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Introduction

In this Bachelor thesis, we aim to compute the K-theory of the free wreath product
of compact quantum groups with the quantum symmetry group S+

N , as done 2024 by
Fima and Troupel in [FT24]. By this we can also explicitly compute the K-theory of
the quantum hyperoctahedral group H+

N .
In 1936 Murray and von Neumann introduced von Neumann algebras as “rings

of operators”, [Mur90]. Gelfand and Naimark, in 1943, formalised the concept
of C∗-algebras as an abstraction of subalgebras of the algebra B(H) of bounded
linear operators on a Hilbert space H, [GN43]. Since then the theory of operator
algebras, consisting of both of them, has been a fruitful field in functional analysis.
As they often come with a non-commutativity, they can be used to describe a
physical quantum system. Overall, the theory of C∗-algebras provides us with a
“machinery” that allows us to define and understand “non-commutative mathematics”,
for example such as non-commutative topology and non-commutative geometry, since
commutative C∗-algebras are isomorphic to C(X) for some compact set X by the
Gelfand-Naimark Theorem.

In the theory of C∗-algebras, K-theory serves as an invariant theory. In 1961
Atiyah and Hirzebruch introduced the topological K-theory [AH61], but it quickly
became clear that basic definitions of K-theory are also useful for rings in a more
general way. By this, one obtained the algebraic K-theory and the K-theory of
C∗-algebras, where the last is more a kind of analogue of the topological K-theory
of Atiyah and Hirzebruch. K-theory is useful to determine whether C∗-algebras are
not isomorphic to each other.

The theory of “quantum group” will be important in this thesis. The term
“quantum group” does not have a single definition but refers to a variety of similar
objects, where the common idea underlying these objects is to extend the notion of a
group to the realm of non commutative geometry. There are two main approaches
to this subject: one is purely algebraic, while the other is more analytical. Our main
approach will be mostly analytical via the notion of compact quantum groups, or
“compact pseudo groups” which was first introduced in [Wor87] by Woronowicz in
1987 and then was further developed by him in [Wor98]. As Pontryagin developed a
duality theory for (locally) compact abelian groups in [Pon34], it turns out that the
Pontryagin duality theory on compact quantum groups is a kind of generalisation,
since the classical duality fails for non-abelian compact groups. This can somehow
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be seen as the starting point of Woronowicz. For this one has to look at the
representation theory of compact quantum groups.

The first examples of such quantum groups came mostly by “liberation”, i.e.
dropping the commutativity and by “deformation” of Lie algebras, such as SUq(2),
where we deform commutativity. Also discrete groups will give us examples, as we
will see. However a well-known example for liberation is the quantum symmetry
group S+

N , introduced 1998 by Wang in [Wan98], which can be seen as a generalisation
of the space of continuous functions on the symmetric group SN . Earlier in 1995
Wang also introduced the quantum versions of the orthogonal group ON and the
unitary group UN in [Wan95].

Another important concept in this thesis is the free wreath product by the quantum
symmetric group. Classically, the wreath product of a group G by Sn, denoted G ≀Sn,
is defined using the natural action of SN on N copies of G. In analogy to algebraic
group theory, Bichon defined the free wreath product of compact quantum groups
with the quantum symmetric group S+

N in [Bic04]. The free wreath product with
amalgamation was then defined by Freslon, [Fre23].

For a long time, it was unclear how operator algebras of this construction of the
free wreath product behave, until they were described by Fima and Troupel in [FT24]
in 2024. To achieve this, they used graphs of C∗-algebras, which proved to be an
effective tool, in full analogy to the Bass-Serre theory for algebraic groups, where
graphs of groups were considered. To compute the K-theory of the free wreath
product, they also used methods from Kasparov’s KK-theory. As a special case,
they also determined the K-theory of the free hyperoctahedral quantum group H+

N .
As an overview of the chapters, the following will serve:

In the first chapter, we want to review the basics regarding C∗-algebras and
introduce important knowledge regarding K-theory of C∗-algebras. We will refrain
from proofs in this chapter but will refer to sources.

The second chapter will focus on Kasparov’s KK-theory as a kind of generalisation
of K-theory. A theory that offers many technical hurdles and obstacles but still
yields fruitful results. Here, we want to consider KK-theory as a kind of extension
of K-theory of C∗-algebras. Many definitions must be formulated particularly at
the beginning. The goal of this chapter will be to understand what the KK0 and
KK1 groups are and what properties they possess. KK-equivalence will also be
considered.

In the third chapter, we want to look at compact quantum groups according to
Woronowizc [Wor87; Wor98] and their representation theory. A compact quantum
group is understood as a unital C∗-algebra A equipped with a comultiplication
∆: A → A ⊗ A fulfilling certain properties. These should be seen as a kind of
generalisation of compact groups, even though they are not groups themselves. To
understand these and introduce concepts of duality, such as Pontryagin duality
for abelian groups, it will show, that it is useful to look at representations. In
particular, we will introduce dual discrete compact quantum groups. However, it
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will also be shown repeatedly that it makes sense to look at some kind of algebraic
approach to compact quantum groups, which is done within the theory of Hopf
∗-algebras. Moreover we introduce the free product and the free wreath product
(with amalgamation) of compact quantum groups.

The fourth chapter will be devoted to the theory of graphs of C∗-algebras. The
idea will turn out to be a kind of quantum version of classical Bass-Serre theory. We
will introduce concepts such as the fundamental C∗-algebra. Essentially, Chapter four
will be based on [FF14], which first introduced the theory of graphs of C∗-algebras.
Moreover we want to find a way to express the free wreath product as a fundamental
C∗-algebra.

In the final chapter, we want to focus on the main results. First, with the help of
KK-theory, incorporating the theory of graphs of C∗-algebras, we want to prove the
following two 6-term exact sequences, as done in [FG18].

Theorem A. The following 6-term exact sequences hold,

⊕
e∈E+(G)KK

0(C,Be)
⊕

p∈V (G)KK
0(C,Ap) KK0(C,P•)

KK1(C,P•) ⊕
p∈V (G)KK

1(C,Ap)
⊕

e∈E+(G)KK
1(C,Be),

∑
s∗
e−r∗

e

∑
s∗
e−r∗

e

and⊕
e∈E+(G)KK

0(Be, C) ⊕
p∈V (G)KK

0(Ap, C) KK0(P•, C)

KK1(P•, C) ⊕
p∈V (G)KK

1(Ap, C) ⊕
e∈E+(G)KK

1(Be, C).

∑
se∗−re∗ ∑

se∗−re∗

Then, we want to use these to compute the K-theory of the reduced and full
compact quantum group as done 2024 in [FT24].

Theorem B. For any compact quantum group G and every integer N ∈ N we have,

K0(C•(G ≀∗ S+
N )) ∼= K0(C•(G))⊗ ZN

2 ⊕K0(C•(S+
N ))/ZN2

∼=
{
K0(C•(G))⊕N2

/Z2N−2 if N ̸= 3
K0(C•(G))⊕N2

/Z3 if N = 3
,

K1(C•(G ≀∗ S+
N )) ∼= K1(C•(G))⊕N2 ⊕K1(C•(S+

N ))

∼=
{
K1(C•(G))⊕N2 ⊕ Z if N ≥ 4
K1(C•(G))⊕N2 if N ≤ 3

,

where C•(G) denotes either the reduced or full C∗-algebra.

At least, we want to mention some applications and compute some explicit examples.
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Chapter I.

Preliminaries

In this chapter we review basic notions and definitions we need in this bachelor thesis.
We will start this chapter with an introduction to C∗-algebras, followed by an small
introduction to the K-theory of C∗-algebras.

1. C∗-algebras
In the topic of operator algebras C∗-algebras are one of the main actors beside the
von Neumann algebras. This section is mainly based on [Bla06, Ch. 2] and [LVW20],
where also all proofs can be found.

Definition 1.1.1 (C∗-algebras): (i) A Banach algebra A is a normed C-algebra,
which is complete and its norm is submultiplicative, i.e. ∥xy∥ ≤ ∥x∥ ∥y∥. A
Banach ∗-algebra A is a Banach algebra with an involution ∗, i.e. an antilinear
map ∗ : A→ A such that (x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ A.

(ii) A C∗-algebra is a Banach ∗-algebra A satisfying the C∗-identity ∥x∗x∥ = ∥x∥2.
If A has a unit with respect to the multiplication, we call A unital.

(iii) Let A be a C∗-algebra and let B ⊆ A ∗-subalgebra, i.e. B is closed under
addition, (scalar-) multiplication and involution. B is called C∗-subalgebra if it
is norm-closed.

(iv) Let A,B be C∗-algebras, we call a map φ : A→ B a ∗-homomorphism, if φ is
linear, multiplicative and if φ(x∗) = φ(x)∗ for all x ∈ A.

We first want to look at some simple examples, before we collect some of the main
results for C∗-algebras.

Example 1.1.2: (i) Let X be a compact Hausdorff space, then the space of contin-
uous function

C(X) := {f : X → C | f is continuous}
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is a unital C∗-algebra with pointwise addition and multiplication and the
supremum norm ∥·∥∞. As involution we choose f∗(x) = f(x) for all x ∈ X
and for all f ∈ C(X).

(ii) Any norm closed ∗-subalgebra of B(H) is a C∗-algebra, where B(H) denotes
the bounded linear operators on a Hilbert space H. For example the space of
compact operators K(H) is a norm closed ∗-subalgebra of B(H).

By analogy with B(H) for some Hilbert space H, one defines the following in the
case of C∗-algebras.

Definition 1.1.3: Let A be a unital C∗-algebra.

(i) An element p ∈ A is called projection if and only if it is self adjoint and
idempotent, i.e. p = p∗ = p2.

(ii) An element s ∈ A is called isometry if and only if s∗s = 1.
(iii) An element u ∈ A is called unitary if and only if uu∗ = u∗u = 1.
(iv) An element v ∈ A is called partial isometry if and only if vv∗v = v.
(v) An element x ∈ A is called normal if and only if xx∗ = x∗x.

As done in [LVW20; Bla06] one can equip C∗-algebras with some order structure
“≤”. This order structure is naturally preserved by ∗-homomorphisms. As a kind of
generalisation one defines (completely) positive maps.

Definition 1.1.4 ((Completely) Positive maps): Let A and B be C∗-algebras and
ψ : A→ B be a linear map.

(i) An element x ∈ A is called positive if x is self-adjoint and the spectrum
sp(x) ⊆ [0,∞), we write x ≥ 0. Moreover we write x ≥ y if x− y ≥ 0.

(ii) The map ψ is called positive if for all x ∈ A with x ≥ 0, we have ψ(x) ≥ 0.
(iii) The map ψ is called completely positive if the induced maps

ψk : Mk(A)→Mk(B), (aij) 7→ (ψ(aij))

are positive for all k ∈ N.

Normally we will work with unital C∗-algebras, but there also exist non-unital C∗-
algebras, such as the compact operators on some Hilbert space, but they always
possess at least an approximate unit.

Definition 1.1.5 (Approximate units): Let A be a C∗-algebra, and I ⊆ A a subset.
An approximate unit for I is a net (uλ)λ∈Λ ⊆ I such that

(i) 0 ≤ uλ and ∥u∥λ ≤ 1 for all λ ∈ Λ,
(ii) if λ ≤ µ then uλ ≤ uµ,

2



(iii) we have uλx→ x and xuλ → x for all x ∈ I.

If A has a countable approximate unit, then A is called σ-unital.

There is also a way to embed any C∗-algebra in the maximal unital C∗-algebra
containing the C∗-algebra itself as an essential ideal, which will be the so called
multiplier algebra.

Definition 1.1.6 (Multiplier algebra): Let A be any C∗-algebra. A double centraliser
is a pair (L,R) of bounded linear maps on A such that aL(b) = R(a)b for all a, b ∈ A.
The set of all double centralisers is called multiplier algebra, and is denoted by M(A).

A tool we will need are the so called conditional expectations, which are in some sense
a non-commutative generalisation of conditional expectations in classical probability
theory.

Definition 1.1.7 (Conditional Expectations): Let A be a unital C∗-algebra and B ⊆
A a unital C∗-subalgebra. A linear, positive, surjective and unital map φ : A→ B
satisfying φ ◦ φ = φ is called conditional expectation.

The following theorem states that all commutative C∗-algebras are isomorphic to
continuous functions on some compact set.

Proposition 1.1.8 (Gelfand-Naimark Theorem): Let A be a unital C∗-algebra, then
is A commutative if and only if there exists a compact Hausdorff space X with
A ∼= C(X).

Out of this Theorem of Gelfand and Naimark we get that the theory of commutative
C∗-algebras corresponds to topology, therefore we may view the the theory of
noncommutative C∗-algebras as a “noncommutative topology”.

One very powerful tool is the continuous functional calculus.

Proposition 1.1.9 (Continuous functional calculus): Let A be a C∗-algebra and x be
a normal element in A. There is an isometric ∗-isomorphism

Φ: C(sp(x))→ C∗(x, 1) ⊆ A

mapping Φ(id) = x and Φ(1) = 1, where sp(x) denotes the spectrum of x, and
C∗(x, 1) denotes the norm-completion of the set of all noncommutative polynomials
in x and x∗.

For non-commutative C∗-algebras we also obtain an analogue of the Gelfand-Naimark
Theorem. To do this we have to look at the GNS-construction.

Definition 1.1.10 (State and Representation): Let A be a C∗-algebra.

