also all proofs can be found.

Definition 1.1.1 (C*-algebras): (i) A Banach algebra A is a normed C-algebra,
which is complete and its norm is submultiplicative, i.e. ||zy| < ||z| |ly]|. A
Banach *-algebra A is a Banach algebra with an involution *, i.e. an antilinear
map *: A — A such that (z*)* = z and (xy)* = y*z* for all z,y € A.

(ii) A C*-algebra is a Banach *-algebra A satisfying the C*-identity ||z*z|| = |||/
If A has a unit with respect to the multiplication, we call A unital.

(iii) Let A be a C*-algebra and let B C A *-subalgebra, i.e. B is closed under
addition, (scalar-) multiplication and involution. B is called C*-subalgebra if it
is norm-closed.

(iv) Let A, B be C*-algebras, we call a map ¢: A — B a *-homomorphism, if ¢ is
linear, multiplicative and if p(z*) = ¢(x)* for all x € A.

We first want to look at some simple examples, before we collect some of the main
results for C'*-algebras.

Example 1.1.2: (i) Let X be a compact Hausdorff space, then the space of contin-
uous function

C(X):={f: X = C| f is continuous}



is a unital C*-algebra with pointwise addition and multiplication and the

supremum norm ||-||.. As involution we choose f*(x) = f(x) for all z € X
and for all f € C(X).

(ii) Any norm closed *-subalgebra of B(H) is a C*-algebra, where B(H) denotes
the bounded linear operators on a Hilbert space H. For example the space of
compact operators K(#) is a norm closed *-subalgebra of B(H).

By analogy with B(H) for some Hilbert space H, one defines the following in the
case of C*-algebras.

Definition 1.1.3: Let A be a unital C*-algebra.
(i) An element p € A is called projection if and only if it is self adjoint and
idempotent, i.e. p = p* = p.
(ii) An element s € A is called isometry if and only if s*s = 1.
(iii) An element u € A is called unitary if and only if uu* = u*u = 1.
(iv) An element v € A is called partial isometry if and only if vv*v = v.
(v) An element x € A is called normal if and only if zz* = z*x.
As done in [LVW20; Bla06] one can equip C*-algebras with some order structure

“<” This order structure is naturally preserved by *-homomorphisms. As a kind of
generalisation one defines (completely) positive maps.

Definition 1.1.4 ((Completely) Positive maps): Let A and B be C*-algebras and
1: A — B be a linear map.

(i) An element z € A is called positive if z is self-adjoint and the spectrum
sp(z) C [0, 00), we write x > 0. Moreover we write z > y if x —y > 0.

(ii) The map v is called positive if for all z € A with > 0, we have i (z) > 0.
(iii) The map 1t is called completely positive if the induced maps

Y Mi(A) = M(B), (aiz) = (¥(aij))
are positive for all £ € N.

Normally we will work with unital C*-algebras, but there also exist non-unital C*-
algebras, such as the compact operators on some Hilbert space, but they always
possess at least an approzimate unit.

Definition 1.1.5 (Approximate units): Let A be a C*-algebra, and I C A a subset.
An approximate unit for I is a net (uy)xea C I such that

(i) 0 <wuy and |Jull, <1 forall A €A,
(ii) if A < p then uy < uy,



(iii) we have uyx — = and zuy — z for all x € 1.
If A has a countable approximate unit, then A is called o-unital.

There is also a way to embed any C*-algebra in the maximal unital C*-algebra
containing the C*-algebra itself as an essential ideal, which will be the so called
multiplier algebra.

Definition 1.1.6 (Multiplier algebra): Let A be any C*-algebra. A double centraliser
is a pair (L, R) of bounded linear maps on A such that aL(b) = R(a)b for all a,b € A.
The set of all double centralisers is called multiplier algebra, and is denoted by M (A).

A tool we will need are the so called conditional expectations, which are in some sense
a non-commutative generalisation of conditional expectations in classical probability
theory.

Definition 1.1.7 (Conditional Expectations): Let A be a unital C*-algebra and B C
A a unital C*-subalgebra. A linear, positive, surjective and unital map ¢: A — B
satisfying ¢ o o = ¢ is called conditional expectation.

The following theorem states that all commutative C*-algebras are isomorphic to
continuous functions on some compact set.

Proposition 1.1.8 (Gelfand-Naimark Theorem): Let A be a unital C*-algebra, then
is A commutative if and only if there exists a compact Hausdorff space X with

A C(X).

Out of this Theorem of Gelfand and Naimark we get that the theory of commutative
C*-algebras corresponds to topology, therefore we may view the the theory of
noncommutative C*-algebras as a “noncommutative topology”.

One very powerful tool is the continuous functional calculus.

Proposition 1.1.9 (Continuous functional calculus): Let A be a C*-algebra and x be
a normal element in A. There is an isometric *-isomorphism

®: C(sp(z)) - C*(z,1) C A

mapping ®(id) = x and (1) = 1, where sp(x) denotes the spectrum of x, and
C*(z,1) denotes the norm-completion of the set of all noncommutative polynomials
i x and z*.

For non-commutative C*-algebras we also obtain an analogue of the Gelfand-Naimark
Theorem. To do this we have to look at the GNS-construction.

Definition 1.1.10 (State and Representation): Let A be a C*-algebra.

(i) A positive linear functional p: A — C with ||¢|| = 1 is called state.



(ii) Let H be a Hilbert space. A *-homomorphism 7: A — B(H) is called a
representation of A on H. It is called cyclic if and only if there exists x € A

such that 7(A)x = H. We say that x is a cyclic vector.

Proposition 1.1.11 (Gelfand-Naimark-Segal): Let A be a C*-algebra and p: A — C
be a state. Then there exist a Hilbert space H,, a representation m,: A — B(H,)
and a cyclic vector &,, such that p(a) = (m,(a)éy, &) for alla € A.

We often call the triple (Hy, 7y, &) the GNS-construction of ¢.

As a consequence we get the following main theorem for noncommutative C*-
algebras.

Corollary 1.1.12 (Second Gelfand-Naimark Theorem): Let A be a C*-algebra, then
it possesses a faithful representation m: A — B(H), i.e. injective representation, for
some Hilbert space H. Thus A is isomorphic to some C*-subalgebra of B(H).

In the following we want to construct universal C*-algebras which are prescribed
by a set of generators E and a relations R C P(FE), where P(F) is the set of
noncommutative polynomials in elements in E. For more details have a look at
[LVW20, Chapter 6].

Construction 1.1.13: Let I be some index set and E = {x; | i € I} be a set of
generators. Define P(E) as the set of noncommutative polynomials in elements of E
and let R C P(F) be a set of relations. Denote by I(R) the two-sided ideal generated
by the relations.

The quotient A(E|R) = P(E)/I(R) is the universal *-algebra generated by E and
R.

This construction leads us to the following definition, where we construct the universal
C*-algebra by choosing a suitable norm, as we will define.

Definition 1.1.14: Let everything be such as in Construction 1.1.13.

(i) We call a map p a C*-seminorm if and only if it is a seminorm and fulfils
p(z*z) = p(x)?. Define

||| := sup{p(x) | p is a C*-seminorm on A(F|R)}.

(ii) If ||z|| < oo for all z € A(E|R) then the universal C*-algebra by E and R
defined by

C*(E|R) == A(EIR)/{z € A(EIR) | =] =0}

exists.



It is necessary, when having such a set of generators F and relations R, to check
whether the universal C*-algebra exists and if it is not trivial. To show that it is not
trivial, you often use the following universal property for universal C*-algebras.

Proposition 1.1.15 (Universal property): Let E = {xz;|i € I} be a set of generators
and R C P(E) a set of relations, such that the universal C*-algebra exists. Let B
be a C*-algebra containing a subset E' = {y; | i € I}. If the elements in E' satisfy
the relations in R, then there exists a unique *-homomorphism ¢: C*(E|R) — B
mapping x; to y; for alli € I.

2. K-theory of ('*-algebras

In this section we want to briefly introduce the basic definitions and properties of
K-theory of C*-algebras. This section is mainly based on [Bla06].

The K-theory of C*-algebras is used to distinguish two given C*-algebras. As one
will see we will have two K-groups, Ky “counts” in some sense the projections, while
K7 “counts” in some sense the unitaries.

Definition 1.2.1: Let A be a C*-algebra. Two projections p, ¢ € A are called Murray-
von Neumann-equivalent if there exists v € A such that v*v = p and vv* = ¢, write
p ~ q. This defines an equivalence relation. We then set

H(A)={[p] | p € Mx(A) is a projection },

where we denote Mo (A) = U, ey Mn(A) with canonical embedding

M (A) = Myy1(A), z — <g 8) ,

and where [p] is the equivalence class with respect to Murray-von Neumann-equivalence.

Remark 1.2.2: (i) Indeed one can check, that we also can use instead of Murray-
von Neumann equivalence the notion of unitary equivalence or homotopy.
(ii) Moreover H(A) is an abelian semigroup via [p] + [¢] = [p’ + ¢'], where p ~ P/,
g~ ¢ and p'q’ = 0.

As mentioned H(A) defines for a C*-Algebra a semigroup, we now want to get a
group by using the so called Grothendieck construction.

Definition 1.2.3 (The Ko group): Let A be a unital C*-algebra, and consider the
diagonal A = {([p], [p]) | [p] € H(A)}. Then define

Ko(A) := G(H(A)) := H(A) x H(A)/A

as the Ko-group of A. Write [p] — [g] for an element in Ky(A).



We now want to collect some basic properties about the functor Ky, which are
useful to compute Ky for concrete examples.

Proposition 1.2.4: Let A be a unital C*-algebra. Then the following properties for
Ky hold

(i) The map
Kjy: {unital C*-algebras} — {abelian groups}
s a covariant functor.
(ii) The functor Ky is additive, i.e. Ko(A® B) = Ky(A) ® Ko(B).
(iii) The functor Ky is finitely stable, i.e. Ko(Mp(A)) = Ky(A).

(iv) The functor Kq is homotopy invariant, that means if o is homotopic to 3,
then Ko(a) = Ko(B) and if A is homotopic to B, then Ko(A) = Ky(B), where
a,B: A — B are unital *-homomorphisms.

In the case of non-unital C*-algebras, one also can construct a K-theory, which
will extend the definition of the unital case.

Remark 1.2.5: Let A be a not necessarily unital C*-algebra. Then we can define
Ko(A) by setting Ko(A) := ker Kg(o0) € Ky(A), where A denotes the minimal
unitalisation of A and

o: A= C,(x,)) — A

One can easily verify, that for a unital C*-algebra A the definitions of Ky(A) and
Ky(A) coincide.

Instead of defining K; by equivalence relations on the unitaries (see for instance
[Bla98, Ch. 8]), we define K via the suspension functor.

Definition 1.2.6 (Suspension functor): (i) Let A be a C*-algebra, then define the
suspension of A as SA := Cy((0,1), A), where Cp((0,1), A) is the C*-algebra
of continuous functions f: (0,1) — A such that f(0) = f(1) = 0.

(ii) Let A, B be C*-algebras and ¢: A — B be a *-homomorphism, then define
S¢: SA— SB, (56)(f)(t) = o(f(1)).
It is obviously a *-homomorphism. It is clear that S defines a covariant functor.
We now can define the Kj-group.

Definition 1.2.7 (The K; group): For a C*-algebra A, we define by K;(A) = Ko(SA)
the K- group of A.



It is also possible to define K, (A) := Kp(S™A).

Remark 1.2.8: (i) All properties for Ky from Proposition 1.2.4 also hold for Kj.

(ii) By Bott periodicity ([Bla98, Ch. 9.4]) there exist a natural isomorphism
Kp42(A) = K, (A), therefore our K-theory for C*-algebras is fully described
by Ko(A) and K;(A).

By using Bott periodicity we also obtain the following result, the so called siz-term
cyclic sequence.

Proposition 1.2.9: Let 0 - I — A — A/I — 0 be a exact sequence of C*-algebras,
then the following siz-term cyclic sequence is exact

Ko(I) —22 Ko(A) 2 Ko(A/T)

I |

Ki(A/]) e K1(A) 5 Ka(D).
The maps Ko(A/I) — Ki(I) and Ki(A/I) — Ko(I) are constructed by using the
Bott maps, see [Bla98, Ch. 9.4].

It turns out that using 6-term exact sequences in general is a useful tool to compute K-
theory, as we will also see later in this thesis, as we will construct one for K K-theory
in the setting of graph of C*-algebras.

To conclude we want to give some simple examples for the K-theory of some
C*-algebras.

Example 1.2.10: (i) Let A = C" for some N € N, then Ky(A) = Z". This follows
directly from the fact that Ky is additive and since H(C) = Ny. Indeed two
projections in My (C) are Murray-von Neumann equivalent if and only if the
rank is equal.

Moreover deduce K;(A) = {0} again by the additivity of K; and the
fact K1(C) = Ky(SC) = Ky(Cp((0,1),C)). The only continuous projection
Co((0,1),C) is the trivial one.

(ii) From (i) we can also conclude for all N € N that Ko(@N, M, (C)) = ZN and
K@, Ma,(C)) = {0}

(iii) One can easily construct a homotopy A ~j, C([0,1],A). By the homo-
topy invariance of Ky and K; we obtain that Ky(C([0,1],A)) = Ko(A) and
K,(C([0,1], A)) = K;i(A). Especially Ko(C(]0,1])) = Z and K;(C([0,1])) =
{0}.



Chapter II.

K K-theory of C*-algebras

In this chapter we want to develop basics of Kasparov’s KK -theory, which will
be mainly seen as a generalisation of the classical K-theory. The theory is more
technical, which is why we must first introduce basic concepts..The main idea, as in
K-theory, will be that we choose a suitable set and then define equivalence relations
on it.

We will mainly follow [Bla98] and [JT91], which both are based on the original
article of Kasparov from 1981 [Kas80].

1. Kasparov modules

First we want to define the notion of Z/2Z-graded C*-algebras and Hilbert-C*-
modules to then define Kasparov modules. This section is only used to introduce the
necessary concepts and definitions. Therefore there will be no proofs, which can be
mostly found in [Bla98; JT91].

For this chapter let A and B be C*-algebras.

Definition 2.1.1 ((Z/2Z-)Graded C*-algebras): Let A be a C*-algebra.

(i) A (Z/2Z-)grading on A is a decomposition A = A®) @AM where A®) and AM)
are self-adjoint closed linear subspaces of A, such that for all z € A y e A™)
we have zy € AT™) where n + m is the addition of n and m in Z/2Z.

(ii) Let A be a graded C*-algebra. The degree dz of an element x € A™ is defined
as 0z = n. Moreover we call elements z € A© U AD) homogeneous.

(iii) If there is a self-adjoint unitary g € M(A) in the multiplier algebra of a graded
C*-algebra such that A™ = {a € A | gag* = (—1)"a} for n = 0,1, then the
grading is called even.

(iv) A C*-subalgebra B of a graded C*-algebra A is a graded C*-subalgebra, if
B=(BnAO)+(BnAW).

(v) Let A, B be graded C*-algebras. A *-homomorphism ¢: A — B is called
graded, if (A™) C B™ for n =0, 1.



(vi) We define the graded commutator for a € A% and b € AY) by
[a,b] = ab — (—1)Yba.

Remark 2.1.2 (Alternative definition via Z/2Z-action): We can also define graded
C*-algebras via a Z/2Z-action on A:

A graded C*-algebra A is a C*-algebra with an order two *-automorphism 4. The
*-automorphism is called grading automorphism. When A is graded by S4: A — A,
then A decomposes in eigenspaces of 84, with A©) = {a € A | B4(a) = a} and
AN = {a € A| Bala) = —a}. One can see that this is indeed equivalently to our
definition of graded C*-algebras. In case of A1) = {0}, we say the grading is trivial.

A graded *-homomorphism ¢: A — B for two graded C*-algebras A, B with
grading automorphisms S4, 8p satisfies ¢ o S4 = Bp o .

Example 2.1.3: (i) Let A be any C*-algebra. Then M(A) has a canonical grading,
where all elements of My(A)® are diagonal matrices, and My(A)(D) are the
matrices with zero diagonal.

(ii) Let B be a C*-algebra, we can define an order two *-automorphism on B & B
by Been(z,y) = (y,z). This grading is called odd grading, and we denote the
odd graded C*-algebra by By).

Now we want to define a tensor product of graded C*-algebras, that respects the
grading in some sense.

Construction 2.1.4 (Maximal tensor product of graded C*-algebras): Let
A and B be graded C*-algebras, write A ® B for their algebraic tensor product. For
homogeneous elementary tensors we may define a new product and involution on

A® B by

(a1®b1)(az®bs) = (—1)2%19921 a3 Rb1 b,

We denote A®B for the *-algebra, we get by this product and involution.
Define AQmaxB as the universal enveloping C*-algebra of A®B, i.e. separation
and norm-completion. We call A®maxB the mazimal graded tensor product.

Construction 2.1.5: Let be everything such as in 2.1.4. Let ¢ and 1 be states,
vanishing on A®) respectively on B, of A and B, then ¢&1 is a state on AOB.
Then the GNS-representation from ¢&v gives us a C*-seminorm on A®B.

As in the case of (ungraded) C*-algebras the supremum of all this C*-seminorms
is a norm. Taking the completion with respect to this norm, yields us the minimal
graded tensor product, denoted by A&y B or simply AQB.



Remark 2.1.6: We get a canonical grading on A®B by using 2.1.2. If 84 is a Z/2Z-
action on A and fp is a Z/2Z-action on B, then we observe 34®0p is a Z/2Z-action
on A®B. We also denote it by ARB.

To define Kasparov modules, we need to define Hilbert C*-modules which generalise
classical Hilbert spaces, since we consider a C*-valued inner product on it.

Definition 2.1.7 (Hilbert C*-module): Let B be a C*-algebra. A pre-Hilbert B-
module is a right B-module E (with complex vector space structure) with a B-valued
inner product (-,-): E x E'— B such that

(i) (-,-) is sesquilinear,

(ii) (z,yb) = (x,y)b for all z,y € F and b € B,
(iii) (y,z) = (z,y)* for all z,y € E,
(iv) (x,z) >0 for all z € FE and if (z,x) =0, then z = 0.

For x € E, set ||z|| = ||[{(z,z)||"/*, which defines a norm on E. If F is complete with
respect to this norm, then F is called Hilbert B-module.

Moreover we define (E, E) = {{(x,y) | z,y € E}H.” as the support of E. If (E,E) =
B, then F is called full.

1/2

It should be clear out of context, which norm on which space we are actually taking.
We also have an analogue of the Cauchy-Schwarz inequality in the case of Hilbert
C*-modules.

Lemma 2.1.8: Let E be a pre-Hilbert B-module, and set |e| = H(e,e>||%f0r ec k.
Then E is a normed vector space, and the following inequalities hold:

lebl < [lell o]l e€ E,be B,
e DI < llell IfIl, e f € E.

Example 2.1.9: (i) Let (E;);c; be a family of pre-Hilbert B-modules, then the
direct sum @ F; is a pre-Hilbert B-module with

(@i, Dyi) = Y (i, 9i)-

If I is finite and all F; are Hilbert B-modules, then also @ E; is a Hilbert
B-module.

(ii) As a special case, taking F; = B in (i), denote by Hp the completion of the
direct sum of countably many copies of B, i.e. for all (b,) C Hp the series
> bi by, converges, where the inner product is given by

{(an), (bn)) =D _{an, bn).

n

We call Hpg the Hilbert space over B.
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It turns out that the space of bounded operators of Hilbert C*-modules is too large,
therefore we need a substitute, which we will now define.

Definition 2.1.10: Let Eq, F5 be Hilbert B-modules. Denote by Bg(E1, Es) the set of

all B-module homomorphisms 7T': E; — Fs, such that there is an adjoint B-module

homomorphism 7*: Ey — Ej such that (Tx,y) = (z,T*y) for all z € Ey and y € Fj.
Set Bp(F) := Bp(E, E) for a Hilbert B-module E.

We also want a suitable subspace of the compact operators.

Remark 2.1.11: Note that operators T' in Bp(FE) are bounded by the closed graph
theorem. Indeed since the existence of an adjoint 7" implies that the graph of T
must be closed. Thus Bg(E) C B(E). Moreover Bg(F) is closed with respect to the
operator norm in B(E).

Additional Bp(F) is a C*-algebra. It is clear that Bg(E) is a *-algebra and that
IST| < |IS|| IT]|. The C*-identity is fulfilled since for all x € E with ||z]| < 1 we
have by Cauchy-Schwarz

IT2|* = (T, Ta)|| = ||z, T*Tz)| < ||T*Tx| < |T*T].

Thus ||T||* < |T*T||, and the other inequality is clear since * is isometric.

Definition 2.1.12: Let E; and E> be Hilbert B-modules. Let 0, ,: E1 — E» for
x € Ey,y € Ey defined by 0, ,(2) = z(y, ) for z € E,. We say 0, , is a finite-rank
operator, moreover it has rank 1.

The closure of the span of these operators in Bp(E1, E») is denoted by Kp(E1, E2).
As always we denote Kp(FE) := Kpg(FE, F) for a Hilbert B-module E.

In spirit of Remark 2.1.2 we now want to define graded Hilbert C*-modules via
grading automorphisms.

Definition 2.1.13 (Graded Hilbert C*-module): Let B be a graded C*-algebra. A
graded Hilbert B-module E is a Hilbert B-module equipped with a linear bijection
Sg: E — F, satisfying

« Sp(b) = Sp(§)Bp(b) for all § € E,b € B,

e (SE(&1),SE(&2)) = BB((&1,&)) forall &,6 € E,
o 5% =id.

We then obtain E(©) := {¢ € F | Sg(¢) = ¢} and EW := {¢ € E | Sg(£) = —€} such
that £ = E© ¢ V).

Example 2.1.14: Let B be a C*-algebra.

(i) As in Example 2.1.3, a Hilbert B-module E can be trivially graded by taking
Sg =id.
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(ii) Let B be a graded C*-algebra, then B as Hilbert B-module is also a graded
Hilbert B-module via S = G5.

(iii) Let E and F be graded Hilbert B-modules, then the direct sum E & F' can
be graded via Sg @ Sr defined by Sg @ Sr(e, f) = (Se(e), Srp(f)) for all
ec E, felF.

Later it will be useful to have a tensor product of Hilbert C*-modules.

Construction 2.1.15 (Tensor product of Hilbert C*-modules): Let F and F be Hilbert
C*-modules with respect to B respectively A, and ¢: A — Bp(F') be a *-homomorphism.
Regard F' as a left B-module via ¢, then denote by E ©4 F' the algebraic tensor
product. This is a right A-module, and one can define the A-valued pre-inner product
via (z1 ® 22,91 ® y2) 1= (T2, ({1, 91))y2)-

The universal enveloping C*-algebra of E ©®4 F' with respect to (-, -) is called the
(internal) tensor product of Hilbert C*-modules.

Note that there is a *-homomorphism j: Bg(E) — Bp(E ®, F') given by

J(m)(z ®gy) =m(z) @y y
forx € E, y € F and m € Bg(FE).
The following lemma is proven in [JT91].

Lemma 2.1.16: In the setting of Construction 2.1.15 the map j maps Kg(FE) to
Kp(E ®¢ F). Let f: B— A be a *-homomorphism, then m @ id € KA(E ®f A),
whenever m € Kp(E).

We now can define Kasparov modules, and by this also the set we will later equip
with some suitable equivalence relations, to obtain the K K-groups.

Definition 2.1.17 (Kasparov modules): Let A and B be graded C*-algebras. Define
E(A, B) as the set of all triples (E, ¢, F'), where E is a countably generated (as
B-module) graded Hilbert B-module, ¢ is a graded *-homomorphism from A to
Bp(E) and F is an operator in Bp(FE) of rank 1, such that

are in Kp(E) for all @ € A. The elements of E(A, B) are called Kasparov A, B-
modules.

Moreover denote by D(A, B) C E(A, B) the set of triples (E, ¢, F') such that
[F,¢(a)] = (F? — 1)¢(a) = (F — F*)¢(a) = 0 for all a € A. An element in D(A, B)
is called degenerate Kasparov module.
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In the next lemma we want to prove, that we can equip E(A, B) with the direct sum.

Lemma 2.1.18: Let & = (FE;, ¢4, F;) € E(A, B) be Kasparov A, B-modules for i =
1,...,n. Then

Péi = (®iEs, ®idi, ©:F)

s also a Kasparov A, B-module.

Proof. Note that E := @;E; is a Hilbert B-module, by Example 2.1.9, and obviously
FE is countably generated. For the grading we set Sg as in Example 2.1.14, which is

Se(e1,...,en) = (Sg,(e1),...,5g,(en)),
for e; € E;. Thus E is a graded Hilbert B-module.
Define ¢ := @;¢;: A — Bp(F) via
¢(a) = ©idi(a),
for a € A and define F := @;F;: A € Bg(FE) by setting
F(ei,...,eq) = (Fie1,..., Fhey),

for e; € E;. Since all F; € Bp(E;) are of rank 1, we obtain that F' € Bg(F) is also of
rank 1.
By construction all other properties are fulfilled, as one easily can check. O

2. Definition of the K K-groups and the Kasparov product

Similar as for classical K-theory, we now equip the set of Kasparov modules with
equivalence relations. Here we will have a look at homotopy and operator homotopy,
but we will not go into further details regarding operator homotopy.

Let A, B,C, D be graded C*-algebras in this section.

Firstly we have to construct pushouts of Hilbert C*-modules and of Kasparov
A, B-modules.

Construction 2.2.1 (Pushout of Hilbert C*-modules): Let E be a Hilbert A-module
and f: A — B be a surjective *~homomorphism. We define a Hilbert submodule

Np:={eec E|f((e;e)) =0},

and set B} = E/Ny with quotient map m: E — E.

Define 7(e) f(a) = m(ea) for e € E' and a € A and as A-valued inner product on £
define (m(e1),m(e2)) := f({e1,e2)). This defines us a pre-Hilbert A-module. Denote
Ey for the completion with respect to the induced norm.

The Hilbert A-module Ey is called pushout.
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Now we want to do the same on Kasparov A, B-modules.

Construction 2.2.2 (Pushout of Kasparov modules): Let £ = (E,¢,F) € E(A, B)
and ¢: B — C be a surjective graded *-homomorphism. Set E, as defined in
Construction 2.2.1. We can define a grading automorphism on E{/) via

Sy, (n(2)) = 7(Sp(x))

for x € F and can extend this to a grading automorphism on E,. Similarly for
F € Bp(E) we can define F, € Bo(Ey) by defining

Fy(n(z)) = n(F(z))

for x € E on Ez/p and then extending it by continuity to E,. Moreover since F' +— F},
is a *-homomorphism one can easily check for T' = 0, ,, =,y € E that Fy is also a
rank 1 operator.
Lastly define ¢y : A — Be(Ey) via a — ¢(a)y, similarly as we did it for F' and Fyy.
By this we obtain a Kasparov A,C-module &, := (Ey, ¢y, Fy), the so called
pushout.

We also can define the pullback of Kasparov modules.

Construction 2.2.3 (Pullback): Let £ = (E,¢,F) € E(A,B) and ¢: C — A be a
graded *-homomorphism. Then (E,¢ o 1), F) is a Kasparov C, B-module, the so
called pullback ¥*(E).

Definition 2.2.4 (Isomorphism of Kasparov modules): Let & = (E;, ¢, F;) be Kas-
parov A, B-modules for ¢ = 1,2. We say & and & are isomorphic if there exist
an isomorphism of Hilbert B-modules ¢: Fy — E3 such that Sg, o ¢ = @ o Sg,,
Fyop=poF and ¢a(a) o p = ¢ o ¢i(a) for a € A.

Write £ = &; in this case.

Set IB := C([0,1],B) =2 B ® C(]0,1]). We can grade IB by taking Sp ® id as
the grading automorphism, and let 7 be the surjective *~-homomorphism IB — B
obtained by evaluation at t. The maps (m); are also graded *-homomorphisms.

Moreover note that if £ is a Kasparov A, I B-module, then its pushout &, is a
Kasparov A, B-module for all ¢t € [0, 1].

Definition 2.2.5 (Homotopy): Let £, F € E(A, B). We say that £ and F are ho-
motopic if there exist a Kasparov A, IB-module G € E(A,IB) such that G, = &
and G, = F. We write £ ~j, F if there is a finite set {&1,...,&,} € E(A, B) of
Kasparov A, B-modules, such that & =&, £, = F and &; is homotopic to &;41 for
1=1,...,n—1.

We obviously now want to prove that ~y is an equivalence relation. To do this we
want to introduce the internal tensor product of Kasparov modules.
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Construction 2.2.6 (Internal tensor product): Let £ = (E,¢,F) € E(A,B) and
Y: B — C be a graded *-homomorphism. We can form a Hilbert C-module F ®,, C.
By construction we can define a grading operator Sgg,c on E ®, C, by defining

Seg,c(e ®y c) = Se(e) ®y Bo(c)

forec E, ce C.

Note that as in Construction 2.1.15, we have a *-homomorphism j such that
j(m) =m ®y id for m € Bg(F). Thus we can define ¢ ®, id: A = Bo(E @y C) by
¢ @y id(a) = ¢(a) ®y id € Bo(E @y C) for a € A. Moreover by Lemma 2.1.16, we
have that m®,, € Kp(E @y C) if m € Kp(E). By this we obtain that

(E ®y C,¢ @y id, F @y id) € E(A, B),

which we will denote by 1. (E).
Moreover if E is countably generated then also £/ ®, C' is countably generated.

To prove now that ~j, is an equivalence relation we still need two technical lemmas.
For a proof see for instance [JT91].

Lemma 2.2.7: Let £ € E(A,B) and f: B — C and g: C — D be surjective graded
*-homomorphisms. Then

9+ (f+()) = (g © [)«(E)-

Lemma 2.2.8: Let £ € E(A, B) and f: B — C be a surjective graded *-homomorphism.
Then

5]0 = f.(E).

Now we have everything to prove that ~j, is indeed an equivalence relation on the
set of Kasparov modules.

Proposition 2.2.9: The relation ~y, is an equivalence relation on E(A, B).

Proof. One only needs to check, that ~y, is reflexive and symmetric. By construction
transitivity is clear. First let £ € E(A, B). Let ¢: B — IB, b — (t — b), then
w01 = id for all ¢ € [0, 1]. Hence ¢, (€) € E(A, IB) and moreover by Lemma 2.2.7
and Lemma 2.2.8 we have

$u(E)my = (M0 09))+(€) = 1du(€) = €.

The same holds for m;. Thus £ ~j, £, and this proves reflexivity of ~y.

Secondly let £, F € E(A, B) such that £ ~, F. Using the identification B ®
C([0,1]) = C([0,1], B) the idea is to inverse the setting in some sense. To do so let
' C([0,1]) = C([0,1), (t— f(t)) — (t — f(1 —1t)), which is a *-isomorphism and
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define 1) = id ®y’ which is by construction also a *-isomorphism. Moreover we have
by construction that myo1) = 71 and m 019 = mp. Since there exist G € E(A, I B) such
Gr, = € and G, = F, we obtain again by applying Lemma 2.2.7 and Lemma 2.2.8,
that

Vi(G)me = (M0 0 ¥)4(G) = (m1)«(G) = F.

Analogously we obtain ¥, (G)r, = €&. O

Since ~, is an equivalence relation, we now can define the K K-groups. But let us
mention that there are also other equivalence relations such as operator homotopy
(Definition 2.2.12), and others, which we can define on E(A, B), see for instance
[Bla98]. To avoid the different “induced K K-theories”, from now on the first argument
of the set of Kasparov modules is assumed to be separable and the second argument
should be o-unital. The last assumptions can be explained roughly by the fact, that
otherwise B may not have “enough” countably generated Hilbert C*-modules.

Definition 2.2.10 (The K K-groups): We set
KK(A,B):= KK°(A,B) :=FE(A,B)/ ~,
and define
KK'(A,B) := KK'(A,B) = KK (A, B&C(y)),

where C(y) is defined as in Example 2.1.3 and ® is the minimal graded tensor product
of C*-algebras. The elements, i.e. the equivalence classes, of K K (A, B) respectively
KK!(A, B) are denoted by [£].

The definition in [Kas80] is slightly different, since Kasparov also divided out the
set D(A, B), but this is not necessary, since if £ = (E, ¢, F') € D(A, B), then & is
homotopic to 0. See for instance [JT91].

We want to equip K K (A, B) with an addition, which is obviously via the direct
sum of Kasparov modules. Moreover it is commutative.

Definition 2.2.11 (Direct sum as group operation): For [£],[F] € E(A, B), we set
E]+ [Fl=[Ea® F].

We now can prove that K K (A, B) is an abelian group, but to do so let us introduce the
mentioned operator homotopy, which gives us the same K K-groups by assumption.

Definition 2.2.12 (Operator homotopy): Let £, F be Kasparov A, B-modules. If
there is a graded Hilbert B-module F, a graded *-homomorphism ¢: A — Bp(F)
and a norm continuous path Gy for t € [0, 1] such that
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o Gy = (E,¢,Gy) is a Kasparov A, B-module,
e Go= & and G = F,

then £ and F are called operator homotopic.

Proposition 2.2.13: (KK (A, B),+) is an abelian group.

Proof. As identity [0] we simply take degenerate Kasparov A, B-modules, since all
degenerate Kasparov A, B-modules are homotopic to 0.

Associativity is clear, so we need to construct an inverse for an element. Let
£ = (E,¢,F) and define E°P as the Hilbert B-module E graded with —Sg, and
define ¢P: A — Bp(E?) = Bp(F) by ¢ = ¢ o 4, where 4 is the grading
automorphism of A. Note that ¢ is a graded *-homomorphism. We now prove that
—& = (EP,¢°P, —F) is the inverse. To do so let

for t € [0,1]. Note that Gp = F & —F and Gy, hence (E® E?,¢ @ ¢, F & —F) =
(E® EP ¢ ¢°P,Gy). Moreover GG is odd (see Example 2.1.3) since

0 id
G = (id 0)'

Computations as in [JT91] prove that (E @ E?, ¢ @ ¢°P,G;) is a Kasparov A, B-
module for all ¢ € [0, 1], moreover setting ¢t = 1 yields us that (E & EP, ¢ & ¢°P, G1)
is a degenerate Kasparov module, since G; = G} and G? = I. Hence we have
a operator homotopy between £ & —€ and a degenerate Kasparov module. Since
homotopy and operator homotopy gives us the same K K-groups, we are done. [

We now want to collect the properties of the “bifunctor” K K. Note that the most
proofs are technical, thus we do not mention them.