(i) A positive linear functional φ : A→ C with ∥φ∥ = 1 is called state.
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(ii) Let H be a Hilbert space. A ∗-homomorphism π : A → B(H) is called a
representation of A on H. It is called cyclic if and only if there exists x ∈ A
such that π(A)x = H. We say that x is a cyclic vector.

Proposition 1.1.11 (Gelfand-Naimark-Segal): Let A be a C∗-algebra and φ : A→ C
be a state. Then there exist a Hilbert space Hφ, a representation πφ : A → B(Hφ)
and a cyclic vector ξφ, such that φ(a) = ⟨πφ(a)ξφ, ξφ⟩ for all a ∈ A.

We often call the triple (Hφ, πφ, ξφ) the GNS-construction of φ.
As a consequence we get the following main theorem for noncommutative C∗-

algebras.

Corollary 1.1.12 (Second Gelfand-Naimark Theorem): Let A be a C∗-algebra, then
it possesses a faithful representation π : A→ B(H), i.e. injective representation, for
some Hilbert space H. Thus A is isomorphic to some C∗-subalgebra of B(H).

In the following we want to construct universal C∗-algebras which are prescribed
by a set of generators E and a relations R ⊆ P (E), where P (E) is the set of
noncommutative polynomials in elements in E. For more details have a look at
[LVW20, Chapter 6].

Construction 1.1.13: Let I be some index set and E = {xi | i ∈ I} be a set of
generators. Define P (E) as the set of noncommutative polynomials in elements of E
and let R ⊆ P (E) be a set of relations. Denote by I(R) the two-sided ideal generated
by the relations.

The quotient A(E|R) = P (E)/I(R) is the universal ∗-algebra generated by E and
R.

This construction leads us to the following definition, where we construct the universal
C∗-algebra by choosing a suitable norm, as we will define.

Definition 1.1.14: Let everything be such as in Construction 1.1.13.

(i) We call a map p a C∗-seminorm if and only if it is a seminorm and fulfils
p(x∗x) = p(x)2. Define

∥x∥ := sup{p(x) | p is a C∗-seminorm on A(E|R)}.

(ii) If ∥x∥ < ∞ for all x ∈ A(E|R) then the universal C∗-algebra by E and R
defined by

C∗(E|R) := A(E|R)/{x ∈ A(E|R) | ∥x∥ = 0}∥·∥

exists.
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It is necessary, when having such a set of generators E and relations R, to check
whether the universal C∗-algebra exists and if it is not trivial. To show that it is not
trivial, you often use the following universal property for universal C∗-algebras.

Proposition 1.1.15 (Universal property): Let E = {xi | i ∈ I} be a set of generators
and R ⊆ P (E) a set of relations, such that the universal C∗-algebra exists. Let B
be a C∗-algebra containing a subset E′ = {yi | i ∈ I}. If the elements in E′ satisfy
the relations in R, then there exists a unique ∗-homomorphism φ : C∗(E|R) → B
mapping xi to yi for all i ∈ I.

2. K-theory of C∗-algebras
In this section we want to briefly introduce the basic definitions and properties of
K-theory of C∗-algebras. This section is mainly based on [Bla06].

The K-theory of C∗-algebras is used to distinguish two given C∗-algebras. As one
will see we will have two K-groups, K0 “counts” in some sense the projections, while
K1 “counts” in some sense the unitaries.

Definition 1.2.1: Let A be a C∗-algebra. Two projections p, q ∈ A are called Murray-
von Neumann-equivalent if there exists v ∈ A such that v∗v = p and vv∗ = q, write
p ∼ q. This defines an equivalence relation. We then set

H(A) = {[p] | p ∈M∞(A) is a projection },

where we denote M∞(A) = ⋃
n∈NMn(A) with canonical embedding

Mn(A)→Mn+1(A), x 7→
(
x 0
0 0

)
,

and where [p] is the equivalence class with respect to Murray-von Neumann-equivalence.

Remark 1.2.2: (i) Indeed one can check, that we also can use instead of Murray-
von Neumann equivalence the notion of unitary equivalence or homotopy.

(ii) Moreover H(A) is an abelian semigroup via [p] + [q] = [p′ + q′], where p ∼ p′,
q ∼ q′ and p′q′ = 0.

As mentioned H(A) defines for a C∗-Algebra a semigroup, we now want to get a
group by using the so called Grothendieck construction.

Definition 1.2.3 (The K0 group): Let A be a unital C∗-algebra, and consider the
diagonal ∆ = {([p], [p]) | [p] ∈ H(A)}. Then define

K0(A) := G(H(A)) := H(A)×H(A)/∆

as the K0-group of A. Write [p]− [q] for an element in K0(A).
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We now want to collect some basic properties about the functor K0, which are
useful to compute K0 for concrete examples.

Proposition 1.2.4: Let A be a unital C∗-algebra. Then the following properties for
K0 hold

(i) The map

K0 : {unital C∗-algebras} → {abelian groups}

is a covariant functor.
(ii) The functor K0 is additive, i.e. K0(A⊕B) ∼= K0(A)⊕K0(B).
(iii) The functor K0 is finitely stable, i.e. K0(Mn(A)) ∼= K0(A).
(iv) The functor K0 is homotopy invariant, that means if α is homotopic to β,

then K0(α) = K0(β) and if A is homotopic to B, then K0(A) ∼= K0(B), where
α, β : A→ B are unital ∗-homomorphisms.

In the case of non-unital C∗-algebras, one also can construct a K-theory, which
will extend the definition of the unital case.

Remark 1.2.5: Let A be a not necessarily unital C∗-algebra. Then we can define
K0(A) by setting K0(A) := kerK0(σ) ⊆ K0(Ã), where Ã denotes the minimal
unitalisation of A and

σ : Ã→ C, (x, λ) 7→ λ.

One can easily verify, that for a unital C∗-algebra A the definitions of K0(A) and
K0(A) coincide.

Instead of defining K1 by equivalence relations on the unitaries (see for instance
[Bla98, Ch. 8]), we define K1 via the suspension functor.

Definition 1.2.6 (Suspension functor): (i) Let A be a C∗-algebra, then define the
suspension of A as SA := C0((0, 1), A), where C0((0, 1), A) is the C∗-algebra
of continuous functions f : (0, 1)→ A such that f(0) = f(1) = 0.

(ii) Let A,B be C∗-algebras and ϕ : A→ B be a ∗-homomorphism, then define

Sϕ : SA→ SB, (Sϕ)(f)(t) = ϕ(f(t)).

It is obviously a ∗-homomorphism. It is clear that S defines a covariant functor.

We now can define the K1-group.

Definition 1.2.7 (The K1 group): For a C∗-algebra A, we define by K1(A) = K0(SA)
the K1- group of A.
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It is also possible to define Kn(A) := K0(SnA).

Remark 1.2.8: (i) All properties for K0 from Proposition 1.2.4 also hold for K1.
(ii) By Bott periodicity ([Bla98, Ch. 9.4]) there exist a natural isomorphism

Kn+2(A) ∼= Kn(A), therefore our K-theory for C∗-algebras is fully described
by K0(A) and K1(A).

By using Bott periodicity we also obtain the following result, the so called six-term
cyclic sequence.

Proposition 1.2.9: Let 0 → I → A → A/I → 0 be a exact sequence of C∗-algebras,
then the following six-term cyclic sequence is exact

K0(I) K0(A) K0(A/I)

K1(A/I) K1(A) K1(I).

K0ι K0π

K1π K1ι

The maps K0(A/I) → K1(I) and K1(A/I) → K0(I) are constructed by using the
Bott maps, see [Bla98, Ch. 9.4].

It turns out that using 6-term exact sequences in general is a useful tool to compute K-
theory, as we will also see later in this thesis, as we will construct one for KK-theory
in the setting of graph of C∗-algebras.

To conclude we want to give some simple examples for the K-theory of some
C∗-algebras.

Example 1.2.10: (i) Let A = CN for some N ∈ N, then K0(A) ∼= ZN . This follows
directly from the fact that K0 is additive and since H(C) = N0. Indeed two
projections in MN (C) are Murray-von Neumann equivalent if and only if the
rank is equal.

Moreover deduce K1(A) = {0} again by the additivity of K1 and the
fact K1(C) ∼= K0(SC) = K0(C0((0, 1),C)). The only continuous projection
C0((0, 1),C) is the trivial one.

(ii) From (i) we can also conclude for all N ∈ N that K0(⊕N
i=1Mni(C)) = ZN and

K1(⊕N
i=1Mni(C)) = {0}.

(iii) One can easily construct a homotopy A ∼h C([0, 1], A). By the homo-
topy invariance of K0 and K1 we obtain that K0(C([0, 1], A)) = K0(A) and
K1(C([0, 1], A)) = K1(A). Especially K0(C([0, 1])) = Z and K1(C([0, 1])) =
{0}.
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Chapter II.

KK-theory of C∗-algebras

In this chapter we want to develop basics of Kasparov’s KK-theory, which will
be mainly seen as a generalisation of the classical K-theory. The theory is more
technical, which is why we must first introduce basic concepts..The main idea, as in
K-theory, will be that we choose a suitable set and then define equivalence relations
on it.

We will mainly follow [Bla98] and [JT91], which both are based on the original
article of Kasparov from 1981 [Kas80].

1. Kasparov modules
First we want to define the notion of Z/2Z-graded C∗-algebras and Hilbert-C∗-
modules to then define Kasparov modules. This section is only used to introduce the
necessary concepts and definitions. Therefore there will be no proofs, which can be
mostly found in [Bla98; JT91].

For this chapter let A and B be C∗-algebras.

Definition 2.1.1 ((Z/2Z-)Graded C∗-algebras): Let A be a C∗-algebra.

(i) A (Z/2Z-)grading on A is a decomposition A = A(0)⊕A(1), where A(0) and A(1)

are self-adjoint closed linear subspaces of A, such that for all x ∈ A(n), y ∈ A(m)

we have xy ∈ A(n+m), where n+m is the addition of n and m in Z/2Z.
(ii) Let A be a graded C∗-algebra. The degree ∂x of an element x ∈ A(n) is defined

as ∂x = n. Moreover we call elements x ∈ A(0) ∪A(1) homogeneous.
(iii) If there is a self-adjoint unitary g ∈M(A) in the multiplier algebra of a graded

C∗-algebra such that A(n) = {a ∈ A | gag∗ = (−1)na} for n = 0, 1, then the
grading is called even.

(iv) A C∗-subalgebra B of a graded C∗-algebra A is a graded C∗-subalgebra, if
B = (B ∩A(0)) + (B ∩A(1)).

(v) Let A,B be graded C∗-algebras. A ∗-homomorphism φ : A → B is called
graded, if φ(A(n)) ⊆ B(n) for n = 0, 1.
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(vi) We define the graded commutator for a ∈ A(i) and b ∈ A(j) by

[a, b] = ab− (−1)ijba.

Remark 2.1.2 (Alternative definition via Z/2Z-action): We can also define graded
C∗-algebras via a Z/2Z-action on A:

A graded C∗-algebra A is a C∗-algebra with an order two ∗-automorphism βA. The
∗-automorphism is called grading automorphism. When A is graded by βA : A→ A,
then A decomposes in eigenspaces of βA, with A(0) = {a ∈ A | βA(a) = a} and
A(1) = {a ∈ A | βA(a) = −a}. One can see that this is indeed equivalently to our
definition of graded C∗-algebras. In case of A(1) = {0}, we say the grading is trivial.

A graded ∗-homomorphism φ : A → B for two graded C∗-algebras A,B with
grading automorphisms βA, βB satisfies φ ◦ βA = βB ◦ φ.

Example 2.1.3: (i) Let A be any C∗-algebra. Then M2(A) has a canonical grading,
where all elements of M2(A)(0) are diagonal matrices, and M2(A)(1) are the
matrices with zero diagonal.

(ii) Let B be a C∗-algebra, we can define an order two ∗-automorphism on B ⊕B
by βB⊕B(x, y) = (y, x). This grading is called odd grading, and we denote the
odd graded C∗-algebra by B(1).

Now we want to define a tensor product of graded C∗-algebras, that respects the
grading in some sense.

Construction 2.1.4 (Maximal tensor product of graded C∗-algebras): Let
A and B be graded C∗-algebras, write A⊙B for their algebraic tensor product. For
homogeneous elementary tensors we may define a new product and involution on
A⊙B by

(a1⊗̂b1)(a2⊗̂b2) = (−1)∂b1∂a2a1a2⊗̂b1b2,

(a⊗̂b)∗ = (−1)∂a∂ba∗⊗̂b∗.

We denote A⊙̂B for the ∗-algebra, we get by this product and involution.
Define A⊗̂maxB as the universal enveloping C∗-algebra of A⊙̂B, i.e. separation

and norm-completion. We call A⊗̂maxB the maximal graded tensor product.

Construction 2.1.5: Let be everything such as in 2.1.4. Let ϕ and ψ be states,
vanishing on A(1) respectively on B(1), of A and B, then ϕ⊗̂ψ is a state on A⊙̂B.
Then the GNS-representation from ϕ⊗̂ψ gives us a C∗-seminorm on A⊙̂B.