Proposition 2.2.14: (i) KK(—, B) is a contravariant functor from the category
of separable and graded C*-algebras to the category of abelian groups via the
pullback ¥*.

(i) KK(A,—) is a covariant functor from the category of o-unital graded C*-
algebras to the category of abelian groups via the internal tensor product ..

(iii) KK(—,B) and KK(A,—) are “homotopy invariant”, i.e. for a path of *-
homomorphisms 1;: A — B with t — 1y(a) continuous for all a € A we have
Wy = i respectively (o), = (1),

(iv) By Kasparov stabilisation theorem (see [Bla98]) we only need to consider those
Kasparov A, B-modules (E, ¢, F) such that E = Hp.
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(v) For a Kasparov A, B-module (E, ¢, F') one may assume F' = F* and || F|| <1,
hence we only need to consider compact perturbations.

(vi) Let B be trivially graded then we have the following isomorphisms

KKO((CaB) = KO(B)a

KK!(C,B) = K{(B).
Remark 2.2.15: (i) This last proposition gives an understanding why we can con-
sider K K-theory as a bifunctorial generalisation of classical K-theory. The
same holds for example for the Bott periodicity, since we can define K K™, but

as in the case of K-theory it turns out, that one only needs to consider K K°
and K K'. However the proof in the general setting of K K-theory is easier.

(ii) Moreover we should mention that there are different “pictures” or ways one
can think about K K-theory, such as the Fredholm picture or the Cuntz picture
using so called quasi homomorphisms.

It is normally much harder to compute the K K-theory of two given C*-algebras.
One tool may be the so called Kasparov product, which can be elaborately constructed.
We will omit any proof since everything needs a highly amount of technical arguments.
As notation for [(B, ¢,0)] € KK(A, B) we write [¢].

Proposition 2.2.16 (Kasparov product): Let A, B, C, D be o-unital graded C*-algebras,
then there exists a map, the so called Kasparov product

®p: KK(A,B) x KK(B,C) - KK(A,(C),
that has the following properties:
o biadditivity with respect to @, i.e.

(tDy)@p2=2Rp20YdpB 2,
2R (z@Y) =2RprBp 2R Y,

e associativity,
o unit elements 14 = [ida] € KK(A,B) and 1p = [idg] € KK(B,C) such that

la®pr=x=2® 1,
o functoriality: if ¢: A — B and ¥: B — C are graded *-homomorphisms, then

(8] @5 2 = ¢u(z) € KK(A,C),
x5 [Y] = s (z) € KK(A,O).
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The main problem about the proof is to explicitly construct the rank one op-
erator. However one can quickly construct the Hilbert module and the graded
*-homomorphism by simply taking the graded tensor product.

Let us quickly view on the category-theoretical conclusions of the Kasparov product,
mentioned in [Par09].

Remark 2.2.17: Taking separable graded C*-algebras we can form a additive category,
where we take K K-groups as morphism sets and the flipped Kasparov product as
compositions. The map ¢ — [¢] is a functor from the category of separable C*-
algebras with graded *-homomorphisms in this additive category.

The isomorphisms in this category are called KK-equivalence.

The notion of K K-equivalence is a powerful tool in a lot of various contexts in
operator algebras.

Definition 2.2.18 (K K-equivalence): An element z € KK(A,B) is called KK-
equivalence if there exists an element y € KK(B,A) with 2 ®p y = 14 and
y®ax=1p.

We say that A and B are K K -equivalent if there exist a K K-equivalence. Often
we say that y is the inverse of z, if x is a K K-equivalence.

Note that if z € KK(A, B) is a K K-equivalence, then for any separable C*-algebra
D the maps z®p—: KK(B,D) - KK(A,D) and —®px: KK(D,A) - KK(D, B)
are isomorphisms, as it is explained in [Bla98]. Hence the K K-theory of K K-
equivalent C*-algebras behave “identically”. Moreover K K-equivalence implies the
same K-theory.

If one assume additional assumptions for two separable trivially graded C*-algebras
A, B. Then one can say that A and B are K K-equivalent if and only if their K-theory
is equal, the so called Universal Coefficient Theorem, [Bla98|.
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Chapter III.

Compact quantum groups and their
representation theory

The notion of compact quantum groups was introduced by Woronowicz in [Wor87;
Wor98]| to generalise Pontryagin duality of abelian compact groups in some sense.
In this chapter we want to introduce the basic definitions, look at some class of
examples, and we want to look at the representation theory of compact quantum
groups to then introduce the dual discrete quantum group. We will conclude with
introducing the free wreath product of compact quantum groups with S]'\F[.

The symbol ® will denote the minimal tensor product of C*-algebras. Moreover
following the literature we will omit o for the chaining of functions, if it is obvious
from the context, what we mean.

1. The category of compact quantum groups

In this section we define compact quantum groups and some notions, we will use
in this thesis. One can see compact quantum groups as a kind of generalisation of
(locally) compact groups, which will be motivated in the following.

Let G be a compact group with an operation o: G x G — G. Dualising this
operation, we obtain a map

A: O(G) = C(G x G) 2 C(G)® C(G), f+ ((g,h) — f(gh))

Mainly following the philosophy of Proposition 1.1.8, we may now replace C'(G) by a
non-commutative C*-algebra. Following this idea our C*-algebra should have a map
A as above, with additional properties.

Definition 3.1.1 (Compact Quantum Group): A compact quantum group G is a uni-
tal C*-algebra C(G) together with a unital *-homomorphism (comultiplication)
A: C(G) = C(G) ® C(G) such that

e (A®id)A = (Id®A)A (coassociativity)
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[(C(G) @ HA(C(G))] = [(1 @ C(G)A(C(G))] = C(G) @ C(G)

(cancellation law),

where [-] denotes the closed linear span.

The first following example is a kind of justification why we can see compact quantum
groups as a generalisation of the continuous functions on a compact group. Moreover
the second example is the firsz historical example, given by Woronowicz, and the
third one should be seen as an example coming from the dual, that we will consider
later in the course of this chapter.

Example 3.1.2: (i) Let G be a compact group. Consider C(G) with A constructed

(i)

(iii)

as above. It is easy to prove that A is indeed coassociative and also the
cancellation law is true. Hence (C(G),A) is a commutative compact quantum
group.

By the Gelfand-Naimark theorem every commutative compact quantum
group is of the form C(G). This justifies the notation. In general for non-
commutative compact quantum groups, our underlying C*-algebra is obviously
not of the form C(G), but we keep the notation in the spirit of Gelfand-Naimark,
and we view C'(G) as a kind of “virtual” continuous function space.

Historically, the first example of Woronowicz was the quantum version of the
special unitary group SU(2). To do so he deformed the commutativity.
Note that SU(2) can be written as

wa-{(1 )

Now let ¢ € [—1,1]\{0}, then define the deformation via the universal C*-

algebra
(a —q;y ) is unitary) .
Y o«

One then equip SU,(2) with a comultiplication A defined on the generators

a,vyE€C, |af + 4> = 1}-

C(SU,(2)) =C" (1,04,7

Alo)=a®a—q¢1*®7, AY) =7Q@a+a" ®7.

Let I be a discrete group, i.e. equipped with the discrete topology. We consider
the reduced group C*-algebra C}(I") which we obtain by taking norm closure of
the group ring C[I'] under the regular representation A\: I' — B(¢?(I")) mapping
g to Ay given by A\s(0;) = d5; on the orthonormal basis on ?2(T). Define the
comultiplication via A(\g) = Ay ® A\y. This defines us a compact quantum
group (C}(I'), A) which is moreover cocommutative, i.e. cA = A, where o
denotes the flip operator on the tensor product mapping a ® b to b ® a.

By taking the closure under the universal norm of the group algebra C[I'] we
obtain the full group C*-algebra C*(I"). Then (C*(I'), A) is also a cocommuta-
tive compact quantum group.
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Before defining homomorphisms of compact quantum groups and compact quantum
subgroups, we want to fix the following remark, regarding our example.

Remark 3.1.3: For a discrete group I', we denote I for either (C*(T'), A) or (C*(I), A),
where A()\g) = Ay ® Ay and call [ the dual of T.

Indeed this construction generalises the Pontryagin duality for compact abelian
groups. We will take a closer look at the concept of duality in the course of this
chapter.

Lastly note that every cocommutative compact quantum group G = (C(G), A’),
can be included between the full group C*-algebra and the reduced group C*-algebra
of a suitable discrete group I', i.e. we have surjective *-homomorphisms

c*(T) = C(G) = Cx(I)
intertwining the comultiplications. See for instance [TimO08].

In our example we can understand C(G) and C}(I") as a compact quantum subgroup
of C*(I") respectively C(G), as we will define now via the notion of homomorphisms
of compact quantum groups.

Definition 3.1.4 (CQG homomorphism): Let G = (C(G),Aq) and H = (C(H),An)
be compact quantum groups. A compact quantum group homomorphism from G to
H is a unital *-homomorphism 7: C(G) — C(H) such that

(r@m)Ag = Agm.
We also say that m intertwines the comultiplications.

Definition 3.1.5 (Compact quantum subgroup): Let G = (C(G), Ag) be a compact
quantum group. We call H = (C(H),Ay) a compact quantum subgroup of G, if
there is a surjective homomorphism of compact quantum groups from G to H.

For a compact group G we get by Riesz’s theorem the existence of a unique
“left-invariant” Haar measure. In the case of compact quantum groups we get an
analogue of a Haar measure. This was firstly proven by Woronowicz [Wor87; Wor98].

Proposition 3.1.6 (Existence of a Haar state): Let G be a compact quantum group
with comultiplication A. Then there is a unique state ¢: C(G) — C such that

(Id®@P)A(f) = ()1 = (¢ @Id)A(f)

for all f € C(G). We say that ¢ is left- and right-invariant. We call ¢ Haar state of
G.

We want to split this proof in smaller lemmas.
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Lemma 3.1.7: Let G be a compact quantum group. Let ¢, be states on C(G) and
a € C(G), then

o((¢ @ id)A(a)) = P((ld©9)A(a))
Proof. Let A(a) =Y, a% ® ab, then

o((v @id)A(a)) = 3 $(¥(a1)ay) = 3 v(ard(ay)) = ¥((id@g)A(a). D

Fix for two states ¢, the notation ¢ * 1) = (¢ @ ¥)A.

Lemma 3.1.8: Let G be a compact quantum group and w be a state on C(G), then
there exists a state ¢ such that wg = pw = ¢.

Proof. Let w, be the Césaro sum

1 = *k
Wy = E Z w o,
k=1
where we denote inductively w* 1 = w % w**, w*! = w. Since the set of states of

any unital C*-algebra is compact with respect to the weak topology, we have a weak
accumulation point ¢ by Banach-Alaoglu. We then get

1
Wn ¥ W = w * Wy = Wy + — (WD — W),
n
and therefore ¢ x w = w * ¢ = ¢. O

Proof (of Proposition 3.1.6). The uniqueness follows directly from Lemma 3.1.7,
since by assumption the Haar state is left and right invariant.
Now define for a state w € C'(G)* (continuous linear functionals on C(G))

K, :={pe C(G)" | pstate, pxw=w=x*p=w(l)p}.

By Lemma 3.1.8 K, # 0.

Now let n € N be arbitrary and wy, . .., w, be states on C(G), we want to show that
N, K, is not empty. To do so, define w := w; + wa. We need to prove K,, C K,
then () # K, C K,,, N K, and inductively Kzr_zﬂ w; © NIy Ko,

For this let p € K,,. Define the left ideal -

Lpgw ={g € C(G) @ C(G) | (p@w)(¢"q) = 0} € C(G).

By definition, we obviously get L,gw C Lygw,. Using Cauchy-Schwarz ([LVW20,
Lemma 5.4.]), we obtain L,g., C ker(p ® wi). Defining ¥: C(G) — C(G) by
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U(z) = (id®p)A(z) — p(x)1. One then can show, that (id@¥)A(C(G)) C Lyge-
Moreover we get the following inclusions

1o ¥ (C(G)) € (C(G) ©1)Lpgw € ker(p @ wr).
By this we can conclude for x € C(G)
0=(p®w)(1®¥(z)) = (w1 ®p)A(z) —wi(l)p(z)

and thus p € K.

By Cantor’s intersection principle there exist ¢ € [, gate Kw, such that we have
d*xw = wx* ¢ = ¢ for all states w. For x € C(G), let y = ¢(x) — (iId®@p)A(x). By
construction w(y) = 0 for all states w, i.e. y =0. O

Definition 3.1.9 (Kac type): A compact quantum group G is said to be of Kac type if
its (unique) Haar state h is a trace, i.e. if for all z,y € C(G) we have h(zy) = h(yx).

One should note that often Kac type is defined via the antipode S of the corre-
sponding Hopf-*-algebra, see Definition 3.3.12. We say equivalently that a compact
quantum group is of Kac-type, if S% = id.

We now want to define the so called reduced C*-algebra of functions on G and in
the course of this chapter the full C*-algebra of functions on G.

Definition 3.1.10 (Reduced C*-algebra of functions on G): Let G be a compact quan-
tum group, and denote by h its Haar state. The image of C(G) in the GNS-
representation 7, (Proposition 1.1.11) is denoted by C,.(G) and is called the reduced
C*-algebra of functions on G.

Since (7, ® m,)A can be factorised through m, one obtain a comultiplication
A,: Cr(G) — Cr(G) ® Cr(G) such that

Apmp, = (7Th ®7rh)A.
By this (Cr(G), A,) has a natural structure of a compact quantum group. Moreover
the reduced one is a compact quantum subgroup of G.
2. Compact matrix quantum groups

In this section we want to define compact matrix quantum groups, and by this a large
class of examples for compact quantum groups. In Corollary 3.3.8 we will see that
compact matrix quantum groups are indeed compact quantum groups. Moreover we
will look mostly at some classical examples.

Let N be a natural number.
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Definition 3.2.1 (Compact matrix quantum group): Let C'(G) be a unital C*-algebra
which is generated by the entries of a matrix u € My(C(G)), where u and u* are
invertible. Moreover assume that

A: C(G) = C(G) ® C(G), Auiy) = i Uik & U
k=1

is a *-homomorphism. Then the tuple G = (C(G),u) is called compact matriz
quantum group. The matrix u is called the fundamental representation of the
compact matrix quantum group.

The following three examples of compact matrix quantum groups were introduced in
[Wan95] and [Wan98].

Definition 3.2.2 (Quantum symmetric group): The quantum symmetric group S7; =
(C(S%),u) is defined by

C(S) = C*(uiyj | ufy = u?j = uyj, Zulk = Zukz =1 for all Kk < N)

Such a matrix u = (u;;) is called magic unitary. The quantum subgroups of S]J\r] are
called quantum permutation groups.

The following remark will explain why we can see S]J\r, as some kind of generalisation
of the symmetric group Sy or more precisely the continuous functions on Sy. Also
we want to look for which natural number N the quantum symmetric group is
non-commutative.

Remark 3.2.3: (i) For N > 4 the C*-algebra C(SY;) is non-commutative. Indeed
let N =4 and B be a C*-algebra generated by two non-commuting projections
p,q. Due to the universal property of C(S;) we obtain a *-homomorphism
which maps u;; to the matching entry of the following matrix

P 1—p 0 0
1-p »p 0 0

0 0 q 1—gq

0 0 1—g¢q q

Since B is non-commutative C(S}) is also non-commutative, hence we obtain
more general Sy 2 S]'\F, for N > 4, but Sy C SJJ\F, as compact quantum groups.

For the case N < 2, it is easy to show that S]J\rf is commutative. Indeed let
N =1, then C(S]") = C, and for N = 2 the fundamental representation is of

the form
p l-—p
l—-p p )’
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where p is some projection and obviously all generators commute. For N = 3
the quantum symmetric group is also commutative, see for instance [Web23].
One needs to use the fact, that if projections sum up to 1 they need to be
mutually orthogonal.

(ii) One can show that the abelisation of C(SY;), i.e. taking the quotient with the
two-sided closed ideal generated by wu;jug — ukus; is isomorphic to C'(Sy), so
SJJ{, can be indeed understood as a generalisation of Spy.

It is not easy to determine the Haar state of SX, for words of length > 2, which can
be done using the Gram-Weingarten-formula, [BCO7]. For the generators we can
easily find, that all matrix coefficients have the same weight.

Lemma 3.2.4: Let N > 1, and let u = (u;j) be the fundamental matriz of Sf;. Denote
by h the Haar state of SX,, then

1

Proof. We have for all 1 <4 < N by linearity of h, that

Z“w Z (uij)

J

Since we can permutate the matrix coefficients u;;, we obtain that the weight of
every matrix coeflicient must be % ]

Definition 3.2.5 (Orthogonal quantum group): For N € N the free orthogonal quan-
tum group O = (C(OX),u) is defined by

C(0F) = C*(uij | ujj = ugj, u orthogonal).