As in the case of (ungraded) C∗-algebras the supremum of all this C∗-seminorms
is a norm. Taking the completion with respect to this norm, yields us the minimal
graded tensor product, denoted by A⊗̂minB or simply A⊗̂B.
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Remark 2.1.6: We get a canonical grading on A⊗̂B by using 2.1.2. If βA is a Z/2Z-
action on A and βB is a Z/2Z-action on B, then we observe βA⊗̂βB is a Z/2Z-action
on A⊗̂B. We also denote it by A⊗̂B.

To define Kasparov modules, we need to define Hilbert C∗-modules which generalise
classical Hilbert spaces, since we consider a C∗-valued inner product on it.

Definition 2.1.7 (Hilbert C∗-module): Let B be a C∗-algebra. A pre-Hilbert B-
module is a right B-module E (with complex vector space structure) with a B-valued
inner product ⟨·, ·⟩ : E × E → B such that

(i) ⟨·, ·⟩ is sesquilinear,
(ii) ⟨x, yb⟩ = ⟨x, y⟩b for all x, y ∈ E and b ∈ B,
(iii) ⟨y, x⟩ = ⟨x, y⟩∗ for all x, y ∈ E,
(iv) ⟨x, x⟩ ≥ 0 for all x ∈ E and if ⟨x, x⟩ = 0, then x = 0.

For x ∈ E, set ∥x∥ = ∥⟨x, x⟩∥1/2, which defines a norm on E. If E is complete with
respect to this norm, then E is called Hilbert B-module.

Moreover we define ⟨E,E⟩ = {⟨x, y⟩ | x, y ∈ E}∥·∥ as the support of E. If ⟨E,E⟩ =
B, then E is called full.

It should be clear out of context, which norm on which space we are actually taking.
We also have an analogue of the Cauchy-Schwarz inequality in the case of Hilbert

C∗-modules.

Lemma 2.1.8: Let E be a pre-Hilbert B-module, and set ∥e∥ = ∥⟨e, e⟩∥
1
2 for e ∈ E.

Then E is a normed vector space, and the following inequalities hold:

∥eb∥ ≤ ∥e∥ ∥b∥ , e ∈ E, b ∈ B,
∥⟨e, f⟩∥ ≤ ∥e∥ ∥f∥ , e, f ∈ E.

Example 2.1.9: (i) Let (Ei)i∈I be a family of pre-Hilbert B-modules, then the
direct sum ⊕

Ei is a pre-Hilbert B-module with

⟨⊕xi,⊕yi⟩ =
∑
⟨xi, yi⟩.

If I is finite and all Ei are Hilbert B-modules, then also ⊕Ei is a Hilbert
B-module.

(ii) As a special case, taking Ei = B in (i), denote by HB the completion of the
direct sum of countably many copies of B, i.e. for all (bn) ⊆ HB the series∑
n b

∗
nbn converges, where the inner product is given by

⟨(an), (bn)⟩ =
∑
n

⟨an, bn⟩.

We call HB the Hilbert space over B.
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It turns out that the space of bounded operators of Hilbert C∗-modules is too large,
therefore we need a substitute, which we will now define.

Definition 2.1.10: Let E1, E2 be Hilbert B-modules. Denote by BB(E1, E2) the set of
all B-module homomorphisms T : E1 → E2, such that there is an adjoint B-module
homomorphism T ∗ : E2 → E1 such that ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x ∈ E1 and y ∈ E2.

Set BB(E) := BB(E,E) for a Hilbert B-module E.

We also want a suitable subspace of the compact operators.

Remark 2.1.11: Note that operators T in BB(E) are bounded by the closed graph
theorem. Indeed since the existence of an adjoint T ∗ implies that the graph of T
must be closed. Thus BB(E) ⊆ B(E). Moreover BB(E) is closed with respect to the
operator norm in B(E).

Additional BB(E) is a C∗-algebra. It is clear that BB(E) is a ∗-algebra and that
∥ST∥ ≤ ∥S∥ ∥T∥. The C∗-identity is fulfilled since for all x ∈ E with ∥x∥ ≤ 1 we
have by Cauchy-Schwarz

∥Tx∥2 = ∥⟨Tx, Tx⟩∥ = ∥⟨x, T ∗Tx⟩∥ ≤ ∥T ∗Tx∥ ≤ ∥T ∗T∥ .

Thus ∥T∥2 ≤ ∥T ∗T∥, and the other inequality is clear since ∗ is isometric.

Definition 2.1.12: Let E1 and E2 be Hilbert B-modules. Let θx,y : E1 → E2 for
x ∈ E2, y ∈ E1 defined by θx,y(z) = x⟨y, z⟩ for z ∈ E2. We say θx,y is a finite-rank
operator, moreover it has rank 1.

The closure of the span of these operators in BB(E1, E2) is denoted by KB(E1, E2).
As always we denote KB(E) := KB(E,E) for a Hilbert B-module E.

In spirit of Remark 2.1.2 we now want to define graded Hilbert C∗-modules via
grading automorphisms.

Definition 2.1.13 (Graded Hilbert C∗-module): Let B be a graded C∗-algebra. A
graded Hilbert B-module E is a Hilbert B-module equipped with a linear bijection
SE : E → E, satisfying

• SE(ξb) = SE(ξ)βB(b) for all ξ ∈ E, b ∈ B,
• ⟨SE(ξ1), SE(ξ2)⟩ = βB(⟨ξ1, ξ2⟩) for all ξ1, ξ2 ∈ E,
• S2

E = id.

We then obtain E(0) := {ξ ∈ E | SE(ξ) = ξ} and E(1) := {ξ ∈ E | SE(ξ) = −ξ} such
that E = E(0) ⊕ E(1).

Example 2.1.14: Let B be a C∗-algebra.

(i) As in Example 2.1.3, a Hilbert B-module E can be trivially graded by taking
SE = id.
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(ii) Let B be a graded C∗-algebra, then B as Hilbert B-module is also a graded
Hilbert B-module via SB = βB.

(iii) Let E and F be graded Hilbert B-modules, then the direct sum E ⊕ F can
be graded via SE ⊕ SF defined by SE ⊕ SF (e, f) = (SE(e), SF (f)) for all
e ∈ E, f ∈ F .

Later it will be useful to have a tensor product of Hilbert C∗-modules.

Construction 2.1.15 (Tensor product of Hilbert C∗-modules): Let E and F be Hilbert
C∗-modules with respect toB respectivelyA, and ϕ : A→ BB(F ) be a ∗-homomorphism.
Regard F as a left B-module via ϕ, then denote by E ⊙ϕ F the algebraic tensor
product. This is a right A-module, and one can define the A-valued pre-inner product
via ⟨x1 ⊗ x2, y1 ⊗ y2⟩ := ⟨x2, ϕ(⟨x1, y1⟩)y2⟩.

The universal enveloping C∗-algebra of E ⊙ϕ F with respect to ⟨·, ·⟩ is called the
(internal) tensor product of Hilbert C∗-modules.

Note that there is a ∗-homomorphism j : BB(E)→ BB(E ⊗ϕ F ) given by

j(m)(x⊗ϕ y) = m(x)⊗ϕ y

for x ∈ E, y ∈ F and m ∈ BB(E).

The following lemma is proven in [JT91].

Lemma 2.1.16: In the setting of Construction 2.1.15 the map j maps KB(E) to
KB(E ⊗ϕ F ). Let f : B → A be a ∗-homomorphism, then m ⊗ϕ id ∈ KA(E ⊗f A),
whenever m ∈ KB(E).

We now can define Kasparov modules, and by this also the set we will later equip
with some suitable equivalence relations, to obtain the KK-groups.

Definition 2.1.17 (Kasparov modules): Let A and B be graded C∗-algebras. Define
E(A,B) as the set of all triples (E, ϕ, F ), where E is a countably generated (as
B-module) graded Hilbert B-module, ϕ is a graded ∗-homomorphism from A to
BB(E) and F is an operator in BB(E) of rank 1, such that

• [F, ϕ(a)],
• (F 2 − 1)ϕ(a),
• (F − F ∗)ϕ(a)

are in KB(E) for all a ∈ A. The elements of E(A,B) are called Kasparov A,B-
modules.

Moreover denote by D(A,B) ⊆ E(A,B) the set of triples (E, ϕ, F ) such that
[F, ϕ(a)] = (F 2 − 1)ϕ(a) = (F − F ∗)ϕ(a) = 0 for all a ∈ A. An element in D(A,B)
is called degenerate Kasparov module.
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In the next lemma we want to prove, that we can equip E(A,B) with the direct sum.

Lemma 2.1.18: Let Ei = (Ei, ϕi, Fi) ∈ E(A,B) be Kasparov A,B-modules for i =
1, . . . , n. Then ⊕

i

Ei := (⊕iEi,⊕iϕi,⊕iFi)

is also a Kasparov A,B-module.

Proof. Note that E := ⊕iEi is a Hilbert B-module, by Example 2.1.9, and obviously
E is countably generated. For the grading we set SE as in Example 2.1.14, which is

SE(e1, . . . , en) = (SE1(e1), . . . , SEn(en)),

for ei ∈ Ei. Thus E is a graded Hilbert B-module.
Define ϕ := ⊕iϕi : A→ BB(E) via

ϕ(a) = ⊕iϕi(a),

for a ∈ A and define F := ⊕iFi : A ∈ BB(E) by setting

F (e1, . . . , en) = (F1e1, . . . , Fnen),

for ei ∈ Ei. Since all Fi ∈ BB(Ei) are of rank 1, we obtain that F ∈ BB(E) is also of
rank 1.

By construction all other properties are fulfilled, as one easily can check. □

2. Definition of the KK-groups and the Kasparov product
Similar as for classical K-theory, we now equip the set of Kasparov modules with
equivalence relations. Here we will have a look at homotopy and operator homotopy,
but we will not go into further details regarding operator homotopy.

Let A,B,C,D be graded C∗-algebras in this section.
Firstly we have to construct pushouts of Hilbert C∗-modules and of Kasparov

A,B-modules.

Construction 2.2.1 (Pushout of Hilbert C∗-modules): Let E be a Hilbert A-module
and f : A→ B be a surjective ∗-homomorphism. We define a Hilbert submodule

Nf := {e ∈ E | f(⟨e, e⟩) = 0},

and set E′
f = E/Nf with quotient map π : E → E′

f .
Define π(e)f(a) = π(ea) for e ∈ E and a ∈ A and as A-valued inner product on E′

f

define ⟨π(e1), π(e2)⟩ := f(⟨e1, e2⟩). This defines us a pre-Hilbert A-module. Denote
Ef for the completion with respect to the induced norm.

The Hilbert A-module Ef is called pushout.
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Now we want to do the same on Kasparov A,B-modules.

Construction 2.2.2 (Pushout of Kasparov modules): Let E = (E, ϕ, F ) ∈ E(A,B)
and ψ : B → C be a surjective graded ∗-homomorphism. Set Eψ as defined in
Construction 2.2.1. We can define a grading automorphism on E′

ψ via

SE′
ψ

(π(x)) = π(SE(x))

for x ∈ E and can extend this to a grading automorphism on Eψ. Similarly for
F ∈ BB(E) we can define Fψ ∈ BC(Eψ) by defining

Fψ(π(x)) = π(F (x))

for x ∈ E on E′
ψ and then extending it by continuity to Eψ. Moreover since F 7→ Fψ

is a ∗-homomorphism one can easily check for T = θx,y, x, y ∈ E that Fψ is also a
rank 1 operator.

Lastly define ϕψ : A→ BC(Eψ) via a 7→ ϕ(a)ψ similarly as we did it for F and Fψ.
By this we obtain a Kasparov A,C-module Eψ := (Eψ, ϕψ, Fψ), the so called

pushout.

We also can define the pullback of Kasparov modules.

Construction 2.2.3 (Pullback): Let E = (E, ϕ, F ) ∈ E(A,B) and ψ : C → A be a
graded ∗-homomorphism. Then (E, ϕ ◦ ψ, F ) is a Kasparov C,B-module, the so
called pullback ψ∗(E).

Definition 2.2.4 (Isomorphism of Kasparov modules): Let Ei = (Ei, ϕi, Fi) be Kas-
parov A,B-modules for i = 1, 2. We say E1 and E2 are isomorphic if there exist
an isomorphism of Hilbert B-modules φ : E1 → E2 such that SE2 ◦ φ = φ ◦ SE1 ,
F2 ◦ φ = φ ◦ F1 and ϕ2(a) ◦ φ = φ ◦ ϕ1(a) for a ∈ A.

Write E1 ∼= E2 in this case.

Set IB := C([0, 1], B) ∼= B ⊗ C([0, 1]). We can grade IB by taking βB ⊗ id as
the grading automorphism, and let πt be the surjective ∗-homomorphism IB → B
obtained by evaluation at t. The maps (πt)t are also graded ∗-homomorphisms.

Moreover note that if E is a Kasparov A, IB-module, then its pushout Eπt is a
Kasparov A,B-module for all t ∈ [0, 1].

Definition 2.2.5 (Homotopy): Let E ,F ∈ E(A,B). We say that E and F are ho-
motopic if there exist a Kasparov A, IB-module G ∈ E(A, IB) such that Gπ0

∼= E
and Gπ1

∼= F . We write E ∼h F if there is a finite set {E1, . . . , En} ∈ E(A,B) of
Kasparov A,B-modules, such that E1 = E , En = F and Ei is homotopic to Ei+1 for
i = 1, . . . , n− 1.