Remark 3.2.6 (O]"’\} as quantum isometry group of non-commutative sphere): As proven
in [BG10] the classical sphere S"~! C R™ can be seen as the spectrum of the universal
C*-algebra

* * 2
C*(x1,. .. xn | @ = x], T3xj = T4, Z$z =1).

%

We can also express the orthogonality of u by the following relations
> uirujr = bij.
k
By this O]J\r, gives us a kind of a non-commutative sphere.

Definition 3.2.7 (Unitary quantum group): Let N € N. The free unitary quantum
group Uy = (C(UR),u) is defined by

C(U]j\;) = C*(uij | u, ul unitary).
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Finally we define the free hyperoctahedral quantum group, which was introduced by
Bichon in [Bic04].

Definition 3.2.8 (Hyperoctahedral quantum group): The free hyperoctahedral quan-
tum group Hy; = (C(Hy;),u) is defined by

C(H]J{,) = C*(usj | uij = ujj, w orthogonal, uipuj, = 0 = uguy; for i # j).

Moreover we could also define H]'\F, as the free wreath product H]T, =727, S]\L,, which
we will see later. And by this we also obtain for N > 2, that H]J\r, is non-commutative,
since we can embed Sj' in H2+ .

3. Representation theory of compact quantum groups

In this section we want to define basic notions of representation theory of compact
quantum groups. To motivate the following definition, we want to have a look at
compact groups and their representation theory.

Useful in this section is the notation of leg numbering for C*-algebras. We use for
an element a in A® A the notation a(19), a(13), a(23) for the elements obtained by the
inclusion of A® Ain A® A® A, eg. aqz=a®1.

Motivation 3.3.1: Let G be a compact group and U: G — M,(C) be a finite-
dimensional representation.

Note that U is continuous by definition, i.e. U € C(G, M,,(C)) = C(G) @ M,(C).
By this we can also write U = Zi,j u;j; ® ej; for some wu;j, where e;; denotes the
(1, 7)-matrix unit. Moreover since U(gh) = U(g)U(h), we obtain

Ugh) = uij(gh) @ eij = > Alui)(g,h) © e

¥ (Z uik<g>ukj<h>> @ ey = UV ().
ij \ k

where A is defined as in the previous section. Therefore by comparing, we get
A(uij) (g, h) = ui(g)uri(h) = <Z Uil @ Ukj> (g,h).
k k

This motivates the following definition in the finite-dimensional case.
Definition 3.3.2 (Representation of CQG): Let G be a compact quantum group.

(i) A representation of G on a Hilbert space Hy is an element V' in the multiplier
algebra M (K(Hy) ® C(G)) such that

(id@A)(V) = Viuz)Viis)-

If V is unitary then we say V is a unitary representation.
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(ii) A representation of degree n is a matrix U = (u;;) € M, (C(G)) such that for
all 1 <4,5 <n, we have

A(ui;) = Zuzk & U -
k

A representation is called unitary if U = (u;;) is a unitary. We say that U is
non-degenerated if U is invertible.

(iii) A linear map T': Hy — Hy is called a intertwiner between the representation
U on Hy and the representation V' on Hy, if
(T ®id)U = V(T ®id).

We denote the set of intertwiners between U and V' by Mor(U, V).

(iv) If there is a unitary intertwiner in Mor(U, V'), then U and V are called (unitarily)
equivalent.

(v) A unitary representation U is called irreducible if Mor(U,U) = C1. Denote by
Irr(G) the set of equivalence classes of irreducible unitary representations of G.

As shown in [Wor87] any irreducible representation is finite dimensional. Because of
this and for technical reasons, we will mostly restrict our self to finite-dimensional
representations. Moreover note that the definition for general representations coincide
with the one for finite-dimensional representations in the case of finite-dimensionality.

We can also define operations on representations, namely the direct sum and
tensor product. For the following definition note that M,,(C) ® C(G) is isomorphic
to M,(C(Q)).

Definition 3.3.3: Let GG be a compact quantum group, and let U, V' be representations
of dimension n and m.

(i) The direct sum U @ V is defined as the element of M, ,,(C(G)) obtained as
the diagonal sum of the two representations.

(ii) The tensor product U ® V' is the element
U®V =Uqs Viez) € Mmn(C(G))

In analogy to the classical Peter-Weyl representation theory for groups, we obtain
completely analogue results. A useful lemma is the one stated in [MV98, Lemma

6.3], which we will use multiple times. For the rest of the chapter denote h for the
Haar state of some compact quantum group G.

Lemma 3.3.4: Let V and W be representations of G on Hilbert spaces Hi and Ho
respectively. For a compact operator x € K(H1,Hz) define

y = (i[d@h)(W*(x @ 1)V).
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Then y € K(Hi1,Hz) such that
W (yeal)V=yol1.

Proposition 3.3.5: Every non-degenerate irreducible finite-dimensional representation
of a compact quantum group is equivalent to a unitary one. Furthermore every unitary
finite-dimensional representation can be decomposed as a direct sum of irreducible
representations.

Proof. Let U be a non-degenerate representation of degree n and define
y = (Id®h)(U*D).

Since U is invertible also U*U is invertible, and moreover as a positive and invertible
element, U*U is strictly positive, therefore there exist ¢ > 0 such that U*U > e1.
Note that h as Haar state is positive, thus y > 0 and y > €l, i.e. y is invertible. Now
let

1

W=(@o Uy el
By Lemma 3.3.4 we have
yR1=U"(ye 1)U
and by this we obtain

W*W = (y_% ® 1)U*(y1/2 ® 1)(y1/2 Q I)U(y_% ® 1)
=y o)UY U el
—re)yol)(y tol) =1

Thus W is unitary and U and W are unitary equivalent.

For the second part of the statement, let V' be a unitary finite-dimensional rep-
resentation. Since we are finite-dimensional, the unitary finite-dimensional repre-
sentation is decomposable as a direct sum of (not necessarily irreducible) unitary
sub-representations. By finite-dimensionality decomposing these elements of the
direct sum, must lead us to irreducible unitary representations. ]

Remark 3.3.6: The last proof works also in a more general setting, since we can drop
the assumption of finite-dimensionality. To do so, in particular for the second part,
we prove that the set of intertwiners acts non-degeneratively on the set of bounded
operators on the Hilbert space on which we have the representation. Then one takes
a maximal family of orthogonal minimal projections on the set of intertwiners. By
using that the set of intertwiners acts non-degeneratively. one obtain the statement.
See for instance [MV98].
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We want to prove the following important statement, which will us help to understand
how C*-algebraic quantum groups and Hopf *-algebras /algebraic quantum groups
are connected.

Proposition 3.3.7 (Generation by coefficients of representations): Let A be a unital
C*-algebra with a *-homomorphism A: A — A® A. Assume that A is generated, as
a normed algebra, by the matriz elements u;; of its non-degenerate finite-dimensional
representations. Then (A, A) is a compact quantum group.

Proof. Let U = (u;;) be a finite dimensional representation of A. Then
(A ® 1d)A(u”) = Z A(ﬂzk) @ Uk
k

= Z Uit @ Ugg & Up;j
k.l

= uy ® A(uy;)
l
= (id ®A)A(u2‘j)

for all generators, so A is coassociative.
Let U = (ui;) be a non-degenerated finite dimensional representation of A, and
denote by W = (wj;) its inverse. Then by simple calculations we obtain

ZA(Uik)(l ® wyj) = Zuu ® Upwg; = Zuil ® 0151 = u;; @ 1.
% kol ]

Hence u;; ® 1 € A(A)(1 ® A) for all generators u;;. Now suppose

a@1=3 A1 ®a?)and b1 =3 AGM)1©bY)
A l

with a,(cl),af), bl(l), bl(2) € A. Then

(@21)be1)=(be1) =Y A)(1ed?)be1)

k
=S A1 @ aPb).
k,l

Therefore if a® 1,b® 1 € A(A)(1® A), then ab® 1 € A(A)(1 ® A). Therefore since
ui; ®1 € A(A)(1® A) we obtain

AR1CAA)(1®A) CAR A

Since we can write 2 ® y = (r ® 1)(1 ® y), we obviously obtain
A(A)(1® A) = A® A. Similarly we get A(A)(A®1)=A® A. O
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Corollary 3.3.8 (CMQG are CQG): Let G = (C(G),u) be a compact matriz quantum
group, then (C(G),A) is a compact quantum group.

Proof. Follows from the definition of a compact matrix quantum group and Proposi-
tion 3.3.7. Note that by assumption v and (u’)* are non-degenerate representations.]

Before proving a kind of algebraic picture of compact quantum groups, let us
introduce the right reqular representation, which we obtain by the Haar state, as
done by Woronowizc in [Wor98]. For this denote by (H, m, &) the GNS-representation
of h.

Definition 3.3.9 (Right regular representation): Let G be a compact quantum group
and let J be a Hilbert space on which C(G) acts faithfully and non-degeneratively.
The unitary representation U € M (K(H) ® C(G)) defined by

U(r(a) ©n) = Ala)(§ @ v)
for all a € C(G) and n € J, is called right reqular representation.

As notation we also write a for m(a)¢.
Note that U is by definition on H ® J and it is not directly clear why such a
representation exists, but one can show everything stated as in [Wor98; MV98].

Proposition 3.3.10: Let G be a compact quantum group and denote by U its right
reqular representation. Then the following is true

(i) The regular representation U implements A in the following sense: For all
a € C(G) we have

Ala) = U(a® 1)U*.
(ii) The set
{wea)U) |weK(H,T)'}CA
s dense in A.

Proof. Let J be as in the definition of the right regular representation.
For the first part, let a,b € C(G) and n € 7, then

Ula®1)(b§ ®@n) = U(abs @ n) = A(ad)(§ @n) = A(a)A(b)(E ®@n) = A(a)U(b§ @ n)

and in particular U(a ® 1) = A(a)U, i.e. Aa) =U(a® 1)U".
For the proof of the second statement, see for instance [Wor98; MV98]. O

31



Both parts of the last proposition highlight the speciality of the right regular repre-
sentation, since we can recover by this our compact quantum group.
Moreover we can prove that every irreducible representation is contained in the right
regular representation. The proof will be done as in [MV98] by using Lemma 3.3.4.
Let we, ¢, € B(H)* be a continuous linear functional defined by

We1 o (z) = (&1, &2)
for € B(H) and &,& € H.

Proposition 3.3.11: Let G be a compact quantum group and V be any irreducible
unitary representation of G acting on a Hilbert space J. Then V is contained in U.

Proof. Let z € K(H,J), consider
y = (id®h)(V*(z® 1)U).

By Lemma 3.3.4 we have y € K(#H,J) and (y® 1)U = V(y ® 1). Let p be the
projection on the image of y, then

Peo)Vyel) =@pel)ye)lU=@EPpye)U =y YU =V(ye1)
and thus since p is a projection on the range of y we get
Pe)VEpel)=V(pe1l).

By assumption V was irreducible, therefore p = 0 or p = 1, and in particular y = 0
or y surjective.

If y is surjective then V is equivalent to a subrepresentation of U, since y is in
particular unitary and since J is finite-dimensional.

Now let y = 0. Assume that we take x € K(H,J) such that for all £ € H we have
x€ = (£,&1)m for some & € H and n; € J. Then we get for all £ € H and n € J
that

(V(@eDU)(E@n) = (Vi (1®a)(men)

with a = (we e, ® 1)u. Thus y = 0 implies (id®h)(V*(1 ® a))(m) = 0. Because
this is true for any 7; we get

(i[d@h)(V*(1®a)) =0

for all a of the form a = (w¢ ¢, ®id)U. In Proposition 3.3.10 we have seen that these
elements are dense in C(G). Therefore

(i[d@h)(V*(1®a)) =0

for all a € A. If we multiply to the right with any x € B(J) and use linearity we
find also that (id ®h)(V*V) = 0, which leads us to a contradiction as V*V =1. O
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Now we want to introduce Hopf *-algebras, which will yield us a suitable algebraic
picture.

Definition 3.3.12 (Hopf *-algebra): A Hopf *-algebra consists of a unital *-algebra A
together with

(i) a comultiplication A: A - A ® A, which is a *-homomorphism,
(ii) a *-homomorphism ¢: A — C, such that (¢ ®id)d = id = (id ®e)d, the so called
counit,

(iii) a linear map S: A — A, such that u(S ® id)d = p(id®S)d = noe, the so
called antipode. Here pu: A® A — A denotes the multiplication a ® b — ab and
n: C — A the natural embedding A — 1.

We now can prove the algebraic picture of compact quantum groups.

Proposition 3.3.13 (Algebraic picture of compact quantum groups): Let G be a com-
pact quantum group. Let Gy be the subspace of C(G) spanned by the matriz elements
of all finite dimensional unitary representations of G. Then
(i) Go € C(G) is a dense *-algebra,
(ii) A(Go) € Go © Gy, where @ denotes the algebraic tensor product,
(iii) (Go,Alg,) s a Hopf *-algebra.

Proof. We only want to prove the first and the second part of the statement. For
(iii) see for instance [MV98].

(i) Note that the product of two matrix coefficients of finite dimensional unitary
representations is contained in the tensor product of the corresponding repre-
sentations. Moreover the adjoint of a finite dimensional unitary representation
is equivalent to a unitary representation. Thus Gy is a *-subalgebra of C(G).

By Proposition 3.3.11, we know that the regular representation U decomposes
in irreducible unitary representations. Denote {U, | o € I'} for the irreducible
unitary representations and H,, for the corresponding Hilbert spaces. For o € I,
let n(cr) be the dimension of Hq and let {£7, &5, ..., 7,y } be an orthonormal

basis for H. For o, 8 € I and for € K(H) define w3’ € K(H)*
Wiy (@) = (@65, €7).
The linear span of
(W a,pel, 1<p<n(a),1<q<n(B)}
is dense in K (#)*. By Proposition 3.3.10 we know that

(W eU) |a,fel,1<p<n(a),1<q<n(B)}
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is dense in C(G). Now note that (w** ® 1)U are the matrix elements of
the representation of U,, which is contained in U. For a # 8 we have that
(w* @ 1)U = 0. Thus we obtain the statement.

(ii) It suffices to check the statement for monomials of the form

u. ..U € Gy,

151 injn
where n € N. Then

AU ..U ) H AU

1171 injn 1ljl

= > HUS‘L@HU?J € Go © Go.
k1,eokon I=1

Thus monomials are mapped to Gy ® G, and by this the statement follows. [

We also write
Pol(G) := Go ={ug; | @ € Irr(G) }

for the subspace of G spanned by the matrix elements of all finite-dimensional unitary
representations.
We now want to define the full C*-algebra of functions on G.

Definition 3.3.14 (Full C*-algebra): Let G be a compact quantum group. The com-
pletion of Pol(G) under the universal norm such that

|la|| := sup{||7(a)| | = is a representation of Pol(G)}

for a € Pol(G), is called universal or full C*-algebra of functions on G, and is denoted
by Ct(G), Cy(G) or simply C(G).

By using universality one can obtain a comultiplication A,, such that (Cy,(G), Ay)
is also a compact quantum group. Moreover G is a compact quantum subgroup of

(Cu(G); Aw).

Remark 3.3.15: We now have three different structures, namely C,(G),C(G) and
Pol(G) to describe a compact quantum group. It turns out that a compact quantum
groups can be equivalently described by all of them. Moreover one can show that
every Hopf *-algebra (Go, A) can be extended in some sense to a compact quantum
group (C(G),A). Conversely we already saw that every compact quantum group
(C(G),A) has a “canonical” dense Hopf *-algebra (Gg, A) sitting inside it.

Moreover in the sense of category theory we obtain a natural equivalence for the
case of full and a bijective correspondence in the reduced case:

{Hopf *-algebras Pol(G)} s {Full compact quantum groups(C(G),A)}
{Hopf *-algebras Pol(G)} LN {Red. compact quantum groups(C,(G), A,)}
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Definition 3.3.16 (Co-amenable): Let G be a compact quantum group. If the canon-
ical surjection A\g: C(G) — C,(G) is an isomorphism, then G is called co-amenable.

We also want to establish the notion of dual quantum subgroup via the next lemma
which we need to define the free wreath product with amalgamation.

Lemma 3.3.17: Let G and H be compact quantum groups. Then the following is
equivalent

(i) v: C(H) — C(Q) is a faithful unital *-homomorphism, intertwining the comul-
tiplications,

(ii) ¢: C.(H) — Cr(G) is a faithful unital *-homomorphism, intertwining the
comultiplications,

(iii) ¢: Pol(H) — Pol(G) is a faithful unital *-homomorphism, intertwining the
comultiplications.

Definition 3.3.18 (Dual quantum subgroup): Let G and H be compact quantum
groups. If there exists a faithful *-homomorphism ¢: C(H) — C(G) intertwining the
comultiplications (or equivalently for C,(H ), Pol(H) like in Lemma 3.3.17), then we
view C(H) C C(G), C,.(H) C C.(G) and Pol(H) C Pol(G) and call H dual quantum
subgroup of G.