We obviously now want to prove that ∼h is an equivalence relation. To do this we
want to introduce the internal tensor product of Kasparov modules.
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Construction 2.2.6 (Internal tensor product): Let E = (E, ϕ, F ) ∈ E(A,B) and
ψ : B → C be a graded ∗-homomorphism. We can form a Hilbert C-module E ⊗ψ C.
By construction we can define a grading operator SE⊗ψC on E ⊗ψ C, by defining

SE⊗ψC(e⊗ψ c) = SE(e)⊗ψ βC(c)

for e ∈ E, c ∈ C.
Note that as in Construction 2.1.15, we have a ∗-homomorphism j such that

j(m) = m⊗ψ id for m ∈ BB(E). Thus we can define ϕ⊗ψ id : A→ BC(E ⊗ψ C) by
ϕ⊗ψ id(a) = ϕ(a)⊗ψ id ∈ BC(E ⊗ψ C) for a ∈ A. Moreover by Lemma 2.1.16, we
have that m⊗ψ ∈ KB(E ⊗ψ C) if m ∈ KB(E). By this we obtain that

(E ⊗ψ C, ϕ⊗ψ id, F ⊗ψ id) ∈ E(A,B),

which we will denote by ψ∗(E).
Moreover if E is countably generated then also E ⊗ψ C is countably generated.

To prove now that ∼h is an equivalence relation we still need two technical lemmas.
For a proof see for instance [JT91].

Lemma 2.2.7: Let E ∈ E(A,B) and f : B → C and g : C → D be surjective graded
∗-homomorphisms. Then

g∗(f∗(E)) ∼= (g ◦ f)∗(E).

Lemma 2.2.8: Let E ∈ E(A,B) and f : B → C be a surjective graded ∗-homomorphism.
Then

Ef ∼= f∗(E).

Now we have everything to prove that ∼h is indeed an equivalence relation on the
set of Kasparov modules.

Proposition 2.2.9: The relation ∼h is an equivalence relation on E(A,B).

Proof. One only needs to check, that ∼h is reflexive and symmetric. By construction
transitivity is clear. First let E ∈ E(A,B). Let ϕ : B → IB, b 7→ (t 7→ b), then
πt ◦ ψ = id for all t ∈ [0, 1]. Hence ψ∗(E) ∈ E(A, IB) and moreover by Lemma 2.2.7
and Lemma 2.2.8 we have

ψ∗(E)π0
∼= (π0 ◦ ψ))∗(E) = id∗(E) ∼= E .

The same holds for π1. Thus E ∼h E , and this proves reflexivity of ∼h.
Secondly let E ,F ∈ E(A,B) such that E ∼h F . Using the identification B ⊗

C([0, 1]) ∼= C([0, 1], B) the idea is to inverse the setting in some sense. To do so let
ψ′ : C([0, 1])→ C([0, 1]), (t 7→ f(t)) 7→ (t 7→ f(1− t)), which is a ∗-isomorphism and
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define ψ = id⊗ψ′ which is by construction also a ∗-isomorphism. Moreover we have
by construction that π0◦ψ = π1 and π1◦ψ = π0. Since there exist G ∈ E(A, IB) such
Gπ0
∼= E and Gπ1

∼= F , we obtain again by applying Lemma 2.2.7 and Lemma 2.2.8,
that

ψ∗(G)π0
∼= (π0 ◦ ψ)∗(G) ∼= (π1)∗(G) ∼= F .

Analogously we obtain ψ∗(G)π1
∼= E . □

Since ∼h is an equivalence relation, we now can define the KK-groups. But let us
mention that there are also other equivalence relations such as operator homotopy
(Definition 2.2.12), and others, which we can define on E(A,B), see for instance
[Bla98]. To avoid the different “induced KK-theories”, from now on the first argument
of the set of Kasparov modules is assumed to be separable and the second argument
should be σ-unital. The last assumptions can be explained roughly by the fact, that
otherwise B may not have “enough” countably generated Hilbert C∗-modules.

Definition 2.2.10 (The KK-groups): We set

KK(A,B) := KK0(A,B) := E(A,B)/ ∼h

and define

KK1(A,B) := KK1(A,B) = KK(A,B⊗̂C(1)),

where C(1) is defined as in Example 2.1.3 and ⊗̂ is the minimal graded tensor product
of C∗-algebras. The elements, i.e. the equivalence classes, of KK(A,B) respectively
KK1(A,B) are denoted by [E ].

The definition in [Kas80] is slightly different, since Kasparov also divided out the
set D(A,B), but this is not necessary, since if E = (E, ϕ, F ) ∈ D(A,B), then E is
homotopic to 0. See for instance [JT91].

We want to equip KK(A,B) with an addition, which is obviously via the direct
sum of Kasparov modules. Moreover it is commutative.

Definition 2.2.11 (Direct sum as group operation): For [E ], [F ] ∈ E(A,B), we set

[E ] + [F ] = [E ⊕ F ].

We now can prove that KK(A,B) is an abelian group, but to do so let us introduce the
mentioned operator homotopy, which gives us the same KK-groups by assumption.

Definition 2.2.12 (Operator homotopy): Let E ,F be Kasparov A,B-modules. If
there is a graded Hilbert B-module E, a graded ∗-homomorphism ϕ : A → BB(E)
and a norm continuous path Gt for t ∈ [0, 1] such that
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• Gt = (E, ϕ,Gt) is a Kasparov A,B-module,
• G0 ∼= E and G1 ∼= F ,

then E and F are called operator homotopic.

Proposition 2.2.13: (KK(A,B),+) is an abelian group.

Proof. As identity [0] we simply take degenerate Kasparov A,B-modules, since all
degenerate Kasparov A,B-modules are homotopic to 0.

Associativity is clear, so we need to construct an inverse for an element. Let
E = (E, ϕ, F ) and define Eop as the Hilbert B-module E graded with −SE , and
define ϕop : A → BB(Eop) = BB(E) by ϕop = ϕ ◦ βA, where βA is the grading
automorphism of A. Note that ϕop is a graded ∗-homomorphism. We now prove that
−E := (Eop, ϕop,−F ) is the inverse. To do so let

Gt =
(
F cos(π2 t) id sin(π2 t)
id sin(π2 t) −F cos(π2 t)

)
,

for t ∈ [0, 1]. Note that G0 = F ⊕−F and G1, hence (E ⊕ Eop, ϕ⊕ ϕop, F ⊕−F ) =
(E ⊕ Eop, ϕ⊕ ϕop, G0). Moreover G1 is odd (see Example 2.1.3) since

G1 =
(

0 id
id 0

)
.

Computations as in [JT91] prove that (E ⊕ Eop, ϕ ⊕ ϕop, Gt) is a Kasparov A,B-
module for all t ∈ [0, 1], moreover setting t = 1 yields us that (E ⊕ Eop, ϕ⊕ ϕop, G1)
is a degenerate Kasparov module, since G1 = G∗

1 and G2
1 = I2. Hence we have

a operator homotopy between E ⊕ −E and a degenerate Kasparov module. Since
homotopy and operator homotopy gives us the same KK-groups, we are done. □

We now want to collect the properties of the “bifunctor” KK. Note that the most
proofs are technical, thus we do not mention them.

Proposition 2.2.14: (i) KK(−, B) is a contravariant functor from the category
of separable and graded C∗-algebras to the category of abelian groups via the
pullback ψ∗.

(ii) KK(A,−) is a covariant functor from the category of σ-unital graded C∗-
algebras to the category of abelian groups via the internal tensor product ψ∗.

(iii) KK(−, B) and KK(A,−) are “homotopy invariant”, i.e. for a path of ∗-
homomorphisms ψt : A→ B with t 7→ ψt(a) continuous for all a ∈ A we have
ψ∗

0 = ψ∗
1 respectively (ψ0)∗ = (ψ1)∗.

(iv) By Kasparov stabilisation theorem (see [Bla98]) we only need to consider those
Kasparov A,B-modules (E, ϕ, F ) such that E = HB.
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(v) For a Kasparov A,B-module (E, ϕ, F ) one may assume F = F ∗ and ∥F∥ ≤ 1,
hence we only need to consider compact perturbations.

(vi) Let B be trivially graded then we have the following isomorphisms

KK0(C, B) ∼= K0(B),
KK1(C, B) ∼= K1(B).

Remark 2.2.15: (i) This last proposition gives an understanding why we can con-
sider KK-theory as a bifunctorial generalisation of classical K-theory. The
same holds for example for the Bott periodicity, since we can define KKn, but
as in the case of K-theory it turns out, that one only needs to consider KK0

and KK1. However the proof in the general setting of KK-theory is easier.
(ii) Moreover we should mention that there are different “pictures” or ways one

can think about KK-theory, such as the Fredholm picture or the Cuntz picture
using so called quasi homomorphisms.

It is normally much harder to compute the KK-theory of two given C∗-algebras.
One tool may be the so called Kasparov product, which can be elaborately constructed.
We will omit any proof since everything needs a highly amount of technical arguments.
As notation for [(B,ϕ, 0)] ∈ KK(A,B) we write [ϕ].

Proposition 2.2.16 (Kasparov product): Let A,B,C,D be σ-unital graded C∗-algebras,
then there exists a map, the so called Kasparov product

⊗B : KK(A,B)×KK(B,C)→ KK(A,C),

that has the following properties:

• biadditivity with respect to ⊕, i.e.

(x⊕ y)⊗B z = x⊗B z ⊕ y ⊗B z,
z ⊗B (x⊕ y) = z ⊗B x⊕B z ⊗ y,

• associativity,
• unit elements 1A = [idA] ∈ KK(A,B) and 1B = [idB] ∈ KK(B,C) such that

1A ⊗B x = x = x⊗ 1B,

• functoriality: if ϕ : A→ B and ψ : B → C are graded ∗-homomorphisms, then

[ϕ]⊗B x = ϕ∗(x) ∈ KK(A,C),
x⊗B [ψ] = ψ∗(x) ∈ KK(A,C).
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The main problem about the proof is to explicitly construct the rank one op-
erator. However one can quickly construct the Hilbert module and the graded
∗-homomorphism by simply taking the graded tensor product.

Let us quickly view on the category-theoretical conclusions of the Kasparov product,
mentioned in [Par09].

Remark 2.2.17: Taking separable graded C∗-algebras we can form a additive category,
where we take KK-groups as morphism sets and the flipped Kasparov product as
compositions. The map ψ 7→ [ψ] is a functor from the category of separable C∗-
algebras with graded ∗-homomorphisms in this additive category.

The isomorphisms in this category are called KK-equivalence.

The notion of KK-equivalence is a powerful tool in a lot of various contexts in
operator algebras.

Definition 2.2.18 (KK-equivalence): An element x ∈ KK(A,B) is called KK-
equivalence if there exists an element y ∈ KK(B,A) with x ⊗B y = 1A and
y ⊗A x = 1B.

We say that A and B are KK-equivalent if there exist a KK-equivalence. Often
we say that y is the inverse of x, if x is a KK-equivalence.

Note that if x ∈ KK(A,B) is a KK-equivalence, then for any separable C∗-algebra
D the maps x⊗B− : KK(B,D)→ KK(A,D) and −⊗Bx : KK(D,A)→ KK(D,B)
are isomorphisms, as it is explained in [Bla98]. Hence the KK-theory of KK-
equivalent C∗-algebras behave “identically”. Moreover KK-equivalence implies the
same K-theory.

If one assume additional assumptions for two separable trivially graded C∗-algebras
A,B. Then one can say that A and B are KK-equivalent if and only if their K-theory
is equal, the so called Universal Coefficient Theorem, [Bla98].
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Chapter III.

Compact quantum groups and their
representation theory

The notion of compact quantum groups was introduced by Woronowicz in [Wor87;
Wor98] to generalise Pontryagin duality of abelian compact groups in some sense.
In this chapter we want to introduce the basic definitions, look at some class of
examples, and we want to look at the representation theory of compact quantum
groups to then introduce the dual discrete quantum group. We will conclude with
introducing the free wreath product of compact quantum groups with S+

N .
The symbol ⊗ will denote the minimal tensor product of C∗-algebras. Moreover

following the literature we will omit ◦ for the chaining of functions, if it is obvious
from the context, what we mean.

1. The category of compact quantum groups
In this section we define compact quantum groups and some notions, we will use
in this thesis. One can see compact quantum groups as a kind of generalisation of
(locally) compact groups, which will be motivated in the following.

Let G be a compact group with an operation ◦ : G × G → G. Dualising this
operation, we obtain a map

∆: C(G)→ C(G×G) ∼= C(G)⊗ C(G), f 7→ ((g, h) 7→ f(gh))

Mainly following the philosophy of Proposition 1.1.8, we may now replace C(G) by a
non-commutative C∗-algebra. Following this idea our C∗-algebra should have a map
∆ as above, with additional properties.

Definition 3.1.1 (Compact Quantum Group): A compact quantum group G is a uni-
tal C∗-algebra C(G) together with a unital ∗-homomorphism (comultiplication)
∆: C(G)→ C(G)⊗ C(G) such that

• (∆⊗ id)∆ = (id⊗∆)∆ (coassociativity)
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• [(C(G)⊗ 1)∆(C(G))] = [(1⊗ C(G))∆(C(G))] = C(G)⊗ C(G)
(cancellation law),

where [·] denotes the closed linear span.

The first following example is a kind of justification why we can see compact quantum
groups as a generalisation of the continuous functions on a compact group. Moreover
the second example is the firsz historical example, given by Woronowicz, and the
third one should be seen as an example coming from the dual, that we will consider
later in the course of this chapter.
Example 3.1.2: (i) Let G be a compact group. Consider C(G) with ∆ constructed

as above. It is easy to prove that ∆ is indeed coassociative and also the
cancellation law is true. Hence (C(G),∆) is a commutative compact quantum
group.

By the Gelfand-Naimark theorem every commutative compact quantum
group is of the form C(G). This justifies the notation. In general for non-
commutative compact quantum groups, our underlying C∗-algebra is obviously
not of the form C(G), but we keep the notation in the spirit of Gelfand-Naimark,
and we view C(G) as a kind of “virtual” continuous function space.

(ii) Historically, the first example of Woronowicz was the quantum version of the
special unitary group SU(2). To do so he deformed the commutativity.

Note that SU(2) can be written as

SU(2) =
{(

α −γ
γ α

)∣∣∣∣∣α, γ ∈ C, |α|2 + |γ|2 = 1
}
.

Now let q ∈ [−1, 1]\{0}, then define the deformation via the universal C∗-
algebra

C(SUq(2)) = C∗
(

1, α, γ
∣∣∣∣∣
(
α −qγ∗

γ α∗

)
is unitary

)
.

One then equip SUq(2) with a comultiplication ∆ defined on the generators

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ.

(iii) Let Γ be a discrete group, i.e. equipped with the discrete topology. We consider
the reduced group C∗-algebra C∗

r (Γ) which we obtain by taking norm closure of
the group ring C[Γ] under the regular representation λ : Γ→ B(ℓ2(Γ)) mapping
g to λg given by λs(δt) = δst on the orthonormal basis on ℓ2(Γ). Define the
comultiplication via ∆(λg) = λg ⊗ λg. This defines us a compact quantum
group (C∗

r (Γ),∆) which is moreover cocommutative, i.e. σ∆ = ∆, where σ
denotes the flip operator on the tensor product mapping a⊗ b to b⊗ a.

By taking the closure under the universal norm of the group algebra C[Γ] we
obtain the full group C∗-algebra C∗(Γ). Then (C∗(Γ),∆) is also a cocommuta-
tive compact quantum group.
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Before defining homomorphisms of compact quantum groups and compact quantum
subgroups, we want to fix the following remark, regarding our example.

Remark 3.1.3: For a discrete group Γ, we denote Γ̂ for either (C∗(Γ),∆) or (C∗
r (Γ),∆),

where ∆(λg) = λg ⊗ λg and call Γ̂ the dual of Γ.
Indeed this construction generalises the Pontryagin duality for compact abelian

groups. We will take a closer look at the concept of duality in the course of this
chapter.

Lastly note that every cocommutative compact quantum group G = (C(G),∆′),
can be included between the full group C∗-algebra and the reduced group C∗-algebra
of a suitable discrete group Γ, i.e. we have surjective ∗-homomorphisms

C∗(Γ)→ C(G)→ C∗
r (Γ)

intertwining the comultiplications. See for instance [Tim08].

In our example we can understand C(G) and C∗
r (Γ) as a compact quantum subgroup

of C∗(Γ) respectively C(G), as we will define now via the notion of homomorphisms
of compact quantum groups.

Definition 3.1.4 (CQG homomorphism): Let G = (C(G),∆G) and H = (C(H),∆H)
be compact quantum groups. A compact quantum group homomorphism from G to
H is a unital ∗-homomorphism π : C(G)→ C(H) such that

(π ⊗ π)∆G = ∆Hπ.

We also say that π intertwines the comultiplications.

Definition 3.1.5 (Compact quantum subgroup): Let G = (C(G),∆G) be a compact
quantum group. We call H = (C(H),∆H) a compact quantum subgroup of G, if
there is a surjective homomorphism of compact quantum groups from G to H.

For a compact group G we get by Riesz’s theorem the existence of a unique
“left-invariant” Haar measure. In the case of compact quantum groups we get an
analogue of a Haar measure. This was firstly proven by Woronowicz [Wor87; Wor98].

Proposition 3.1.6 (Existence of a Haar state): Let G be a compact quantum group
with comultiplication ∆. Then there is a unique state ϕ : C(G)→ C such that

(id⊗ϕ)∆(f) = ϕ(f)1 = (ϕ⊗ id)∆(f)

for all f ∈ C(G). We say that ϕ is left- and right-invariant. We call ϕ Haar state of
G.

We want to split this proof in smaller lemmas.
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Lemma 3.1.7: Let G be a compact quantum group. Let ϕ, ψ be states on C(G) and
a ∈ C(G), then

ϕ((ψ ⊗ id)∆(a)) = ψ((id⊗ϕ)∆(a))

Proof. Let ∆(a) = ∑
i a
i
1 ⊗ ai2, then

ϕ((ψ ⊗ id)∆(a)) =
∑
i

ϕ(ψ(ai1)ai2) =
∑
i

ψ(ai1ϕ(ai2)) = ψ((id⊗ϕ)∆(a)). □

Fix for two states ϕ, ψ the notation ϕ ∗ ψ = (ϕ⊗ ψ)∆.

Lemma 3.1.8: Let G be a compact quantum group and ω be a state on C(G), then
there exists a state ϕ such that ωϕ = ϕω = ϕ.

Proof. Let wn be the Césaro sum

ωn = 1
n

n∑
k=1

ω∗k,

where we denote inductively ω∗k+1 = ω ∗ ω∗k, ω∗1 = ω. Since the set of states of
any unital C∗-algebra is compact with respect to the weak topology, we have a weak
accumulation point ϕ by Banach-Alaoglu. We then get

ωn ∗ ω = ω ∗ ωn = ωn + 1
n

(ω∗(n+1) − ω),

and therefore ϕ ∗ ω = ω ∗ ϕ = ϕ. □

Proof (of Proposition 3.1.6). The uniqueness follows directly from Lemma 3.1.7,
since by assumption the Haar state is left and right invariant.

Now define for a state ω ∈ C(G)∗ (continuous linear functionals on C(G))

Kω := {ρ ∈ C(G)∗ | ρ state, ρ ∗ ω = ω ∗ ρ = ω(1)ρ}.

By Lemma 3.1.8 Kω ̸= ∅.
Now let n ∈ N be arbitrary and ω1, . . . , ωn be states on C(G), we want to show that
∩ni=1Kωi is not empty. To do so, define ω := ω1 + ω2. We need to prove Kω ⊆ Kω1 ,
then ∅ ≠ Kω ⊆ Kω1 ∩Kω2 and inductively K∑n

i=1 ωi
⊆ ∩ni=1Kωi .

For this let ρ ∈ Kω. Define the left ideal

Lρ⊗ω = {q ∈ C(G)⊗ C(G) | (ρ⊗ ω)(q∗q) = 0} ⊆ C(G).

By definition, we obviously get Lρ⊗ω ⊆ Lρ⊗ω1 . Using Cauchy-Schwarz ([LVW20,
Lemma 5.4.]), we obtain Lρ⊗ω1 ⊆ ker(ρ ⊗ ω1). Defining Ψ: C(G) → C(G) by
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Ψ(x) = (id⊗ρ)∆(x) − ρ(x)1. One then can show, that (id⊗Ψ)∆(C(G)) ⊆ Lρ⊗ω.
Moreover we get the following inclusions

1⊗Ψ(C(G)) ⊆ (C(G)⊗ 1)Lρ⊗ω ⊆ ker(ρ⊗ ω1).

By this we can conclude for x ∈ C(G)

0 = (ρ⊗ ω1)(1⊗Ψ(x)) = (ω1 ⊗ ρ)∆(x)− ω1(1)ρ(x)

and thus ρ ∈ Kω1 .
By Cantor’s intersection principle there exist ϕ ∈ ⋂ω stateKω, such that we have

ϕ ∗ ω = ω ∗ ϕ = ϕ for all states ω. For x ∈ C(G), let y = ϕ(x) − (id⊗ϕ)∆(x). By
construction ω(y) = 0 for all states ω, i.e. y = 0. □

Definition 3.1.9 (Kac type): A compact quantum group G is said to be of Kac type if
its (unique) Haar state h is a trace, i.e. if for all x, y ∈ C(G) we have h(xy) = h(yx).

One should note that often Kac type is defined via the antipode S of the corre-
sponding Hopf-∗-algebra, see Definition 3.3.12. We say equivalently that a compact
quantum group is of Kac-type, if S2 = id.

We now want to define the so called reduced C∗-algebra of functions on G and in
the course of this chapter the full C∗-algebra of functions on G.

Definition 3.1.10 (Reduced C∗-algebra of functions on G): LetG be a compact quan-
tum group, and denote by h its Haar state. The image of C(G) in the GNS-
representation πh (Proposition 1.1.11) is denoted by Cr(G) and is called the reduced
C∗-algebra of functions on G.

Since (πh ⊗ πh)∆ can be factorised through πh one obtain a comultiplication
∆r : Cr(G)→ Cr(G)⊗ Cr(G) such that

∆rπh = (πh ⊗ πh)∆.

By this (Cr(G),∆r) has a natural structure of a compact quantum group. Moreover
the reduced one is a compact quantum subgroup of G.

2. Compact matrix quantum groups
In this section we want to define compact matrix quantum groups, and by this a large
class of examples for compact quantum groups. In Corollary 3.3.8 we will see that
compact matrix quantum groups are indeed compact quantum groups. Moreover we
will look mostly at some classical examples.

Let N be a natural number.
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Definition 3.2.1 (Compact matrix quantum group): Let C(G) be a unital C∗-algebra
which is generated by the entries of a matrix u ∈ MN (C(G)), where u and u∗ are
invertible. Moreover assume that

∆: C(G)→ C(G)⊗ C(G),∆(uij) =
n∑
k=1

uik ⊗ ukj

is a ∗-homomorphism. Then the tuple G = (C(G), u) is called compact matrix
quantum group. The matrix u is called the fundamental representation of the
compact matrix quantum group.

The following three examples of compact matrix quantum groups were introduced in
[Wan95] and [Wan98].

Definition 3.2.2 (Quantum symmetric group): The quantum symmetric group S+
N =

(C(S+
N ), u) is defined by

C(S+
N ) = C∗(uij | u∗

ij = u2
ij = uij ,

∑
i

uik =
∑
i

uki = 1 for all k ≤ N)

Such a matrix u = (uij) is called magic unitary. The quantum subgroups of S+
N are

called quantum permutation groups.

The following remark will explain why we can see S+
N as some kind of generalisation

of the symmetric group SN or more precisely the continuous functions on SN . Also
we want to look for which natural number N the quantum symmetric group is
non-commutative.

Remark 3.2.3: (i) For N ≥ 4 the C∗-algebra C(S+
N ) is non-commutative. Indeed

let N = 4 and B be a C∗-algebra generated by two non-commuting projections
p, q. Due to the universal property of C(S+

4 ) we obtain a ∗-homomorphism
which maps uij to the matching entry of the following matrix

p 1− p 0 0
1− p p 0 0

0 0 q 1− q
0 0 1− q q

 .
Since B is non-commutative C(S+

4 ) is also non-commutative, hence we obtain
more general SN ̸∼= S+

N for N ≥ 4, but SN ⊆ S+
N as compact quantum groups.

For the case N ≤ 2, it is easy to show that S+
N is commutative. Indeed let

N = 1, then C(S+
1 ) = C, and for N = 2 the fundamental representation is of

the form (
p 1− p

1− p p

)
,
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where p is some projection and obviously all generators commute. For N = 3
the quantum symmetric group is also commutative, see for instance [Web23].
One needs to use the fact, that if projections sum up to 1 they need to be
mutually orthogonal.

(ii) One can show that the abelisation of C(S+
N ), i.e. taking the quotient with the

two-sided closed ideal generated by uijukl − ukluij is isomorphic to C(SN ), so
S+
N can be indeed understood as a generalisation of SN .

It is not easy to determine the Haar state of S+
N for words of length ≥ 2, which can

be done using the Gram-Weingarten-formula, [BC07]. For the generators we can
easily find, that all matrix coefficients have the same weight.

Lemma 3.2.4: Let N ≥ 1, and let u = (uij) be the fundamental matrix of S+
N . Denote

by h the Haar state of S+
N , then

h(uij) = 1
N
.

Proof. We have for all 1 ≤ i ≤ N by linearity of h, that

h(1) = h(
∑
j

uij) =
∑
j

h(uij) = 1.

Since we can permutate the matrix coefficients uij , we obtain that the weight of
every matrix coefficient must be 1

N . □

Definition 3.2.5 (Orthogonal quantum group): For N ∈ N the free orthogonal quan-
tum group O+

N = (C(O+
N ), u) is defined by

C(O+
N ) = C∗(uij | u∗

ij = uij , u orthogonal).

Remark 3.2.6 (O+
N as quantum isometry group of non-commutative sphere): As proven

in [BG10] the classical sphere Sn−1 ⊆ Rn can be seen as the spectrum of the universal
C∗-algebra

C∗(x1, . . . , xn | xi = x∗
i , xixj = xjxi,

∑
i

x2
i = 1).

We can also express the orthogonality of u by the following relations∑
k

uikujk = δij .

By this O+
N gives us a kind of a non-commutative sphere.

Definition 3.2.7 (Unitary quantum group): Let N ∈ N. The free unitary quantum
group U+

N = (C(U+
N ), u) is defined by

C(U+
N ) = C∗(uij | u, uT unitary).
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Finally we define the free hyperoctahedral quantum group, which was introduced by
Bichon in [Bic04].