4. The dual discrete quantum group
Let G be a (locally) compact abelian group. Define
G = {¢: G = T | ¢ is a group homomorphism}

as the Pontryagin dual. Pontryagin [Pon34] proved that every locally compact abelian

group is isomorphic to its bidual, i.e. G = G . Moreover one can show that every
abelian group G is compact if and only if G is discrete.

This notion of duality fails, when we look at non-abelian compact groups. Since
compact quantum groups are in some sense a generalisation of compact groups, we
can also find a generalisation of Pontryagin duality for compact quantum groups. It
will also turn out that our dual quantum group is discrete.

However there are multiple ways to introduce duality for compact quantum groups.
We want to briefly give an algebraic approach as done in [Tim08; FSS17] for the dual
discrete quantum group. But we also want to construct it by using the right regular
representation, which is nowadays not the classical way to do it, since the regular
representation or the so called multiplicative unitary are difficult to handle. However
it is useful to construct the dual.
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Definition 3.4.1 (Algebraic/discrete quantum group): (i) An algebraic quantum
group is a unital Hopf *-algebra with a positive left and right-invariant Haar
state, defined as in Proposition 3.1.6.

(ii) A discrete algebraic quantum group, is an algebraic quantum group, such that
its underlying *-algebra is isomorphic to an algebraic direct sum of matrix
algebras @,; My, (C).

To construct now the Pontryagin dual of an algebraic quantum group A with Haar
state h, we set

A={h(-a)|aec A} C A",

where A* denotes the algebraic dual space. One then can equip A with a suitable
multiplication, comultiplication, counit and antipode, to get again an algebraic
quantum group A4, as it is done in [Tim08]. Moreover it is proven for an algebraic

quantum group A, that A = Z, and also we get that A is a discrete algebraic
quantum group.
We also can construct the dual, by using the right regular representation as follows.

Reminder 3.4.2: Every compact quantum group G has a right regular representation
U, Definition 3.3.9. This right regular representation contains all the information
necessary to reconstruct the compact quantum itself, since for all a € C(G) we have

and the set
{we D)) |weKH,T)} € CG)
is dense in C(G), Proposition 3.3.10.

Now define G = (Co(G), A) via

Co(G) =={1ow)(U) [w e K(H,T)*},
and

A: Co(G) = M(Co(G) ® Co(G)), Aa) = oU(a® 1)Uo.
Hereby denotes M (Co(G) ® Co(@)) the multiplier algebra, and o the tensor product
flip map. R
One now can show that this object G defines us the dual discrete quantum group
for the compact quantum group G. The proof will be omitted.
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5. The free wreath product of compact quantum groups

In this section we want to define the so free wreath product of a compact quantum
group by the quantum symmetric group. It was defined by Bichon in [Bic04].

Reminder 3.5.1 (Free (amalgamated) product of C*-algebras): Let A, B be unital
C*-algebras.

(i) The free product A xc B of A and B is defined as the universal C*-algebra
generated by copies of A and B with no additional relations. More pre-
cisely the free product A xc B is a unital C*-algebra with unital embeddings
ta: A — Axc B and 1g: B — A x¢ B such that for each unital C*-algebra
C and *-homomorphisms f: A — C and g: B — C, there exists a unique
*-homomorphism f *¢ ¢g: Ax¢c — C such that the following diagram commutes

A5 AxcB «+2_ B
\f’% )
C

(ii) Let D be a C*-subalgebra of A and B, and denote by ¢4 respectively ¢p the
embedding of D in A, respectively B. The free amalgamated product A +p B is

the universal C*-algebra generated by the copies of A and B with the copies
of D identified, i.e. ¢pa(d) = ¢p(d) for all d € D.

Using this definition we can also define us the free (amalgamated) product for
compact quantum groups, as done in [Wan95]. Note that the main problem is to
obtain a suitable comuplitication on the free product of C*-algebras. We will restrict
ourselves to simply taking a look at the case without amalgamation, but everything
can be generalised without problems, as in [Wan95].

We denote A x B := A x¢ B for two unital C*-algebras A and B

Proposition 3.5.2: Let G, H be compact quantum groups. Then there exists a unique
comultiplication A on C(G)xC(H) such that (C(G)*C(H),A) is a compact quantum
group and g and vy are compact quantum group homomorphisms. We denote this
compact quantum group by G x H := (C(G) « C(H),A), and call it the free product
of compact quantum groups.

Proof. We want to construct the unique comultiplication via the universal property
at the level of C*-algebras. For this let C' = (C(G) *C(H)) ® (C(G) « C(H)) and let
f:C(G) = Candg: C(H) — C bedefined by f = (tg®tg)As and g = (tg@ty)AB.
Then by the universal property we obtain a map A := f % g. By coassociativity of
A¢g and Ap it easily follows that A is coassociative.

The C*-algebra C(G) x C(H) is generated by tq(C(G)) and ¢ (C(H)). Moreover
by Proposition 3.3.13 we know that G and H are generated by the matrix elements
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of its non-degenerate finite-dimensional (in particular unitary) representations. If
U is a non-degenerate finite-dimensional unitary representation of G respectively
H, then also ig(U) = (vg(uij)) or ig(U) = (vu(uij)) are non-degenerate finite-
dimensional unitary representations of G x H. Then use Proposition 3.3.7 to obtain
the statement. O

In the case of compact matrix quantum groups, there is a simple description of
the free product.

Corollary 3.5.3: Let G = (C(G),u) and H = (C(H),v) be compact matriz quantum
groups, then so is GxH = (C(G)+xC(H),ig(u)®ig(v)), where ig and ig are defined
as in the proof of Proposition 3.5.2. Moreover the comultiplication is the same.

We also want to give explicitly the Haar state of G « H for two compact quantum
groups G, H. To do this let us introduce the free product of states defined by
Voiculescu in [VDN92].

Definition 3.5.4 (Free product of states): Let ¢,1 be states on C*-algebras A, B.
The unique state ¢ *x 1 on A *x B is called free product of states if

(i) (p*¥)ea = and (¢ *)p =1,
(ii) if ¢1,..., ¢, are elements of ker ¢ or ker ) and no adjecent elements belong to
the same C*-algebra A or B, then c¢;...¢, € ker(p * ).

The Haar state is now given by the free product of the Haar states, see for instance
[Tim08, Prop. 6.3.3].

Proposition 3.5.5: Let G, H be compact quantum groups with Haar states hg, and
hg, respectively. Then the free product of states hg * hy is the Haar state of G« H.

Also one can easily determine what the irreducible representations on G * H are.
Indeed take a family of irreducible unitary representations (Ua)aehr(g) from G and
(VP )actrr(sr) from H, then a family of representation on G x H is given by simply
taking the tensor products elements that belong to (ig(U?%))q or (ig(V?))s.

By this and the formula for the Haar state on G * H we can also deduce the
following statement, as done in [Tim08].

Corollary 3.5.6: Let G and H be compact quantum groups. Then the following hold

() (C(G)* C(H),Ag * Ap)u = (Cu(G), Ag) * (Cu(H), An),

(ii) (C(G) * C(H),Aq * An), = (C-(G),Aq) * (Cr(H),An), where (C(G) *
C(H),Aqg * Ag), denotes the reduced free product. Note that the underly-
ing C*-algebra is constructed as the image under the GNS-representation for
hG * hH.
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To finish the theory on free products, we should briefly introduce amalgamated free
products. as already mentioned, all statements work for this as well. To do so, we
use a corollary of Wang [Wan95].

Definition 3.5.7 (Amalgamated free products): Let G, H be compact quantum groups,
and D be a compact quantum subgroup of G and H, with natural embeddings ja
and jg. Denote by (D) the closed two sided-ideal of

taja(d) —pjp(d)
for d € C(D). Then the amalgamated free product of G and H under D is defined as
Gx«p H:=GxH/(D).

Now after introducing the basics of free products of compact quantum groups, we
want to have a look at the free wreath product introduced by Bichon. We denote
C(G)*N := C(G) * ... C(G) (N-times) for a C*-algebra C(G). Similarly for the
amalgamated free product.

Definition 3.5.8 (Free wreath product): Let G be a compact quantum group, and
n € N. The free wreath product of G by SJJ{, is defined by

C(G L SF) = CG)™  C(SH/I,

where we consider the full free product and I is the two-sided closed ideal generated
by

vp(a)ug; — ugivg(a), 1 <k,i <n, a € C(G),

where uy; are the matrix coefficients of the fundamental representation of Sj{, and we
denote v : C(G) — C(G)*N C C(G)*N * C(SF) for the canonical *~homomorphism
embedding in the k-th copy.

Remark 3.5.9: If G is a quantum permutation group with fundamental representation
v, then G 1, SX, is also a quantum permutation group with magic unitary defined by
Wi gj = Vi(Vpg)Uij-

Notice, that the notation here might be slightly confusing, since we use tensor
identifications, and note that we might need to embed the free wreath product in
S]T/[ with M > N, to get that G Sj{, is a quantum permutation group.

Following Freslon [Fre23], we can also define a free wreath product with amalgamation,
in the following sense.

Definition 3.5.10: Let G be a compact quantum group, and H be a dual quantum
subgroup of G. The free amalgamated wreath product of G is defined as

C(Gupm Sy) = C(G) N «C(SH)/I,

where I is the same two-sided closed ideal as in Definition 3.5.8.
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With a suitable comultiplication the free wreath product of a compact quantum
group G is also a compact quantum group. See [Bic04].

Proposition 3.5.11 (Free wreath products are CQG): Let G be a compact quantum
group, and N € N, then G, S]'\F, is a compact quantum group with the comultiplication
A satisfying the following

Aluig) = D ik @ ugj, A(vi(a)) =Y vi @ vg(A(a)) (ui, © 1)
k=1 k=1

We now want to give a proof why we can indeed write H]f, = 7/27. SX,. This
proof can be generalised for the quantum reflection group va+ for s > 1.
For this let us introduce sudokus, as it is done in [BV09].

Definition 3.5.12 (Sudoku): Let s,n € N. A (s,n)-sudoku is a magic unitary of size
sn of the form

O el .0 et
as—l CLO as—2
m = _ ,
al  a? a’
where a°;...,a°"! € M,(C). Note that m is circulant and we can write m =

(afj_q)m,qj under using tensor product identifications, where all indices are modulo s.
Banica and Vergnioux proved in [BV09, Theorem 2.3] that
C(HY) = C*(af; | (af; “)pigs is (2, N)-sudoku).
Moreover H]J\r, is a quantum permutation group of S; N

Lemma 3.5.13: We have the following identification

p q)\ . . .
18 a magic unitary | .

Moreover C*(Z/27) is a quantum permutation group.

Z)27 = C(Z/2L) = C*(Z/2L) = C* <p, q

Proof. The first isomorphism is clear, since C*(Z/2Z) is commutative and of dimen-
sion 2, therefore C*(Z/2Z) = C @ C, and C(Z/27) = C & C as well. For the second
isomorphism, note that

C*(2/22) = C*(l,u1 | uf =1) = C*(1,p,q | p+ ¢ = 1),
where in the last step p, ¢ are projections defined by p = %(1 +up) and ¢ = %(1 —up).

Thus we can also write
p oq\ . . .
1s a magic unitar .

C*(z2)2Z) = C* (p,q
Hence C*(Z/27) is a quantum permutation group. O
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Using these facts we want to prove that the quantum hyperoctahedral group can
be seen as a free wreath product.

Proposition 3.5.14: Let N € N, then we have the following isomorphism
C(Hf) = C(Z)2Z) 1. C(SR).

Proof. Firstly note that Z/2Z can be written as Z/2Z =< o >C GLy(C), where

(1)

is cyclic with 0 = I,. Taking the isomorphism C*(Z/27Z) = C(Z/27) and by the
lemma before C'(Z/27) is a quantum permutation group, where our fundamental
representation v = (Vpq)o<pqg<1 is defined by

o = p+q mod?2
Upg =\ o

o> = p+qg+l mod?2’
Observe that v is a circulant matrix as one can easily verify, i.e. vpg = Vg(p—gq)-

One then defines a map ®: C(H;) — C(Z/2Z) 1. C(S5;). Considering the genera-
tors of the magic unitary as in Remark 3.5.9 and using the definition of C(Hy;) as
universal C*-algebra, we claim that the elements of the following form are forming a
sudoku:

Afj = I/Z'(Uop)uij.
Indeed the corresponding matrix defined in Definition 3.5.12, is given by
Mpi,qj = Alz‘)jiq = Vi(UO(p—q)uij = Vi(Vpg)Uij = Wpi,gj,

where we used that v is a circulant matrix, and since the fundamental representation
of the free wreath product is a magic unitary, we proved the claim, and obtain a
*-homomorphism sending generators to generators.

We now want to construct an inverse *-homomorphism ¥: C(Z/2Z) 1. C(S%) —
C(H3;). To do this, we define suitable *-homomorphisms from C(Z/2Z) — C(Hy;)
respectively C(S3;) — C(HY;) and prove that the generators of this *-homomorphisms
satisfy the defining relation of the free wreath product. Let afj be the generators of

C(H3;) then define elements U = (Uy,) and V = (Vi;) by
Upg = Zafl;q’
k

s = r
Vij = Zap—q'
r
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Then U defines us a *-homomorphism C(Z/2Z) — C(H;) for every copy of C(Z/27Z)
and V defines us a *-homomorphism C(S%) — C(H;), where we used the fact that
C (H]T,) is a quantum permutation group, therefore this map makes sense without
further justification.

Then one can compute v;(Upg)Vij — Vijvi(Upg) = 0, such that we obtain a *-
homomorphism ¥ via v;(U) and V.

One then can check as in [BV09] that U is indeed the inverse of ®. This proves
the statement. g
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Chapter IV.

Graphs of C'*-algebras

We follow the definition of a graph in the sense of Serre [Ser77]. Let G be a graph. We
denote by V(G) the vertez set of G, and its edge set by E(G). For e € E(G) we denote
by s(e) and r(e) respectively its source and range of e and by € its inverse edge. Note
that we use geometric edges, i.e. for all e € E(G) we also have € € E(G). We say
that F(G) = ET(G)UE~(G), with e € ET(G) if and only if € € E~(G), is a partition.
Moreover we call H C G a connected subgraph if V(H) C V(G), E(H) C E(G) such
that e € E(H) if and only if € € E(H) and the source and range map from G are
restricted to H.
For the whole chapter G is a graph.

1. Graphs of C'*-algebras and the maximal fundamental
C*-algebra

Graphs of groups are a basic tool used in Bass-Serre theory for groups. In the
following motivation we want to recall basic ideas of it. Our goal is to establish some
kind of “quantum Bass-Serre theory”, which will help us computing the K-theory,
by using the so called fundamental C*-algebra.

In [Ver04], Vergnioux first used quantum Bass-Serre trees in spirit of [JV84] to
obtain results about the K-theory and especially K-amenability of free amalgamated
products. This was then extended by Fima and Freslon [FF14], who proved that the
fundamental group of discrete quantum groups are K-amenable. Nevertheless we
will restrict ourselves to graph of C*-algebras.

Motivation 4.1.1: In [Ser77] introduced graph of groups, this is a graph where each
vertex and edge is assigned a group. The groups assigned to edges are related to the
groups assigned to the vertices they connect with via injective group homomorphisms.
Serre then defined the so called fundamental group of a graph of groups, which is a
generalisation of the topological fundamental group, and captures the structure of
the graph of groups in some algebraic sense.
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The fundamental theorem of Bass-Serre theory says that every group acting on a
tree without inversion, is isomorphic to a fundamental group of a graph of groups,
namely the quotient graph of groups.

In analogy to the definition by Serre we now define graph of C*-algebras.
Definition 4.1.2 (Graph of C*-algebras): A graph of C*-algebras is a tuple

(G, (Aq)qu(g)a (Be)eeE(g)> (Se)eeE(g))
such that

(i) G is a connected graph,

(ii) for all ¢ € V(G) and e € E(G), Ay and B, are unital C*-algebras,
(iii) for all e € E(G) we have Bg = B, and
(iv) for all e € E(G), se: Be — As, is a unital faithful *-homomorphism.

For every e € E(G) we denote re = sg: Be — Ay(e), BE = se(Be), By = 7e(Be).
For simplicity we write (G, (Aq)qev(g): (Be)ecr(g)) for a graph of C*-algebras.

Remark 4.1.3 (Maximal subtree): Let G be a connected graph. One can show that
every connected graph contains a subtree 7y C G. By defining a suitable ordering,
one can apply Zorn’s Lemma and obtain a mazimal subtree T of G.

We now want to define the mazimal fundamental C*-algebra as an analogue of the
fundamental group one get in the sense of Bass-Serre-theory.

Definition 4.1.4 (Fundamental C*-algebra): Let (G, (Ag)sev(g), (Be)ecr(g))
be a graph of C*-algebras and let 7 be a maximal subtree of G. The (maximal)
fundamental C*-algebra with respect to T is the universal C*-algebra generated by
the C*-algebras A, for ¢ € V(G) and by unitaries u,. for e € E(G) with the following
relations
(i) for all e € E(G)
(ii) for all e € E(G) and b € B, we have ugse(b)ue = 7e(b) and
(iii) for all e € E(T) we have u, = 1.

we have ug = uj,

This C*-algebra will be denoted as 71"*(G, (A4)qev(g), (Be)ecE(g)s T)-

Since we are dealing with universal C*-algebras, it is necessary to prove that the
maximal fundamental C*-algebra exists and is non-trivial. See for instance [FG18]
for a proof.