Definition 3.2.8 (Hyperoctahedral quantum group): The free hyperoctahedral quan-
tum group H+

N = (C(H+
N ), u) is defined by

C(H+
N ) = C∗(uij | uij = u∗

ij , u orthogonal, uikujk = 0 = ukiukj for i ̸= j).

Moreover we could also define H+
N as the free wreath product H+

N = Ẑ/2Z ≀∗S+
N , which

we will see later. And by this we also obtain for N ≥ 2, that H+
N is non-commutative,

since we can embed S+
4 in H+

2 .

3. Representation theory of compact quantum groups
In this section we want to define basic notions of representation theory of compact
quantum groups. To motivate the following definition, we want to have a look at
compact groups and their representation theory.

Useful in this section is the notation of leg numbering for C∗-algebras. We use for
an element a in A⊗A the notation a(12), a(13), a(23) for the elements obtained by the
inclusion of A⊗A in A⊗A⊗A, e.g. a(12) = a⊗ 1.

Motivation 3.3.1: Let G be a compact group and U : G → Mn(C) be a finite-
dimensional representation.

Note that U is continuous by definition, i.e. U ∈ C(G,Mn(C)) ∼= C(G)⊗Mn(C).
By this we can also write U = ∑

i,j uij ⊗ eij for some uij , where eij denotes the
(i, j)-matrix unit. Moreover since U(gh) = U(g)U(h), we obtain

U(gh) =
∑
i,j

uij(gh)⊗ eij =
∑
i,j

∆(uij)(g, h)⊗ eij

=
∑
i,j

(∑
k

uik(g)ukj(h)
)
⊗ eij = U(g)U(h),

where ∆ is defined as in the previous section. Therefore by comparing, we get

∆(uij)(g, h) =
∑
k

uik(g)ukj(h) =
(∑

k

uik ⊗ ukj

)
(g, h).

This motivates the following definition in the finite-dimensional case.

Definition 3.3.2 (Representation of CQG): Let G be a compact quantum group.

(i) A representation of G on a Hilbert space HV is an element V in the multiplier
algebra M(K(HV )⊗ C(G)) such that

(id⊗∆)(V ) = V(12)V(13).

If V is unitary then we say V is a unitary representation.
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(ii) A representation of degree n is a matrix U = (uij) ∈Mn(C(G)) such that for
all 1 ≤ i, j ≤ n, we have

∆(uij) =
∑
k

uik ⊗ ukj .

A representation is called unitary if U = (uij) is a unitary. We say that U is
non-degenerated if U is invertible.

(iii) A linear map T : HU → HV is called a intertwiner between the representation
U on HU and the representation V on HV , if

(T ⊗ id)U = V (T ⊗ id).

We denote the set of intertwiners between U and V by Mor(U, V ).
(iv) If there is a unitary intertwiner in Mor(U, V ), then U and V are called (unitarily)

equivalent.
(v) A unitary representation U is called irreducible if Mor(U,U) = C1. Denote by

Irr(G) the set of equivalence classes of irreducible unitary representations of G.

As shown in [Wor87] any irreducible representation is finite dimensional. Because of
this and for technical reasons, we will mostly restrict our self to finite-dimensional
representations. Moreover note that the definition for general representations coincide
with the one for finite-dimensional representations in the case of finite-dimensionality.

We can also define operations on representations, namely the direct sum and
tensor product. For the following definition note that Mn(C)⊗ C(G) is isomorphic
to Mn(C(G)).

Definition 3.3.3: Let G be a compact quantum group, and let U, V be representations
of dimension n and m.

(i) The direct sum U ⊕ V is defined as the element of Mn+m(C(G)) obtained as
the diagonal sum of the two representations.

(ii) The tensor product U ⊗ V is the element

U ⊗ V = U(13)V(23) ∈Mmn(C(G))

In analogy to the classical Peter-Weyl representation theory for groups, we obtain
completely analogue results. A useful lemma is the one stated in [MV98, Lemma
6.3], which we will use multiple times. For the rest of the chapter denote h for the
Haar state of some compact quantum group G.

Lemma 3.3.4: Let V and W be representations of G on Hilbert spaces H1 and H2
respectively. For a compact operator x ∈ K(H1,H2) define

y = (id⊗h)(W ∗(x⊗ 1)V ).
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Then y ∈ K(H1,H2) such that

W ∗(y ⊗ 1)V = y ⊗ 1.

Proposition 3.3.5: Every non-degenerate irreducible finite-dimensional representation
of a compact quantum group is equivalent to a unitary one. Furthermore every unitary
finite-dimensional representation can be decomposed as a direct sum of irreducible
representations.

Proof. Let U be a non-degenerate representation of degree n and define

y = (id⊗h)(U∗U).

Since U is invertible also U∗U is invertible, and moreover as a positive and invertible
element, U∗U is strictly positive, therefore there exist ε > 0 such that U∗U ≥ ε1.
Note that h as Haar state is positive, thus y ≥ 0 and y ≥ ϵ1, i.e. y is invertible. Now
let

W = (y
1
2 ⊗ 1)U(y− 1

2 ⊗ 1)

By Lemma 3.3.4 we have

y ⊗ 1 = U∗(y ⊗ 1)U

and by this we obtain

W ∗W = (y− 1
2 ⊗ 1)U∗(y1/2 ⊗ 1)(y1/2 ⊗ 1)U(y− 1

2 ⊗ 1)

= (y− 1
2 ⊗ 1)U∗(y ⊗ 1)U(y− 1

2 ⊗ 1)

= (y− 1
2 ⊗ 1)(y ⊗ 1)(y− 1

2 ⊗ 1) = 1.

Thus W is unitary and U and W are unitary equivalent.
For the second part of the statement, let V be a unitary finite-dimensional rep-

resentation. Since we are finite-dimensional, the unitary finite-dimensional repre-
sentation is decomposable as a direct sum of (not necessarily irreducible) unitary
sub-representations. By finite-dimensionality decomposing these elements of the
direct sum, must lead us to irreducible unitary representations. □

Remark 3.3.6: The last proof works also in a more general setting, since we can drop
the assumption of finite-dimensionality. To do so, in particular for the second part,
we prove that the set of intertwiners acts non-degeneratively on the set of bounded
operators on the Hilbert space on which we have the representation. Then one takes
a maximal family of orthogonal minimal projections on the set of intertwiners. By
using that the set of intertwiners acts non-degeneratively. one obtain the statement.
See for instance [MV98].
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We want to prove the following important statement, which will us help to understand
how C∗-algebraic quantum groups and Hopf ∗-algebras /algebraic quantum groups
are connected.

Proposition 3.3.7 (Generation by coefficients of representations): Let A be a unital
C∗-algebra with a ∗-homomorphism ∆: A→ A⊗A. Assume that A is generated, as
a normed algebra, by the matrix elements uij of its non-degenerate finite-dimensional
representations. Then (A,∆) is a compact quantum group.

Proof. Let U = (uij) be a finite dimensional representation of A. Then

(∆⊗ id)∆(uij) =
∑
k

∆(uik)⊗ ukj

=
∑
k,l

uil ⊗ ulk ⊗ ukj

=
∑
l

uil ⊗∆(ulj)

= (id⊗∆)∆(uij)

for all generators, so ∆ is coassociative.
Let U = (uij) be a non-degenerated finite dimensional representation of A, and

denote by W = (wij) its inverse. Then by simple calculations we obtain∑
k

∆(uik)(1⊗ wkj) =
∑
k,l

uil ⊗ ulkwkj =
∑
l

uil ⊗ δlj1 = uij ⊗ 1.

Hence uij ⊗ 1 ∈ ∆(A)(1⊗A) for all generators uij . Now suppose

a⊗ 1 =
∑
k

∆(a(1)
k )(1⊗ a(2)

k ) and b⊗ 1 =
∑
l

∆(b(1)
l )(1⊗ b(2)

l )

with a
(1)
k , a

(2)
k , b

(1)
l , b

(2)
l ∈ A. Then

(a⊗ 1)(b⊗ 1) = (ab⊗ 1) =
∑
k

∆(a(1)
k )(1⊗ a(2)

k )(b⊗ 1)

=
∑
k,l

∆(a(1)
k b

(1)
l )(1⊗ a(2)

k b
(2)
k ).

Therefore if a⊗ 1, b⊗ 1 ∈ ∆(A)(1⊗A), then ab⊗ 1 ∈ ∆(A)(1⊗A). Therefore since
uij ⊗ 1 ∈ ∆(A)(1⊗A) we obtain

A⊗ 1 ⊆ ∆(A)(1⊗A) ⊆ A⊗A.

Since we can write x⊗ y = (x⊗ 1)(1⊗ y), we obviously obtain
∆(A)(1⊗A) = A⊗A. Similarly we get ∆(A)(A⊗ 1) = A⊗A. □
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Corollary 3.3.8 (CMQG are CQG): Let G = (C(G), u) be a compact matrix quantum
group, then (C(G),∆) is a compact quantum group.

Proof. Follows from the definition of a compact matrix quantum group and Proposi-
tion 3.3.7. Note that by assumption u and (uT )∗ are non-degenerate representations.□

Before proving a kind of algebraic picture of compact quantum groups, let us
introduce the right regular representation, which we obtain by the Haar state, as
done by Woronowizc in [Wor98]. For this denote by (H, π, ξ) the GNS-representation
of h.

Definition 3.3.9 (Right regular representation): Let G be a compact quantum group
and let J be a Hilbert space on which C(G) acts faithfully and non-degeneratively.

The unitary representation U ∈M(K(H)⊗ C(G)) defined by

U(π(a)ξ ⊗ η) = ∆(a)(ξ ⊗ ν)

for all a ∈ C(G) and η ∈ J , is called right regular representation.

As notation we also write aξ for π(a)ξ.
Note that U is by definition on H ⊗ J and it is not directly clear why such a

representation exists, but one can show everything stated as in [Wor98; MV98].

Proposition 3.3.10: Let G be a compact quantum group and denote by U its right
regular representation. Then the following is true

(i) The regular representation U implements ∆ in the following sense: For all
a ∈ C(G) we have

∆(a) = U(a⊗ 1)U∗.

(ii) The set

{(ω ⊗ 1)(U) | ω ∈ K(H,J )∗} ⊆ A

is dense in A.

Proof. Let J be as in the definition of the right regular representation.
For the first part, let a, b ∈ C(G) and η ∈ J , then

U(a⊗ 1)(bξ ⊗ η) = U(abξ ⊗ η) = ∆(ab)(ξ ⊗ η) = ∆(a)∆(b)(ξ ⊗ η) = ∆(a)U(bξ ⊗ η)

and in particular U(a⊗ 1) = ∆(a)U , i.e. ∆(a) = U(a⊗ 1)U∗.
For the proof of the second statement, see for instance [Wor98; MV98]. □
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Both parts of the last proposition highlight the speciality of the right regular repre-
sentation, since we can recover by this our compact quantum group.

Moreover we can prove that every irreducible representation is contained in the right
regular representation. The proof will be done as in [MV98] by using Lemma 3.3.4.

Let ωξ1,ξ2 ∈ B(H)∗ be a continuous linear functional defined by

ωξ1,ξ2(x) = ⟨xξ1, ξ2⟩

for x ∈ B(H) and ξ1, ξ2 ∈ H.

Proposition 3.3.11: Let G be a compact quantum group and V be any irreducible
unitary representation of G acting on a Hilbert space J . Then V is contained in U .

Proof. Let x ∈ K(H,J ), consider

y = (id⊗h)(V ∗(x⊗ 1)U).

By Lemma 3.3.4 we have y ∈ K(H,J ) and (y ⊗ 1)U = V (y ⊗ 1). Let p be the
projection on the image of y, then

(p⊗ 1)V (y ⊗ 1) = (p⊗ 1)(y ⊗ 1)U = (py ⊗ 1)U = (y ⊗ 1)U = V (y ⊗ 1)

and thus since p is a projection on the range of y we get

(p⊗ 1)V (p⊗ 1) = V (p⊗ 1).

By assumption V was irreducible, therefore p = 0 or p = 1, and in particular y = 0
or y surjective.

If y is surjective then V is equivalent to a subrepresentation of U , since y is in
particular unitary and since J is finite-dimensional.

Now let y = 0. Assume that we take x ∈ K(H,J ) such that for all ξ ∈ H we have
xξ = ⟨ξ, ξ1⟩η1 for some ξ1 ∈ H and η1 ∈ J . Then we get for all ξ ∈ H and η ∈ J
that

(V ∗(x⊗ 1)U)(ξ ⊗ η) = (V ∗(1⊗ a))(η1 ⊗ η)

with a = (ωξ,ξ1 ⊗ 1)u. Thus y = 0 implies (id⊗h)(V ∗(1 ⊗ a))(η1) = 0. Because
this is true for any η1 we get

(id⊗h)(V ∗(1⊗ a)) = 0

for all a of the form a = (ωξ,ξ1 ⊗ id)U . In Proposition 3.3.10 we have seen that these
elements are dense in C(G). Therefore

(id⊗h)(V ∗(1⊗ a)) = 0

for all a ∈ A. If we multiply to the right with any x ∈ B(J ) and use linearity we
find also that (id⊗h)(V ∗V ) = 0, which leads us to a contradiction as V ∗V = 1. □

32



Now we want to introduce Hopf ∗-algebras, which will yield us a suitable algebraic
picture.