Proposition 4.1.5: Let (G, (Ag)qev(g), (Be)eck(g)) be a graph of C*-algebras and let T
be a maximal subtree of G, then its maximal fundamental C*-algebra P is non-trivial.
Moreover the canonical *-homomorphisms Ay — P are faithful for all ¢ € V(G).
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For our next example we need the HNN-extension of C*-algebras, [Ued05; Ued08],
therefore we want to introduce it here. Let us quickly recall the construction for
groups:

For groups the HNN-construction of a group G is a group I' in which G embeds in
such a way that two given isomorphic subgroups of G are conjugate. More precisely,
given a subgroup H C G and an injective group homomorphism 6: H — G, the
HNN-extension is defined as

I = (G,t|tot™' =0(0) for all ¢ € H).

Definition 4.1.6 (Full HNN-extension): Let A be a unital C*-algebra and B C A a
unital C*-subalgebra. Moreover let #: B — A be an injective *~-homomorphism.

The full or universal HNN-extension is the universal C*-algebra generated by
A and a unitary u(f) such that u(0)0(b)u(f)* = b for all b € B, denoting it by
HNN(A, B, 0).

Example 4.1.7: (i) Let G be the following graph

Po p1
e .

Let Ag = Ay, A1 = Ap, and B = B, C Ay, A1 be unital C*-algebras. Moreover
let s, respectively sz be the canonical embedding of B into Ag respectively Aj.
Obviously the maximal subtree of G is G itself, by this u. = 1, and therefore

only (ii) in Definition 4.1.4 provides us with a relation. Thus we conclude
ﬂ.inax(g’ (A(]a A1)7 B, g) = Ao *p A1

(ii) Let G be the following graph

)

Let A= A, and B = B, be unital C*-algebras and 6: B — A be an injective
*-homomorphism. We set s, = id and r, = 6. Obviously the maximal subtree
is {p}. By this we obtain the full HNN-extension HNN(A, B, 6) as fundamental
C*-algebra of this graph of C*-algebras.

2. Reduced fundamental C'*-algebras

We want to define the reduced (also sometimes called edge-reduced) fundamental
C*-algebra and the vertex-reduced C*-algebra. To do so we equip the edges of a
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graph of C*-algebras with conditional expectations E7: Ay — BZ := s¢(Be) for all
e € E(G).

The reason for having different notions of reduced fundamental C*-algebras is
the fact that the conditional expectations might behave “degenerate”. If we assume
that the conditional expectations are GNS-faithful, we obtain the (edge)-reduced
fundamental C*-algebra, otherwise if they are not necessarily GNS-faithful, we are
in the setting of vertex-reduced fundamental C*-algebras. Both were introduced in
[FF14] and [FG18].

To define the reduced fundamental C*-algebra, we need some kind of GNS-
construction which we obtain from a conditional expectation, see for instance [Pas73].
For this recall the definition of a Hilbert C*-module, Definition 2.1.7 and recall that
conditional expectations are unital completely positive maps.

Construction 4.2.1 (GNS-construction): Let A and B be a unital C*-algebras and
¢: A — B a unital completely positive map. There exists a triple (H, p, &), where H
is a Hilbert B-module, £ € H and p: A — Bp(H) is a unital *~-homomorphism such
that p(A)¢{B is dense in ‘H and ¢(a) = (£, p(a)&) for all a € A. This construction is
unique up to isomorphism.

If we take a unital C*-subalgebra B C A and a conditional expectation E: A — B,
we have that the Hilbert B-submodule nB of the GNS-construction with respect to
FE is complemented in H. Indeed we have

H=EH®H,

where

H® ={p(a)éb| a € ker(E),b € B}.
We say that E is GNS-faithful or non-degenerate if p is faithful.

Definition 4.2.2 (GNS-faithful): Let A be a unital C*-algebra and (B;);cr be a family
of C*-algebras. A family (¢;);cr of unital completely positive maps ¢;: A — B; is
called GNS-faithful if ;< ker(m;) = {0}, where (H;,7;,&;) is the GNS-construction
of Vs -

We will use a slightly different notation for the GNS-construction, as we will set
as third argument the natural linear map n: A — H, which sends 1 to £. We will
then say that (H, p,n) is the GNS-construction.

Let (G, (Ay), (Be)) be a graph of C*-algebras with GNS-faithful conditional expec-
tations EZ: Age) — Bf := se(Be) for every edge e € E(G). Then denote for every
edge e € E(G) by (HZ,72,n2) the GNS-construction with respect to the completely
positive map s; ! o ES. Hence H{ is a Hilbert Be-module, obtained as completion of
Ag(e) With respect to the induced Be-valued inner product. The representation g is

induced by left multiplication, moreover we define £ := n3(1).
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Since by assumption the conditional expectations EY are GNS-faithful, we may
identify Ay) with its image in Bp, (H{) via the representation 7 for all edges
e € E(G). We now can construct path Hilbert-modules, it will carry the faithful
representation of the reduced fundamental C*-algebra.

Construction 4.2.3 (Path Hilbert C*-modules): Let n € Ny and let w = (eq,...,¢e,)
be a path on G. We define Hilbert C*-modules

M, ifi=0
j I Hgi_'.l? if e7z+1 # a
Y (e ) e =w
€it1 ’ i+1 — €4

Ar(en)7 if i =n.

We can construct a tensor product for these Hilbert C*-modules, while using actions
induced by the representations, for more details see [FF14, Section 3.2]. We then
define

Hw ::j0®~--®\.7n7

which we will call path Hilbert module, H,, is a Hilbert A, )-module.
For two vertices p,pg € V(G) we set

7-lPO P = @ Hwa

Path w from pg to p

which is a Hilbert A,-module.

We need to construct suitable unitaries. For this let e € E(G) and p € V(G), then
define

ug: Hege)p = Hs(e),ps

by the following case distinction:
Let w be a path of length n from r(e) to p and let ¢ € H,,. We have to look at
the cases n =0, n =1 and n > 2.

o For n =0, we have the empty path w, then set u2(¢) = &5 ® ¢ € Hu,

e Forn =1, then w = (e1) and ¢ = a ® (" where a € Ay(,) (Where we identify
Ag(ey with its image under the GNS-representation), and (e A, Ife #¢,
then put u?(¢) = £ ® ¢ € H(c,,), else define

-
Ue =

52 ® C € H(e,e1)’ ifae (/Hgl)o
re; 0 st (a)( € Ay, ifa€ B
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o For n > 2, then w = (e1,...,¢,) and ( = a ® ¢ with a € Ay,) and (' €
T @ Jn. I er #€, then ul(() = & ® ¢ € H(ew), else

uP = 5: ®C € H(e,w)v ifae (7‘[21)0
N Te, O se_ll(a)g’ € Hey,.en), ifa€ BE.

As explained in [FF14], we can extend u? to unitaries such that (u?)* = u2. Moreover
we have an analogue of the property (ii) in the definition of the full fundamental
C*-algebra Definition 4.1.4, as for all edges e € E(G) and b € B,

ulse(b)ul = re(b).
Lastly for a path w = (ey,...,e,) and p € V(G), we denote

P _ P P P

uby, = ub ulb ..oub .
These unitaries are the suitable ones, we now can use to define the reduced funda-
mental C*-algebra.

Definition 4.2.4 (Reduced fundamental C*-algebra): Let (G, (A,)q, (Be)e) be a graph
of C*-algebras and let pg,p € V(G). The reduced fundamental C*-algebra rooted in
po in base p is the C*-algebra

(G, po) == C*((ud)* Aqub, | ¢ € V(G), w, z paths from q to po) € Ba,(Hp,p)

Our definition depends on two arbitrary vertices, this bring us a lot of different
representations of the reduced fundamental C*-algebra. However it can be proven,
that the definition does not really depend on the vertex pg, since we can construct an
isomorphism if we have two different rooting in our definition by the connectedness
of G. Hence we will simply write P(pg) for the reduced fundamental C*-algebra

(G, po).

If we now assume that the conditional expectations are not necessarily GNS-faithful,
we obtain the notion of vertex-reduced fundamental C*-algebras. Instead of defining
the vertex-reduced fundamental C*-algebra as done in [FF14], we want to use the
description as a quotient, in order to save us the technical details.

Definition 4.2.5 (Reduced Operator): Let (G, (Ag)qev(g); (Be)ecr(g)) be a graph of
C*-algebras. An element ¢ in the fundamental C*-algebra P is called reduced operator
from p to p for a p € V(G), if

G = Qole, A1 Uey - - - Ue, On

where n > 1 and (e1, ..., ey) is path from p to p itself, ag € A, ax € A,(c,) and if

ex+1 = € implies EF  (ay) = 0.

ex)
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Definition 4.2.6 (Vertex-reduced fundamental C*-algebra): Let

(G, (Ag)gev(g): (Be)ecr(g)) be a graph of C*-algebras and denote by P its full funda-
mental C*-algebra. The unital C*-algebra P, called the vertez-reduced fundamental
C*-algebra, is the quotient A\: P — P, of P such that

(i) There exists a GNS-faithful family {E, | p € V(G)} of unital completely positive
maps Ey,: P, — Ap such that Ey(A(a)) = a for all a € A and E,(A(b)) = 0 for
all reduced operators b € P from p to p,

(ii) For any unital C*-algebra C' with a surjective *-homomorphism p: P — C
and a GNS-faithful family {¢, | p € V(G)} of unital completely positive
maps ¢,: C — A, such that p,(p(a)) = a for all a € A, and ,(p(b)) = b
for all reduced operators b € P from p to p, there exists a unique unital
*-homomorphism v: P, — C factorising p, i.e. vo A = p.

3. Free wreath products as fundamental C*-algebras

In this section we want to construct the full and vertex-reduced free wreath product
as fundamental C*-algebras. To do so we will mainly follow [FT24].
We denote C,4(+) for either the full or the reduced C*-algebra.

Let N € N, and Ty be a rooted tree with N + 1 vertices pg, ..., pn, where pq is
the root, and 2N edges v1,...,vN,71,...,0n5 and source maps s(vg) = po and range
maps 7(vg) = p forall 1 <k < N.

Po

b1 b2 P3 T PN

Equip the rooted tree Ty with the following setting
Apy = Co(H) ® Co(SF),
Ay = Co(G)@CN for 1 <k <N,
By, = By = Co(H) @ CN for 1 <k <N,
with source maps
So,t Co(H) @ CN — Co(H) ® Ly, € Co(H) ® Co(ST), h® e > h ® uy,

where Ly 1= span(ug; | 1 < j < N) for 1 <k < N. The range maps 7y, : Co(H) ®
CN — Co(H) ® CV are the canonical inclusions.

Following [FT24, Proposition 2.5. and 2.18.] we construct conditional expectations
in the following way.
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Proposition 4.3.1: Let 1 <i < N. The map

N
E;: C.(S]—C) — Li, T — NZ h(:cuw)u,]
j=1

is a conditional expectation. Here h denotes the Haarstate of Ce(S5).

Proof. First note that L; C Pol(Sy) is a unital *-subalgebra of Pol(S%). Moreover
since CN — L;, ej — u;j is a *-isomorphism, we may view L; as a finite dimensional
commutative C*-subalgebra of C.(S]J\?). One now can easily check linearity, since h
is linear. Also positivity is clear, since u;; are projections and h is a state. Moreover
since h(u;;) = 3 we obtain
N N
Ez(l) = NZh(uw)uU = Zuzj =1.

j=1 j=1

Since Z;-V:l u;; = 1 is a partition of unity, we can conclude that two projections
Ui, ik with [ # k are orthogonal. Therefore for arbitrary 1 < k < N we get

N N
Ei(u) = NZ h(uwigpuij)uij = NZ Opih(uij)us; = h(u).
j=1 J=1

Thus E; is surjective and also E; o E; = E;, since E;(b) = b for all b € E;(Ce(SY)),
by linearity. O

Proposition 4.3.2: Let G be a compact quantum group, and H be a dual subgroup of
G. Then the unique linear map E: Pol(G) — Pol(H) such that

(id @ E)u’ = u® if o e Irr(H),
0 ifzelr(G)\Irr(H)

has a unique unital completely positive extension to a map Ee: Ce(G) — Co(H).

The reduced case follows directly from [Ver04, Proposition 2.2] and the full case
follows from [Chil4, Theorem 3.1.]. From now on we denote the map F, for either
the reduced or full case by Ep.

Now we can equip our graph of C*-algebras with conditional expectations

and

Ey ®id: Co(G) @ CN — Co(H) @ CN
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Our goal is now to prove that the maximal respectively vertex-reduced fundamental
C*-algebra are isomorphic to the maximal respectively reduced amalgamated free
wreath product Ce(G 4 i Syr)-

For the first one, denote by A := 7" (T, (Aq)qev(Tn) (Be)ecr(Ty)s Tv) its maxi-
mal fundamental C*-algebra relative to the maximal subtree TN, so that A is the
universal C*-algebra generated by A, , 1 <k < N with the relations ry, (a) = sy, (a)
foralla € C(H) @ CY and all 1 < k < N.

Recall v;: C(G) — C(G)*#N C C(G t g S3;) denotes the embedding into the i-th
copy of C(G) in C(G)**™, and denote by v the common restriction of v; to C(H).
As done in [FT24] we now want to prove A = C(G b S¥).

Proposition 4.3.3: Let G be a compact quantum group and H C G o dual quantum
subgroup. There is a unique isomorphism m: A — C(G 4 S]\L,) such that

7T(h & Uij) = V(h)uij, @fh QUi € Apo = C(H) &® C(S]J'\})
m(a®ej) =vi(a)uij, ifa®e; € Ay, =C(G)xCN

forall1 <4, <N.

Proof. The existence will follow by the universal property of A. Since v;(a) and
u;; commute in C(G L g Sj) by definition, we get unique unital *~homomorphisms
mit Ay, — C(G lm Sf) such that m;(a ® ej) = vi(a)u;; for all a € C(G) and
1 < j < N. Moreover define mo: Apy — C(G g Sy) by mo(h ® usj) = v(h)u,; for
all h ® u;; € Ap,. Obviously we have

WQ(Svi(h X €j>) = Wo(h & uij) = I/(h)uij
mi(ry; (R ® €5)) = mi(h ® ej) = vi(h)uij = v(h)uj,

forall 1 <i,7 < N and h € C(H). Note the last step follows since we assume that
the restrictions of v; for all 1 <7 < N on C(H) are the same.

By the universal property of A we now obtain a unital *-homomorphism fulfilling
the conditions we want. The image of m contains all u;; for all 1 <4,j < N and

H Mz
®
bC'!}

I
™M=
5
;’:

\

X
]
£

\

X

for all 1 < ¢ < N, for the last step recall the definition of SX,. By this we get
surjectivity of .

Lastly we want to construct an inverse, to show that 7 is an isomorphism. By
the universal property of C(G t.u S]T,) we obtain a unique unital surjective *-
homomorphism p: C(G)*N xC(S%) — C(G . g S3;) such that u(v;(a)) = a®1 € Ap,
and u(b) =1@b € Ay forall 1 <i < N, a € C(G) and b € C(S5;). We now want
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to prove that I from the definition of C(G 1. g S3;) is contained in ker(p), by this we
obtain a map p: C(G L.y S3;) — A. Indeed, note that

plri(a)uig) = a @ uij = (a®@ 1)(1 @ uig) = p(vi(a))sy, (1@ ¢))
= u(vi(a))ry,(1®@e)) = (a®1)(1 @ ¢;)
= (1®ej)(a®1) =ry,(1®e;)u(vi(a))
= s, (1@ ¢j)u(vi(a)) = (1 ® uij)p(vi(a)) = pluijvi(a))

forall 1 <i,7 < N and a € C(G). Thus I C ker(u).
Recall now that ¢: C(H) — C(G) is the faithful *~homomorphism from Defini-
tion 3.3.18. Then the following holds

i (e(h)) = t(h) ® 1 = s, (h® 1) = 1y, (h© 1) = h® 1
—r, (h® 1) = 5, (h® 1) = 1(h) © 1 = u(v;(u(h))).

Thus the images of C(H) on u coincide, and from I C ker(u) we obtain a unique
unital *-homomorphism p: C(G . g S3;) — A factorising u. Since u is surjective,
also p is surjective and we can easily prove that p is the inverse of 7. Indeed, since
the images of C(H) on p coincide, they also coincide on p and we get

(pom)(h ®uij) = pv(h)uij) = h © uij,
(pom)(a®uij) = p(ri(a)uij) = a & uij,

forall 1 <i,7 < N,heC(H)and a € C(G). Hence p is the inverse of 7w and thus 7
is an isomorphism. O

We now proved that A = C(G . g Sy), this will be used later to calculate the
K-theory of C(G t,i S%;). We now also want to do the same for the reduced case.
For this we will need to look at the Haar state.