Definition 3.3.12 (Hopf ∗-algebra): A Hopf ∗-algebra consists of a unital ∗-algebra A
together with

(i) a comultiplication ∆: A→ A⊗A, which is a ∗-homomorphism,
(ii) a ∗-homomorphism ε : A→ C, such that (ε⊗ id)δ = id = (id⊗ε)δ, the so called

counit,
(iii) a linear map S : A → A, such that µ(S ⊗ id)δ = µ(id⊗S)δ = η ◦ ε, the so

called antipode. Here µ : A⊗A→ A denotes the multiplication a⊗ b 7→ ab and
η : C→ A the natural embedding λ 7→ λ1.

We now can prove the algebraic picture of compact quantum groups.

Proposition 3.3.13 (Algebraic picture of compact quantum groups): Let G be a com-
pact quantum group. Let G0 be the subspace of C(G) spanned by the matrix elements
of all finite dimensional unitary representations of G. Then

(i) G0 ⊆ C(G) is a dense ∗-algebra,
(ii) ∆(G0) ⊆ G0 ⊙G0, where ⊙ denotes the algebraic tensor product,
(iii) (G0,∆|G0) is a Hopf ∗-algebra.

Proof. We only want to prove the first and the second part of the statement. For
(iii) see for instance [MV98].

(i) Note that the product of two matrix coefficients of finite dimensional unitary
representations is contained in the tensor product of the corresponding repre-
sentations. Moreover the adjoint of a finite dimensional unitary representation
is equivalent to a unitary representation. Thus G0 is a ∗-subalgebra of C(G).

By Proposition 3.3.11, we know that the regular representation U decomposes
in irreducible unitary representations. Denote {Uα | α ∈ I} for the irreducible
unitary representations and Hα for the corresponding Hilbert spaces. For α ∈ I,
let n(α) be the dimension of Hα and let {ξα1 , ξα2 , . . . , ξαn(α)} be an orthonormal
basis for Hα. For α, β ∈ I and for x ∈ K(H) define ωαβpq ∈ K(H)∗

ωαβpq (x) = ⟨xξαp , ξβq ⟩.

The linear span of

{ωαβpq | α, β ∈ I, 1 ≤ p ≤ n(α), 1 ≤ q ≤ n(β)}

is dense in K(H)∗. By Proposition 3.3.10 we know that

{(ωαβpq ⊗ 1)(U) | α, β ∈ I, 1 ≤ p ≤ n(α), 1 ≤ q ≤ n(β)}
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is dense in C(G). Now note that (ωαα ⊗ 1)U are the matrix elements of
the representation of Uα, which is contained in U . For α ̸= β we have that
(ωαβ ⊗ 1)U = 0. Thus we obtain the statement.

(ii) It suffices to check the statement for monomials of the form

Uα1
i1j1

. . . Uαninjn ∈ G0,

where n ∈ N. Then

∆(Uα1
i1j1

. . . Uαninjn) =
n∏
l=1

∆(Uαliljl)

=
∑

k1,...,kn

n∏
l=1

Uαlilkl ⊗
n∏
l=1

Uαlkljl ∈ G0 ⊙G0.

Thus monomials are mapped to G0 ⊙G0, and by this the statement follows. □

We also write

Pol(G) := G0 ={uαij | α ∈ Irr(G)}

for the subspace of G spanned by the matrix elements of all finite-dimensional unitary
representations.

We now want to define the full C∗-algebra of functions on G.

Definition 3.3.14 (Full C∗-algebra): Let G be a compact quantum group. The com-
pletion of Pol(G) under the universal norm such that

∥a∥ := sup{∥π(a)∥ | π is a representation of Pol(G)}

for a ∈ Pol(G), is called universal or full C∗-algebra of functions on G, and is denoted
by Cf (G), Cu(G) or simply C(G).

By using universality one can obtain a comultiplication ∆u, such that (Cu(G),∆u)
is also a compact quantum group. Moreover G is a compact quantum subgroup of
(Cu(G),∆u).

Remark 3.3.15: We now have three different structures, namely Cr(G), C(G) and
Pol(G) to describe a compact quantum group. It turns out that a compact quantum
groups can be equivalently described by all of them. Moreover one can show that
every Hopf ∗-algebra (G0,∆) can be extended in some sense to a compact quantum
group (C(G),∆). Conversely we already saw that every compact quantum group
(C(G),∆) has a “canonical” dense Hopf ∗-algebra (G0,∆) sitting inside it.

Moreover in the sense of category theory we obtain a natural equivalence for the
case of full and a bijective correspondence in the reduced case:

{Hopf ∗-algebras Pol(G)}
∼=←→ {Full compact quantum groups(C(G),∆)}

{Hopf ∗-algebras Pol(G)} 1:1←→ {Red. compact quantum groups(Cr(G),∆r)}
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Definition 3.3.16 (Co-amenable): Let G be a compact quantum group. If the canon-
ical surjection λG : C(G)→ Cr(G) is an isomorphism, then G is called co-amenable.

We also want to establish the notion of dual quantum subgroup via the next lemma
which we need to define the free wreath product with amalgamation.

Lemma 3.3.17: Let G and H be compact quantum groups. Then the following is
equivalent

(i) ι : C(H)→ C(G) is a faithful unital ∗-homomorphism, intertwining the comul-
tiplications,

(ii) ι : Cr(H) → Cr(G) is a faithful unital ∗-homomorphism, intertwining the
comultiplications,

(iii) ι : Pol(H) → Pol(G) is a faithful unital ∗-homomorphism, intertwining the
comultiplications.

Definition 3.3.18 (Dual quantum subgroup): Let G and H be compact quantum
groups. If there exists a faithful ∗-homomorphism ι : C(H)→ C(G) intertwining the
comultiplications (or equivalently for Cr(H),Pol(H) like in Lemma 3.3.17), then we
view C(H) ⊆ C(G), Cr(H) ⊆ Cr(G) and Pol(H) ⊆ Pol(G) and call H dual quantum
subgroup of G.

4. The dual discrete quantum group
Let G be a (locally) compact abelian group. Define

Ĝ := {φ : G→ T | φ is a group homomorphism}

as the Pontryagin dual. Pontryagin [Pon34] proved that every locally compact abelian
group is isomorphic to its bidual, i.e. G ∼= ̂̂

G . Moreover one can show that every
abelian group G is compact if and only if Ĝ is discrete.

This notion of duality fails, when we look at non-abelian compact groups. Since
compact quantum groups are in some sense a generalisation of compact groups, we
can also find a generalisation of Pontryagin duality for compact quantum groups. It
will also turn out that our dual quantum group is discrete.

However there are multiple ways to introduce duality for compact quantum groups.
We want to briefly give an algebraic approach as done in [Tim08; FSS17] for the dual
discrete quantum group. But we also want to construct it by using the right regular
representation, which is nowadays not the classical way to do it, since the regular
representation or the so called multiplicative unitary are difficult to handle. However
it is useful to construct the dual.
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Definition 3.4.1 (Algebraic/discrete quantum group): (i) An algebraic quantum
group is a unital Hopf ∗-algebra with a positive left and right-invariant Haar
state, defined as in Proposition 3.1.6.

(ii) A discrete algebraic quantum group, is an algebraic quantum group, such that
its underlying ∗-algebra is isomorphic to an algebraic direct sum of matrix
algebras ⊕iMNi(C).

To construct now the Pontryagin dual of an algebraic quantum group A with Haar
state h, we set

Â = {h(· a) | a ∈ A} ⊆ A∗,

where A∗ denotes the algebraic dual space. One then can equip Â with a suitable
multiplication, comultiplication, counit and antipode, to get again an algebraic
quantum group Â, as it is done in [Tim08]. Moreover it is proven for an algebraic
quantum group A, that A ∼= ̂̂

A , and also we get that Â is a discrete algebraic
quantum group.

We also can construct the dual, by using the right regular representation as follows.

Reminder 3.4.2: Every compact quantum group G has a right regular representation
U , Definition 3.3.9. This right regular representation contains all the information
necessary to reconstruct the compact quantum itself, since for all a ∈ C(G) we have

∆(a) = U(a⊗ 1)U∗

and the set

{(ω ⊗ 1)(U) | ω ∈ K(H,J )∗} ⊆ C(G)

is dense in C(G), Proposition 3.3.10.

Now define Ĝ = (C0(Ĝ), ∆̂) via

C0(Ĝ) := {(1⊗ ω)(U) | ω ∈ K(H,J )∗},

and

∆̂: C0(Ĝ)→M(C0(Ĝ)⊗ C0(Ĝ)), ∆̂(a) = σU(a⊗ 1)U∗σ.

Hereby denotes M(C0(Ĝ)⊗C0(Ĝ)) the multiplier algebra, and σ the tensor product
flip map.

One now can show that this object Ĝ defines us the dual discrete quantum group
for the compact quantum group G. The proof will be omitted.
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5. The free wreath product of compact quantum groups
In this section we want to define the so free wreath product of a compact quantum
group by the quantum symmetric group. It was defined by Bichon in [Bic04].

Reminder 3.5.1 (Free (amalgamated) product of C∗-algebras): Let A,B be unital
C∗-algebras.

(i) The free product A ∗C B of A and B is defined as the universal C∗-algebra
generated by copies of A and B with no additional relations. More pre-
cisely the free product A ∗C B is a unital C∗-algebra with unital embeddings
ιA : A → A ∗C B and ιB : B → A ∗C B such that for each unital C∗-algebra
C and ∗-homomorphisms f : A → C and g : B → C, there exists a unique
∗-homomorphism f ∗C g : A∗C → C such that the following diagram commutes

A A ∗C B B

C
f

ιA

f∗Cg g

ιB

.

(ii) Let D be a C∗-subalgebra of A and B, and denote by ϕA respectively ϕB the
embedding of D in A, respectively B. The free amalgamated product A ∗D B is
the universal C∗-algebra generated by the copies of A and B with the copies
of D identified, i.e. ϕA(d) = ϕB(d) for all d ∈ D.

Using this definition we can also define us the free (amalgamated) product for
compact quantum groups, as done in [Wan95]. Note that the main problem is to
obtain a suitable comuplitication on the free product of C∗-algebras. We will restrict
ourselves to simply taking a look at the case without amalgamation, but everything
can be generalised without problems, as in [Wan95].

We denote A ∗B := A ∗C B for two unital C∗-algebras A and B

Proposition 3.5.2: Let G,H be compact quantum groups. Then there exists a unique
comultiplication ∆ on C(G)∗C(H) such that (C(G)∗C(H),∆) is a compact quantum
group and ιG and ιH are compact quantum group homomorphisms. We denote this
compact quantum group by G ∗H := (C(G) ∗ C(H),∆), and call it the free product
of compact quantum groups.

Proof. We want to construct the unique comultiplication via the universal property
at the level of C∗-algebras. For this let C = (C(G) ∗C(H))⊗ (C(G) ∗C(H)) and let
f : C(G)→ C and g : C(H)→ C be defined by f = (ιG⊗ιG)∆A and g = (ιH⊗ιH)∆B .
Then by the universal property we obtain a map ∆ := f ∗ g. By coassociativity of
∆G and ∆H it easily follows that ∆ is coassociative.

The C∗-algebra C(G) ∗ C(H) is generated by ιG(C(G)) and ιH(C(H)). Moreover
by Proposition 3.3.13 we know that G and H are generated by the matrix elements
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of its non-degenerate finite-dimensional (in particular unitary) representations. If
U is a non-degenerate finite-dimensional unitary representation of G respectively
H, then also ι̃G(U) = (ιG(uij)) or ι̃H(U) = (ιH(uij)) are non-degenerate finite-
dimensional unitary representations of G ∗H. Then use Proposition 3.3.7 to obtain
the statement. □

In the case of compact matrix quantum groups, there is a simple description of
the free product.

Corollary 3.5.3: Let G = (C(G), u) and H = (C(H), v) be compact matrix quantum
groups, then so is G∗H = (C(G)∗C(H), ι̃G(u)⊕ ι̃H(v)), where ι̃G and ι̃H are defined
as in the proof of Proposition 3.5.2. Moreover the comultiplication is the same.

We also want to give explicitly the Haar state of G ∗H for two compact quantum
groups G,H. To do this let us introduce the free product of states defined by
Voiculescu in [VDN92].

Definition 3.5.4 (Free product of states): Let φ,ψ be states on C∗-algebras A,B.
The unique state φ ∗ ψ on A ∗B is called free product of states if

(i) (φ ∗ ψ)ιA = φ and (φ ∗ ψ)ιB = ψ,
(ii) if c1, . . . , cn are elements of kerφ or kerψ and no adjecent elements belong to

the same C∗-algebra A or B, then c1 . . . cn ∈ ker(φ ∗ ψ).

The Haar state is now given by the free product of the Haar states, see for instance
[Tim08, Prop. 6.3.3].

Proposition 3.5.5: Let G,H be compact quantum groups with Haar states hG, and
hH , respectively. Then the free product of states hG ∗ hH is the Haar state of G ∗H.

Also one can easily determine what the irreducible representations on G ∗H are.
Indeed take a family of irreducible unitary representations (Uα)α∈Irr(G) from G and
(V β)α∈Irr(H) from H, then a family of representation on G ∗H is given by simply
taking the tensor products elements that belong to (ι̃G(Uα))α or (ι̃H(V β))β.

By this and the formula for the Haar state on G ∗ H we can also deduce the
following statement, as done in [Tim08].