But let us fix some notation before doing so. Denote by A, the vertex-reduced
fundamental C*-algebra of the constructed graph of C*-algebras with faithful condi-
tional expectations as constructed and view A4,, C A for all 0 <k < N. We write A
for the canonical surjection of the full to the reduced fundamental C*-algebra.

By the universal property of A, there exists a unique surjective unital *-homomorphism
N A — A, such that the restrictions fulfil \'| 4, = AH@AS; and N4, = Ag®iden
forall1 <k < N. Let E: A— C,.(H) ®CT(S]T,) be a GNS-faithful conditional expec-
tation and define w := hy ® hSXr o F such that the restrictions fulfil w|Ap0 =hyg® hsj\;

and w(c) = 0 for all reduced operators in A. The state w € A* is called the funda-
mental state. Let A\: C(G g Si;) — Cr(G tm S3;) be the canonical surjection.

Proposition 4.3.4: Let G be a compact quantum group and H C G a dual quantum
subgroup. The unique Haar state h € C(G l g S]J\r,)* vanishes on reduced operators
of the form

aogli;, (bl)a11/7;2 (bg) Vi (bn)an,
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where ay € C(SY) C C(G by SF;), and by, € C(G) are such that Ey(bg) = 0 for all
k and if i = ix+1, then E; (ar) = 0.

There exists a unique unital *-isomorphism m.: A, — Cr(G lH S]J\“,) such that
Aom =m. 0N, wherem : A — C(G . g S}) is the isomorphism of Proposition
Proposition 4.5.5.

Proof. Define the state @ := wo X oy € C(G 4 g S¥;)*, where the *-homomorphism
p=n""1:C(Gunu Sy) — A has been constructed in the proof of the full case in
Proposition 4.3.3. Let C C A be the linear span of C(S%), v(C(H)), and all reduced
operators in C(G 4, g SX,), note that C is dense in A by definition. By construction,
the state & satisfies (D\C(SXI) = hS;, wov =hy,and w(c) =0 for c € C(G g Sy)
being a reduced operator. Thus, w satisfies the properties of the state h as stated
in the theorem. Hence, h = & by the density of C. We then will show that @ is
invariant with respect to A, hence @ is the Haar state. To do this we it suffices to
prove that @ is invariant on C. For an element x € C, which is the sum of an element
zo € C(S%) ® C(H) and reduced operators. By construction of & it suffices to show
that A(z) € C® C(G lm S%), as it is done in [FT24, Theorem 3.2].

Since then W = h is the Haar state, and since E is GNS faithful and hy ® hSXr

is faithful on C.(H) ® C,(S};), we obtain that A, is isomorphic to the reduced
C*-algebra C,.(G l g S§;), since it is constructed by the GNS construction with
respect to the Haar state. O

Overall, we can therefore summarise, where A, stands either for the full or the
vertex-reduced fundamental C*-algebra.

Corollary 4.3.5: Let G be a compact quantum group and H C G a dual quantum
subgroup. Then Co(G U g SF;) is isomorphic to the vertez-reduced/full fundamental
C*-algebra Ae of the constructed graph of C*-algebras equipped with conditional
expectations.

We will now use this in the next chapter to compute the K-theory of free wreath
products with trivial amalgamation.
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Chapter V.

K-theory of free wreath products

In this chapter we want to compute the K-theory of free wreath products of compact
quantum groups with the quantum symmetric group S]J\r]. To do so we need to prove
the 6-term exact sequences for the K K-theory of a fundamental C*-algebra and
after this we can directly compute the K-theory of free wreath products. Before
we want to have a look at the vertex-reduced free product and the vertex-reduced
HNN-extension. This chapter is based primarily on the work of Fima on graph of
C*-algebras [Fim13; FF14; FP16; FG18; FG20; FT24].

1. Vertex-reduced free product and HNN-extension

In [FG20; Fim13|, Fima and Germain proved the K K-equivalence of the full free
amalgamated products with the vertez-reduced free amalgamated product, respec-
tively the K K-equivalence of the full HNN-extension with the vertex-reduced one. To
prove this they constructed six-term exact sequences. In [FG18] Fima and Germain
generalised it in the sense of graph of C*-algebras and fundamental C*-algebras.

Indeed as we saw in Example 4.1.7, for the graph consisting of two vertices and one
geometric edge, we obtain as full fundamental C*-algebra the full amalgamated free
product, analogously if one equip this setting with conditional expectations, which are
not GNS-faithfully, then one obtain as vertex-reduced fundamental C*-algebra the
vertez-reduced amalgamated free product. Note that there is also another possibility
if the conditional expectations are GNS-faithful, the edge-reduced amalgamated free
product, introduced by Voiculescu. However it turns out, that this construction is
too “small” in some sense. For the HNN-extension the same can be done.

For this let us introduce their vertex-reduced counterpart, before introducing
Serre’s dévissage process.

We will begin with the vertex-reduced HNN-extension. To do so we will modify
the definition, such that we can “more naturally” define the vertex-reduced HNN-
extension. Recall Example 4.1.7.
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Remark 5.1.1 (HNN-extension): Let A, B be unital C*-algebras, let m;: B — A be
unital faithful *-homomorphism and let E;: A — B be a unital completely positive
map such that Ej, o m, = idg for all Kk = —1,1. The full HNN-extension is the

universal C*-algebra generated by A and a unitary u such that ur_;(b)u* = 71 (b)
for all b € B. We denote it by HNN(A, B, 71, 7_1).

Definition 5.1.2 (Vertex-reduced HNN-extension): The vertex-reduced HNN-extension
C is the unique, up to isomorphism, unital C*-algebra satisfying the following prop-
erties:

(i) There exists a unital *~homomorphism p: A — C and a unitary u € C' such
that up(m_1(b))u* = p(m1(b)) for all b € B and C' is generated by p(A) and w.

(ii) There exists a GNS-faithful unital completely positive map F: C' — A such that
Eop=idy and E(x) = 0 for all x € C of the form = = p(ap)u - - - up(ay)
where n > 1, ax € A and ¢, € {—1,1} are such that, for all 1 <k <n —1,
€x+1 = —¢€k then E_, (ag) = 0.

(iii) If D is a unital C*-algebra with a unital *~homomorphism v: A — D, a unitary
v € D and a GNS-faithful unital completely positive map E': D — A such
that

o vv(m_1(b))v* = v(m (b)) for all b € B and D is generated by v(A) and v.
o Flov=idgand E'(z) = 0forallz € D of the form x = v(ag)v! - - - v"v(ay)
with n > 1, e € {—1,1}, a € A such that, for all 1 <k < n — 1 one has
€x+1 = —€g, then E_ek(ak) = 0.
Then there exists a unique unital *-homomorphism 7 : C' — D such that
vop=vand v(u) = v. Moreover, E' o 7 = E. We denote this C*-algebra by
HNNvert(A, B, T, 7T_1).

The construction of the vertex-reduced amalgamated free product is a little bit
more technical. For this recall notations from Section 2 of Chapter 4.

For two C*-algebras Aj, A2 and a common C*-subalgebra B, we will denote
Ay := Ay xp Ay for the full free amalgamated product. Moreover we assume that we
have conditional expectations Ej: A — B for k = 1,2. We write

r={a € Ay | Ex(a) = 0},
and we denote by (Ky, px, V) the GNS-construction as in Construction 4.2.1, and
recall that K is the orthogonal complement of 7, B in Kj. Now Let
I:={(i1,...,in) € {1,2}" | n > 1 and ix_q # i for all 2 < k < n}

and define for ¢ = (i1,...,4,) € I the Hilbert A;, -module

Ky®K,®..@K  ®A, ,forn>3,

H; =4 K;, ® A, , for n =2,
Aiy , forn=1.
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The left action of A;, on H; is given by

pi, ®id , for n > 2,

Nt Ay, — Ba, (Hy), M=
i Ay = Ba (), {LAZ.1  forn =1,

where Ly, is the left multiplication operator of A;,.
Moreover we set for k,l € {1,2}

Ik,l = {(il,...,’in) el | 1=k, iy :l}
and

Hy = @ H;, Xy = @ it A — Ba,(Hyy).

1€k €1k,

We now define unitaries uy; on Ba,(Hy, Hi)-
Let i = (i1,...,1i,) € I, with 9y = k and 4; = [. For £ € H; we define uy ;£ € H; in
the following way

o If n > 2, write i = (k,4’), where i’ = (ia,...,in) € I;. For & = pp(a)ne @ &,
with a € Ay, and &' € Hy, we define

e ®@¢&',if Eg(a) =0,
UKIE =9\, ) o
N (a)¢, ifae B.

e If n =1 then k =1 and ¢ is empty and £ € A; = Hy;. We define v & =
() = me ® €.

For all k,l € {1,2}, the operator u;; commutes with the right actions of A4; on
Hy, and Hy, and extends to a unitary operator, which we will still denote by
U € BAZ(H;;J, Hr ) such that uj, = Uy,

We now can define the k-vertez-reduced amalgamated free product.

Definition 5.1.3 (k-vertex-reduced): Let k € {1,2}. The k-vertez-reduced amalga-
mated free product is the C*-subalgebra A, C Ba, (Hy ) generated by Ag i (Ag) U
ug 1 A (AR ke © Bay, (Hi)-

By definition of u;; we also have
g Mg ()i = A (b)
for all b € B, which imply the existence of a unique unital *-homomorphism

A ) if a € Ay,
Tt Ay = Ay, mp(a) = { k(@) L=

uj, Mg (@) Uk, if a € Ag
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Definition 5.1.4 (Vertex-reduced free product): The vertex-reduced amalgamated free
product is the C*-algebra obtained by separation and completion of the full free
amalgamated free product Ay = A; *p Ay with respect to the C*-seminorm ||-|| on
Ay defined by

2| := max{[|mi(2)]| , |m2(2)][},
for x € Ay. We denote Ay o B Ao for the vertex-reduced free product.

Note that the details of the construction are not that much relevant for this thesis,
however it is necessary to give a definition. For more details for the vertex-reduced
free product and its properties, see for instance [FG20].

Now we want to quickly describe Serre’s dévissage process for graphs of groups,
which can be done analogue for graph of C*-algebras. This technique will be an
important idea to prove the six-term exact sequence in Theorem 5.2.1.

Remark 5.1.5 (Serre’s dévissage technique): To obtain the fundamental group of
a graph of groups in Bass-Serre theory, Serre described in [Ser77] the so called
dévissage technique, to easily compute the fundamental group. Doing this he proved
that fundamental groups of graph of groups are inductive limit of iterations of
amalgamated free products and HNN extensions.

Start with a connected (finite graph) G and remove an edge e and €, and obtain a
new graph G'. If G’ is still connected, then the fundamental group is a HNN extension
of the fundamental group of the remaining graph. Otherwise if G’ is disconnected,
then the fundamental group is the free amalgamated product of the fundamental
groups of the two connected components.

The same can be proven for graph of C*-algebras, see [FF14; FG18].

2. 6-term exact sequences for K K-theory of a fundamental
C*-algebra

In the following setting we assume that we have conditional expectations, which do
not need to be GNS-faithful.
Recall that a sequence

f1 f2 g} fa

G Go G3 Gy

of groups G, Go, . .. and group homomorphisms f1, fo, ... is called to be ezact at G;
if ker(fi4+1) = im f;. The sequence is called ezact if it is exact at every G;. Note that
every exact sequence is a chain complex, since f;1q 0 f; = 0.

Our main idea to prove the following theorem will be mainly to use Serre’s dévissage
process and induction on the number of edges. Also we need to use the six-term
exact sequences for the free product and the HNN-extension.
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Theorem 5.2.1: For a graph of separable C*-algebras (G, (Aq)qev(g)s (Be)ecE(g))s
where we denote by P, either the full or vertex-reduced fundamental C*-algebra,
we have the following two 6-term exact sequences.

Bocrr o) KEOC, BY=""5 @ i) KKO(C, A)) — KK9(C, P.)

KKl(C, P.) — @pEV(g) KKl(C, Ap)zﬁ*@eeEﬁ-(g) KKl(C, Be),

and
Beer+g) KK (Be, Ol s—— Dpevi(g) KK (4, C) «——— KK°(P.,C)

Sex —Tex

| T

Sex —Tex

KKI(P.,C) _— @pGV(g) KKI(AP,C;% @ee]ﬁ(g) KKI(Be,C).

We will only prove the exactness of the first diagram, since for the second case it is
more or less the same, and does not bring any new aspects.

Before we can prove the theorem, we need to construct the boundary maps, i.e.
the vertical maps. Since this is very technical we will skip the details and try to give
a quick idea how to construct these maps. Details can be found in [FG18].

As done in [FG18] one can construct a unique unital completely positive map
Ea,: Poert — Ap for all p € V(G) such that E4, o A(a) = a for all a € A, and
p € V(G), where \: P — Py is the canonical surjection.

Then we can define a unital completely positive map E, = E oE Angey : Piert = B,
and we will denote the GNS-construction by (K, pe,7.) for all e € E(G). Setting
Re C K. as the Hilbert Bl-submodule of K. of words ending with e, we take the

projection @, from K, into R.. One then can prove that

[Qepe(Aa))] € ICB(Z (Ke)

for all a € P, where [+, ] denotes the commutator. We then define V. = 2Q. — 1 €
Bpr(K.), which fulfils V2 =1, V) =V, and for all £ € P we have [Vope(z)] €
Kpr(Ke). Recalling the definition of Kasparov modules, and K K-groups, we therefore
have an K K-element 49 € K K'(Pyer, BY). Then define

= yeg ®Bg [re_l] € KKI(PVerta Be)
and

Zeg = [)\] ®Pvert :Bg E KKI(P7Be)

58



One then can define the boundary maps 79 by

g in the full
28 KK*(C,P) — KK*T/(C.B,), yre V07 o e onse
Y Py £d , in the vertex-red. case.

Later we will write z, for 29 and z, for z¢.

Let us fix some notation. We will denote P for either the full or the vertex-reduced
fundamental C*-algebra of G. Taking subgraphs # C G we will denote P? for the
full or vertex-reduced fundamental C*-algebra of H. If G has after removing the
geometric edge eg two connected components, we will write V; and V3 for the two
sets of vertices and F; and Es for the sets of edges. Obviously they are both disjoint.
We write 79 for the canonical *-homomorphism A, — P™ for any subgraph H C G.

For all the following propositions, where we want to show that step by step, that
we have indeed exactness, we will use Serre’s dévissage technique, see Remark 5.1.5.
We choose a positive edge eg of the graph G and remove ey and €. Either it is still a
connected graph Gy and the fundamental C*-algebra is a HNN-extension (Case 1) or
it is disconnected in two graphs Gi, Go and thus we have a amalgamated free product
(Case 2).

Proposition 5.2.2: We have the exactness of

sE—rk Zﬂ'*
@eeEﬂg) KKO(07 -Be)z:*> ®p€V(g) KKO(C,AP) *p> KKO(C, P.) .

Proof. We will look at the two cases mentioned above.

Case 1: P is a HNN-extension of PY% and B.,. The set of vertices of Gy and G
are by assumption the same, and we may assume that py = s(eg) = r(eg), by
identifying s(po) = r(po) in spirit of Example 4.1.7. Let z € &, KK°(C, Ap) with
x = @prp such that z € ker(32, 7)), i.e. >, m(zp) = 0 and if y = 37, 70" (),
then we have mg,(y) = 0. Then, the long exact sequence for P seen as an HNN
extension, proven in [Fim13], implies that there exists yo € K K°(C, Be,) such that

(T © Seo) ™ (Y0) — (Mg © 7o) (Y0) =y = 22, ﬂg*(xv). Hence,

Do (Bogugo ® (20, — 55, (40) + 7%, (40)) = 0.
v

Using the exactness for Py as Gy has one edge less, we get that there exists for any
e # ey a Yy such that

> se(ye) = e (Ye) = Dustugo ® (Tug — 55, (Y0) + 72, (40))-
e#eo

Thus,

D selye) = ri(ye) + 55, (o) — 5, (y0) = .
eF#eq
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This proves the exactness in this case.

Case 2: Now P is the amalgamated free product of P, = Py, and P, = Pg, over By,.
Denote by the map 7! : A, — P; the canonical embedding and write v; = s(eg) and
vy = r(ep).

Now let z = &z, be in P, KK°(C, A,) such that 3, 7% (x,) = 0 and moreover let
T; = Gpeym (2,). Obviously we have mg, (1) + 7, (v2) = 0. Then, the long exact
sequence for P seen as an amalgamated free product, as done in [FP16], gives us an
element yo € KK°(C, Be,) such that

(), © Se0)*(Y0) — (T2, © 7eg)*(30) = 21 B 2.

We then define 1 = ©uevy vy — 85, (y0) and T2 = @pevp @y + 75, (y0). We have
> vev; 7" (z;) = 0 for i = 1,2. As the graphs G, Gs have strictly less edges than
G, by inductive arguments on the number of edges there exists for any e # ey a
ye € KKY(C, B.) such that

1 Dx2 = Z Se(Ye) — e (Ye)-
e#eo
Hence we obtain
z =Y 55(ye) = ri(ye) + 55, (y0) — 5y (%0)-
e#eo

Hence also in this case we obtain exactness. O

Proposition 5.2.3: We have the exactness of
®pev (o) KK (C, Ap) 2T, KKC,P) -2 @, KK (C, B,).

Proof. Case 1: Let x € KK°(C, P) such that 49 (z) = 0 for any edge e, in particular
for eg. Using the long exact sequence for P seen as an HNN-extension as in [Fim13],
and since 79 (z) = 0 we get that there exists zg € KK°(C, Py) such that g, (To) = .
For any edges e # eg, one then has 790 (zg) = 79 (7g,(z0)) = 0. Hence by inductive
arguments on the number of edges there exists for any v € V(Gy) = V(G) an element
y, € KK°(C, A,) such that 3", 70" (y,) = z¢. Hence

r=Y (mgy 0 m) (h) = > i (wh)-

v
Case 2: Using that P is the free amalgamated product of P, and P, over B, we
get an element z; € KK°(C, P;) for i = 1,2 such that « = 7§ (z1) + 7§, (x2). For

any edge e of G;, i = 1,2, we have

e (i) = 7E (wg, (23)) = 7E () — 78 (g, (7)) for j # i.
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But since e is not an edge of G;, we have 79 o 715]_ = 0. Hence 7Zi(z;) = 0. Again
by induction we get for any vertex of V3 UV, = V(G) an element y, € KK°(C, A,)
such that x; = > ¢y, 7" (yy) for i = 1,2. Thus we obtain z = 3", 7 (y,). O

Proposition 5.2.4: We have the exactness of
2 s

EB%

KK°(C,P.) -2 @, KK (C, B ==5"@, KK (C, A,)

Proof. Case 1: Let x = @®.z. such that ) _si(ze) — r5(ze) = 0. Then for the
distinguished vertex vg, one has

(mo0) " (520 (Tey)) — (0 )* (2 (e ) = = D (0 )* (5% (we0)) — (m3,) " (e (ey))-
e#eo

Since e is an edge of Gy, and s, and r. are conjugated by a unitary of Py, we have
that their difference is 0 in any K K-group. Thus

(0 ) (5% (en)) = ()" (17, (2e0)) = 0.

Using the long exact sequence for P as an HNN-extension, see [Fim13], we get an
element yo € KK°(C, P) such that 79 (yo) = 2¢,. Now set Z, = ze — ¢ (yo) for any
e # eg. Then

D se(@e) —ri(@e) = ) silwe) — Zs 7 (90)) — e (7 (%0))

e#eo e#eo
+s2, (78, (40)) — 7o, (Ve (%0))

= > si(we) —ri(ze),

e

by the properties of the boundary maps. Hence we get 3-. .. s¢(Zc) — 7 (Ze) = 0.
Again by 1nduct10n there exists an element 3j; € KK°(C, Py) such that for all e # e,
we have 790 (y1) = Z.. Set y; = 75, (1) € KK°(C, P). Then it holds

V4 (Yo + y1) = @0 + 5 o 75, ().

But since ej is not an edge of Gy we have fyego omg, = 0. Thus ’ygo (Yo + y1) = xo.
For e # eg we have 79 (yo + y1) = 79 (y0) + Ze as 790 =~9 o 75, It follows that

’Yg(yo + y1) = xz. and by this the exactness in this case.

Case 2: Note that for any positive edge e, if s(e) € V; then either e € Ej or e = eg

and if r(e) € V, then e € Ej.
Let x = @cx. such that >, si(ze) — 75 (xe) = 0. We can rewrite it as

> selwe) —re(we) + 58, (ze,) =0 € P KK'(C, Ap)

ecEf pEVL

61



and
D siwe) = ri(we) — 75 (2ey) =0 € @) KK'(C, Ap).
eeEgL peEV2

We have 7} (ze,) = — ZeeEj (W;(e) 08¢)*(ze) — (m}(e)ore)*(ze). Since s, and r, are

conjugated in P; because e is an edge of G1, we obtain that it must be 0. Analogously
we have 7712,2 (ze,) = 0. Hence by using the long exact sequence for P as a free product
of P, and P», there is an element yo € K K°(C, P) such that %go (yo) = xe,. Now for
all edges e # eg we set Te = x. — 79 (yo). Then

D se(@e) —riEe) = Y silwe) —ri(we) — | D siond (yo) =i o (vo)

eeE;r eEEfr eEEf’

By the properties of the boundary map 79 we have that

S ostond+siond = > riord=0
eEEfr eEEl+

using the fact that the sequence is a chain complex (see also at the begin of the proof
of Theorem 5.2.1). Hence we obtain

Z $e(Te) — 1o (Ze) = Z se(Te) —18(2e) + SZO (Tey) = 0.

ecE;f ecE;f

In the same way we get ZeeE; s¥(xe) — ri(ze) = 0. Therefore by induction again,
there exists for i = 1,2, an element y; € KK°(C, P;) such that for all e in Ej",
18 (yi) = T
We now set y = yo + 7, (y1) + 7g,(y2) in KK°(C, P). Then by construction we
have
Vo (Y) = Teg + 78 0 75, (1) + 75 0 G, (Y2) = ey

as fyego omg, = 0 since eg is not an edge of G; and Gs.
For e € F{ we have

¥ (y) = ¢ (o) + 78" (1) +0
as e is not an edge of Go. Hence 79 (y) = 79(yo) + Ze = .. The same is true for an
edge in Fs.
This completes the proof. ]

Proof (of Theorem 5.2.1). By Bott-periodicity for K K-theory, it is equivalent to
prove that the following chain complex is exact

2 2

— P KK (C,B.) =5 DKK*(C.A,) =" KK*(C,P) %% (DKK(C,B.) —
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Note that at the beginning of the proof of [FG18, Theorem 4.1] it is proven that this
is indeed a chain complex. In particular one has to use properties of the boundary
maps, we did not mention.

The exactness of the chain complex were done in the last propositions. O

The following corollary out of Theorem 5.2.1 is also proved in [FG18].

Let (G, (Ap), (Be), (s¢)) and (G, (A}), (Bg), (s.)) be graphs of unital C*-algebras
with conditional expectations E? respectively (ES). We assume that there are
unital *-homomorphism v,: 4, — A;D and ve: B, — B such that v, = vz and
Vg(e) © Se = s, o ve. Denoting P and P’ for the full fundamental C*-algebras with
unitaries u. and u., we obtain by using the relations for the maps v, and v, and the
universality of P, respectively P’, that there exists a unique unital *~homomorphism
v: P — P’ such that

V|A,, =vp, viu.) =u, forallp e V(G),e e E(G).

Corollary 5.2.5: If the maps vy, v. are K-equivalences such that
(E2) 0 vg(e) = Vs(e) © B2
forallp e V(G) and e € E(G), then v: P — P’ is a K -equivalence.

Recall the Five Lemma: Let A, A’,B,B’,..., E, E' be abelian groups and we have
the following diagram

A B C D E
A
A B’ C’ D’ E'

If the rows are exact and every square commutes, then C' — C’ is an isomorphism.

Note that v: P — P’ is a K-equivalence if and only if KK (D, P) is isomorphic to
KK(D,P') and KK(P, D) is isomorphic to KK (P’, D) via the by v induced map
for all unital C*-algebras D.

Proof (of Corollary 5.2.5). We will use Theorem 5.2.1 and the Five Lemma men-
tioned above. Recall the established maps in the 6-term exact sequences.
By the first 6-term exact sequence we have the following diagram with exact rows

@D KK(D,B) — @pKK(D,Ap) — KK(D,P) — & KK'(D,B.) — @pKKl(D,Ap)

1 D ®[vel 1 D B[] 1 -el] 1 D ®vel 1P - -
@J@K(D,Bé) — @p;‘(BK(D,I;l;) — KK(D,P") — @J@{%D,Bg) — @p[g?(l(DfA;)

We need to prove that for any unital C*-algebra D the squares are commutative.
The first and last square are obviously since we assumed, that v 0 sc = s, 0 Ve.
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The second square from left is also obvious, since by universality of v we have that
voir=1ouw, for all p € V(G), where ¢,/ are the canonical embeddings A, C P
respectively A;, C P'.

We are done by proving that the third square is commutative. The commutativity
of the square is equivalent to the equality z. ® [ve] = [V] ® 2., € KK (P, B.) where
2e € KKY(P,B.)and 2z, € KK'(P', B.) as constructed for the proof of Theorem 5.2.1.
By the assumption (E7) o vy = vy o EZ, which gives us an Hilbert C*-module
isomorphism K, ® B, = K/, where K., K| are the Hilbert C*-modules we construct
for the construction of the boundary maps above. Finally, this implement an
isomorphism between the Kasparov modules represented by z. ® [v.] and [v] ® z..

Thus by the Five Lemma, we have KK (D, P) = KK (D, P') for all unital C*-
algebras. Analogously one shows the same for KK (P, D) = KK (P', D) while using
the second six-term exact sequence. Hence v is a K-equivalence. U

3. K-theory of free wreath products

We are now in a position to prove the other main result of this thesis, namely we want
to explicitly compute the K-theory of free wreath products of compact quantum
groups with SJ;. As done in [FT24] we need to use Theorem 5.2.1. First let us
introduce the notion of K-amenability for compact quantum groups.

Qeﬁnition 5.3.1 (K-amenable): Let G be a compact quantum group. We say that
G is K-amenable if the canonical surjection A\: C(G) — C,(G) from the full to the
reduced C*-algebra is a K K-equivalence.

A useful equivalence is the following, proven by Vergnioux in [Ver04].

Proposition 5.3.2: Let G be a compact quantum group. Denote by e: C(G) — C
the map defined by e(ug;) = 6i; for all a € Irr(G). We call this map counit or

trivial representation of G. Then G is K-amenable if and only if there exists
a € KK(Cr(G),C) such that

A @c, (@) a = [e] € KK(C(G),C).

Now let us quickly mention what the K-theory of S]J{, is. It was proven by Voigt
in [Voil7].

Proposition 5.3.3: Let N > 4. Then the quantum permutation group SJJ{, is K-
amenable and

Ko(C(S)) = ZW-D"* and K1 (C(S}) = Z.

Generators for the Ko-group are given by the projections [1], [ui;] € Ko(C(SR)) for
1<i,j<N-L
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Remark 5.3.4: Note that for N < 3, we have Co(Sy) = C(Sy) = CN'. Thus
Ko(C(Sy)) = ZN' and K;(C(Sy)) = 0.

Theorem 5.3.5: For any compact quantum group G and integer N € N we have,
Ko(Co(G 1 SY)) = Ko(Ca(G)) © 2 & Ko(Cu(S3))/ZN
o [Ko(Co(G)FN' /22N> if N #3
| Ko(Cu(@)oN /73 ifN=3"
K(Cu(G L 53)) = K1 (Co(G) ™Y @ Ka(Cu(SF)
o [EKi(CoG)*N a2 if N >4

T KL (Gl (G))EN ifN <3’
where Co(G) denotes either the reduced or full C*-algebra.
Proof. Consider the graph of C*-algebras we constructed in Section 3 of Chapter 3.
Recall that we can equip both graphs of C*-algebras with conditional expectations.

We need to use the first 6-exact sequence of Theorem 5.2.1, where we choose

C = C. We denote S for the map }_ s} — ;. Moreover we assume H to be trivial.
We obtain by definition of Ky and K; the following diagram

ZV' —5—— (Ko(Co(@) ® Z) @ Ko(Ca(S5)) —— Ko(Ca(G . SY)

T |

K1 (Co(G L S3)) +—— (Ka(Ca(@) @ ZY°) © K (Cu(S) +——5—— 2.

Let {[ej] | 1 < j < N} be a basis of Ko(C") = Z", where (e;) is the canonical basis
of CV. Clearly {[1®e¢j] | 1 <j < N} C Ko(Co(G) ® CV) is linearly independent
and hence for all 1 < j < N also {[1 ® e;] — [u;i]} C Ko(C(G) @ CN) @& Ko(Ce(SH))
is also linearly independent. By this clearly the map

53— 2V = (Ko(Ca(©) @ ZV) @ Ko(Ca(SH)). [e] = [1© ] — i
is injective, therefore the map
S: (ZN)PN 5 (Ko(Co(@) @ 2N ) @ Ko(Co(S3)), o] = [1 @ €] — [

where [e;;] denotes the class of the element [e;] in the i-th copy of (ZV)®VN| since
again the elements of the form [1 ® e;;] for 1 <i,j < N are linearly independent.
The same holds for the elements of the form [1 ® e;;] — [u;s].

Since the image of the second upper arrow is equal to the kernel of the right
vertical arrow, and the image of the right vertical arrow is the same as the kernel as
the first lower arrow by exactness, we obtain that

(Ko(Ca(G)) ® ZY*) @ Ko(Co(S5) = Ko(Ca(G 1 S3))
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is surjective and by using again exactness we get the isomorphism
(Ko(Ca(G)) @ ZY*) @ Ko(Co(S5)/ Tm(S) = Ko(Ca(G 1. SE))-

By identifying [1®e;;] with [u;;], we obtain Im(S) = Z¥ * and therefore the statement
about K follows directly by Proposition 5.3.3 and Remark 5.3.4.

For the Kj-isomorphism note that S has trivial image by definition, and via an
analogue statement as above one shows surjectivity of the map

(K1(Co(6) @ ZN) & Ky (Co(SY)) = K1 (Co(G 1 SF))-

The kernel is then also trivial since the image of S is trivial, and by this the
isomorphism. O

Corollary 5.3.6: The quantum hyperoctahedral group H;{, is K-amenable and

ZN* N for N=1,2,3
+ ~ ) ) b} )
Ko(C(Hy)) = {ZzN2—2N+2 for N > 4
10, forN=1,2,3
Kl(C(H]*\})) &~ .
Z, for N >4

Proof. By Proposition 3.5.14, we know that H]T, = Z//\QZ i SJJ{,. Moreover by
Lemma 3.5.13 we have Z/27Z = C*(Z/2Z) = C? and

Ko(C?) =72, K(C? = {0}.

By this the statement follows obviously. O

—

Corollary 5.3.7: Let G be a compact quantum group, then G, SX, is K-amenable if
and only if G is K-amenable.

Proof. This follows directly from Theorem 5.3.5. O

More generally we can prove the same for the amalgamated free wreath product.
Recall the notations of Section 3 of Chapter 4.

Proposition 5.3.8: Let G be a compact quantum group, and H be a dual quantum
subgroup. Then G is K-amenable if and only if G 4 g S]J\r, is K-amenable.

o —

Proof. Assume that Gl g S¥ is K-amenable, i.e. there exists « € KK(A,,C)
such that [A] ® 4, @ = [¢], where €: A — C is the counit of the free wreath prod-

uct, by Proposition 5.3.2. We show that G*# is K-amenable, since then also
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G is K-amenable. Denote by 7: C(G*#N) — A the canonical inclusion. By tak-
ing restrictions and using Proposition 4.3.4, we obtain a unital *-homomorphism
7. Cp(G*HN) — A, such that m.: M = Aox, where X: C(G*#N) — C.(G*H#N) is
the canonical surjection. By defining 3 := [m,] ®4, @ € KK (C.(G*2N),C), we have
by functoriality of the Kasparov product

Nep=Nemea=[moN®a

=enl®a=[r®[N &

=[] ®[e] =[eon] =[¢],
where &': C(G*H#N) — C is the counit. Hence by Proposition 5.3.2 we get that Gl
is K-amenable. Thus G is K —amAenable. R

For the other direction, let G be K-amenable, then also H [ as dual quantum

subgroup is K-amenable. By Proposition 5.3.3 we know that S]J(, is K-amenable.
Since we equipped the graph of C*-algebras for the free wreath product for the full

and reduced case with conditional expectation, we are in the case of Corollary 5.2.5.

One then can apply [FF14, Theorem 5.1] to prove that G . g Sp is K-amenable,
since our graph is finite. This proves the equivalence. ([l

4. Questions

To end this bachelor thesis, we would like to address some questions that might arise
after reading.

Question 5.4.1 (Free wreath product): For a compact quantum group G we did de-
fine the free wreath product G S]T, with S’j{,. In a natural way one can ask if one
can generalise this somehow.

Indeed one can see S]J\r, as the quantum automorphism group, [Wan98|, of CN with
the trace 7 corresponding to the uniform probability measure on N points, this
defines us a so called §-form. We then write Sy = Qut(CY,7). So we might think
about a generalisation, where we take another quantum automorphism group instead
of Sj{,, and it could be interesting to try to compute the K-theory of this free wreath
product with another quantum automorphism group. See for instance [FP16] for the
construction of the free wreath product with a quantum automorphism group.

Another question can arise from Theorem 5.3.5.

Question 5.4.2 (Amalgamation): Looking at the proof of this mentioned theorem,
we see that we assumed the dual quantum subgroup to be trivial. Thus it might
be interesting to compute the K-theory for a free wreath product with non-trivial
amalgamation, since in [FT24] they have at most considered special cases.

A question in a more general context could be the following.
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Question 5.4.3 (S]"'\} and Hf\}) How we can see, the computation of the K-theory of
H; but also the K-theory of S3; in [Voil7] is quite complex and one needs a lot of
different structure and theory. However both of them are easily described. Therefore
it might be interesting to search “easier” ways to compute the K-theory of them, as
this could possibly also show other structural properties of S]T, and H]T,
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