Corollary 3.5.6: Let G and H be compact quantum groups. Then the following hold

(i) (C(G) ∗ C(H),∆G ∗∆H)u ∼= (Cu(G),∆G) ∗ (Cu(H),∆H),
(ii) (C(G) ∗ C(H),∆G ∗ ∆H)r ∼= (Cr(G),∆G) ∗ (Cr(H),∆H), where (C(G) ∗

C(H),∆G ∗ ∆H)r denotes the reduced free product. Note that the underly-
ing C∗-algebra is constructed as the image under the GNS-representation for
hG ∗ hH .

38



To finish the theory on free products, we should briefly introduce amalgamated free
products. as already mentioned, all statements work for this as well. To do so, we
use a corollary of Wang [Wan95].

Definition 3.5.7 (Amalgamated free products): LetG,H be compact quantum groups,
and D be a compact quantum subgroup of G and H, with natural embeddings jG
and jH . Denote by ⟨D⟩ the closed two sided-ideal of

ιAjA(d)− ιBjB(d)

for d ∈ C(D). Then the amalgamated free product of G and H under D is defined as

G ∗D H := G ∗H/⟨D⟩.

Now after introducing the basics of free products of compact quantum groups, we
want to have a look at the free wreath product introduced by Bichon. We denote
C(G)∗N := C(G) ∗ . . . ∗ C(G) (N -times) for a C∗-algebra C(G). Similarly for the
amalgamated free product.

Definition 3.5.8 (Free wreath product): Let G be a compact quantum group, and
n ∈ N. The free wreath product of G by S+

N is defined by

C(G ≀∗ S+
N ) = C(G)∗N ∗ C(S+

N )/I,

where we consider the full free product and I is the two-sided closed ideal generated
by

νk(a)uki − ukiνk(a), 1 ≤ k, i ≤ n, a ∈ C(G),

where uki are the matrix coefficients of the fundamental representation of S+
N and we

denote νk : C(G)→ C(G)∗N ⊆ C(G)∗N ∗ C(S+
N ) for the canonical ∗-homomorphism

embedding in the k-th copy.

Remark 3.5.9: If G is a quantum permutation group with fundamental representation
v, then G ≀∗ S+

N is also a quantum permutation group with magic unitary defined by
wpi,qj = νi(vpq)uij .

Notice, that the notation here might be slightly confusing, since we use tensor
identifications, and note that we might need to embed the free wreath product in
S+
M with M ≥ N , to get that G ≀∗ S+

N is a quantum permutation group.

Following Freslon [Fre23], we can also define a free wreath product with amalgamation,
in the following sense.

Definition 3.5.10: Let G be a compact quantum group, and H be a dual quantum
subgroup of G. The free amalgamated wreath product of G is defined as

C(G ≀∗,H S+
N ) = C(G)∗HN ∗ C(S+

N )/I,

where I is the same two-sided closed ideal as in Definition 3.5.8.
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With a suitable comultiplication the free wreath product of a compact quantum
group G is also a compact quantum group. See [Bic04].
Proposition 3.5.11 (Free wreath products are CQG): Let G be a compact quantum
group, and N ∈ N, then G ≀∗S+

N is a compact quantum group with the comultiplication
∆ satisfying the following

∆(uij) =
n∑
k=1

uik ⊗ ukj , ∆(νi(a)) =
n∑
k=1

νi ⊗ νk(∆(a))(uik ⊗ 1)

We now want to give a proof why we can indeed write H+
N
∼= Ẑ/2Z ≀∗ S+

N . This
proof can be generalised for the quantum reflection group Hs+

N for s ≥ 1.
For this let us introduce sudokus, as it is done in [BV09].

Definition 3.5.12 (Sudoku): Let s, n ∈ N. A (s, n)-sudoku is a magic unitary of size
sn of the form

m =


a0 a1 . . . as−1

as−1 a0 . . . as−2

...
... . . . ...

a1 a2 . . . a0

 ,
where a0, . . . , as−1 ∈ Mn(C). Note that m is circulant and we can write m =
(ap−q
ij )pi,qj under using tensor product identifications, where all indices are modulo s.
Banica and Vergnioux proved in [BV09, Theorem 2.3] that

C(H+
N ) ∼= C∗(apij | (a

p−q
ij )pi,qj is (2, N)-sudoku).

Moreover H+
N is a quantum permutation group of S+

2N .
Lemma 3.5.13: We have the following identification

Ẑ/2Z ∼= C(Z/2Z) ∼= C∗(Z/2Z) = C∗
(
p, q

∣∣∣∣∣
(
p q
q p

)
is a magic unitary

)
.

Moreover C∗(Z/2Z) is a quantum permutation group.

Proof. The first isomorphism is clear, since C∗(Z/2Z) is commutative and of dimen-
sion 2, therefore C∗(Z/2Z) ∼= C⊕ C, and C(Z/2Z) ∼= C⊕ C as well. For the second
isomorphism, note that

C∗(Z/2Z) = C∗(1, u1 | u2
1 = 1) = C∗(1, p, q | p+ q = 1),

where in the last step p, q are projections defined by p = 1
2(1 + u1) and q = 1

2(1− u1).
Thus we can also write

C∗(Z/2Z) = C∗
(
p, q

∣∣∣∣∣
(
p q
q p

)
is a magic unitary

)
.

Hence C∗(Z/2Z) is a quantum permutation group. □
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Using these facts we want to prove that the quantum hyperoctahedral group can
be seen as a free wreath product.

Proposition 3.5.14: Let N ∈ N, then we have the following isomorphism

C(H+
N ) ∼= C(Z/2Z) ≀∗ C(S+

N ).

Proof. Firstly note that Z/2Z can be written as Z/2Z ∼=< σ >⊆ GL2(C), where

σ =
(

0 1
1 0

)

is cyclic with σ2 = I2. Taking the isomorphism C∗(Z/2Z) ∼= C(Z/2Z) and by the
lemma before C(Z/2Z) is a quantum permutation group, where our fundamental
representation v = (vpq)0≤p,q≤1 is defined by

vpq =
{
σ 7→ p+ q mod 2
σ2 7→ p+ q + 1 mod 2

.

Observe that v is a circulant matrix as one can easily verify, i.e. vpq = v0(p−q).
One then defines a map Φ: C(H+

N )→ C(Z/2Z) ≀∗ C(S+
N ). Considering the genera-

tors of the magic unitary as in Remark 3.5.9 and using the definition of C(H+
N ) as

universal C∗-algebra, we claim that the elements of the following form are forming a
sudoku:

Apij = νi(v0p)uij .

Indeed the corresponding matrix defined in Definition 3.5.12, is given by

mpi,qj = Ap−q
ij = νi(v0(p−q)uij = νi(vpq)uij = wpi,qj ,

where we used that v is a circulant matrix, and since the fundamental representation
of the free wreath product is a magic unitary, we proved the claim, and obtain a
∗-homomorphism sending generators to generators.

We now want to construct an inverse ∗-homomorphism Ψ: C(Z/2Z) ≀∗ C(S+
N )→

C(H+
N ). To do this, we define suitable ∗-homomorphisms from C(Z/2Z)→ C(H+

N )
respectively C(S+

N )→ C(H+
N ) and prove that the generators of this ∗-homomorphisms

satisfy the defining relation of the free wreath product. Let apij be the generators of
C(H+

N ) then define elements U = (Upq) and V = (Vij) by

Upq =
∑
k

ap−q
ik ,

Vij =
∑
r

arp−q.
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Then U defines us a ∗-homomorphism C(Z/2Z)→ C(H+
N ) for every copy of C(Z/2Z)

and V defines us a ∗-homomorphism C(S+
N )→ C(H+

N ), where we used the fact that
C(H+

N ) is a quantum permutation group, therefore this map makes sense without
further justification.

Then one can compute νi(Upq)Vij − Vijνi(Upq) = 0, such that we obtain a ∗-
homomorphism Ψ via νi(U) and V .

One then can check as in [BV09] that Ψ is indeed the inverse of Φ. This proves
the statement. □
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Chapter IV.

Graphs of C∗-algebras

We follow the definition of a graph in the sense of Serre [Ser77]. Let G be a graph. We
denote by V (G) the vertex set of G, and its edge set by E(G). For e ∈ E(G) we denote
by s(e) and r(e) respectively its source and range of e and by e its inverse edge. Note
that we use geometric edges, i.e. for all e ∈ E(G) we also have e ∈ E(G). We say
that E(G) = E+(G)∪E−(G), with e ∈ E+(G) if and only if e ∈ E−(G), is a partition.
Moreover we call H ⊆ G a connected subgraph if V (H) ⊆ V (G), E(H) ⊆ E(G) such
that e ∈ E(H) if and only if e ∈ E(H) and the source and range map from G are
restricted to H.

For the whole chapter G is a graph.

1. Graphs of C∗-algebras and the maximal fundamental
C∗-algebra

Graphs of groups are a basic tool used in Bass-Serre theory for groups. In the
following motivation we want to recall basic ideas of it. Our goal is to establish some
kind of “quantum Bass-Serre theory”, which will help us computing the K-theory,
by using the so called fundamental C∗-algebra.

In [Ver04], Vergnioux first used quantum Bass-Serre trees in spirit of [JV84] to
obtain results about the K-theory and especially K-amenability of free amalgamated
products. This was then extended by Fima and Freslon [FF14], who proved that the
fundamental group of discrete quantum groups are K-amenable. Nevertheless we
will restrict ourselves to graph of C∗-algebras.

Motivation 4.1.1: In [Ser77] introduced graph of groups, this is a graph where each
vertex and edge is assigned a group. The groups assigned to edges are related to the
groups assigned to the vertices they connect with via injective group homomorphisms.
Serre then defined the so called fundamental group of a graph of groups, which is a
generalisation of the topological fundamental group, and captures the structure of
the graph of groups in some algebraic sense.
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The fundamental theorem of Bass-Serre theory says that every group acting on a
tree without inversion, is isomorphic to a fundamental group of a graph of groups,
namely the quotient graph of groups.

In analogy to the definition by Serre we now define graph of C∗-algebras.

Definition 4.1.2 (Graph of C∗-algebras): A graph of C∗-algebras is a tuple

(G, (Aq)q∈V (G), (Be)e∈E(G), (se)e∈E(G))

such that

(i) G is a connected graph,
(ii) for all q ∈ V (G) and e ∈ E(G), Aq and Be are unital C∗-algebras,
(iii) for all e ∈ E(G) we have Be = Be and
(iv) for all e ∈ E(G), se : Be → Ase is a unital faithful ∗-homomorphism.

For every e ∈ E(G) we denote re = se : Be → Ar(e), B
s
e = se(Be), Br

e = re(Be).

For simplicity we write (G, (Aq)q∈V (G), (Be)e∈E(G)) for a graph of C∗-algebras.

Remark 4.1.3 (Maximal subtree): Let G be a connected graph. One can show that
every connected graph contains a subtree T0 ⊆ G. By defining a suitable ordering,
one can apply Zorn’s Lemma and obtain a maximal subtree T of G.

We now want to define the maximal fundamental C∗-algebra as an analogue of the
fundamental group one get in the sense of Bass-Serre-theory.

Definition 4.1.4 (Fundamental C∗-algebra): Let (G, (Aq)q∈V (G), (Be)e∈E(G))
be a graph of C∗-algebras and let T be a maximal subtree of G. The (maximal)
fundamental C∗-algebra with respect to T is the universal C∗-algebra generated by
the C∗-algebras Aq for q ∈ V (G) and by unitaries ue for e ∈ E(G) with the following
relations

(i) for all e ∈ E(G) we have ue = u∗
e,

(ii) for all e ∈ E(G) and b ∈ Be we have uese(b)ue = re(b) and
(iii) for all e ∈ E(T ) we have ue = 1.

This C∗-algebra will be denoted as πmax
1 (G, (Aq)q∈V (G), (Be)e∈E(G), T ).

Since we are dealing with universal C∗-algebras, it is necessary to prove that the
maximal fundamental C∗-algebra exists and is non-trivial. See for instance [FG18]
for a proof.

Proposition 4.1.5: Let (G, (Aq)q∈V (G), (Be)e∈E(G)) be a graph of C∗-algebras and let T
be a maximal subtree of G, then its maximal fundamental C∗-algebra P is non-trivial.
Moreover the canonical ∗-homomorphisms Aq → P are faithful for all q ∈ V (G).
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For our next example we need the HNN-extension of C∗-algebras, [Ued05; Ued08],
therefore we want to introduce it here. Let us quickly recall the construction for
groups:

For groups the HNN-construction of a group G is a group Γ in which G embeds in
such a way that two given isomorphic subgroups of G are conjugate. More precisely,
given a subgroup H ⊆ G and an injective group homomorphism θ : H → G, the
HNN-extension is defined as

Γ = ⟨G, t | tσt−1 = θ(σ) for all σ ∈ H⟩.

Definition 4.1.6 (Full HNN-extension): Let A be a unital C∗-algebra and B ⊆ A a
unital C∗-subalgebra. Moreover let θ : B → A be an injective ∗-homomorphism.

The full or universal HNN-extension is the universal C∗-algebra generated by
A and a unitary u(θ) such that u(θ)θ(b)u(θ)∗ = b for all b ∈ B, denoting it by
HNN(A,B, θ).

Example 4.1.7: (i) Let G be the following graph
p0 p1

e .

Let A0 = Ap0 , A1 = Ap1 and B = Be ⊆ A0, A1 be unital C∗-algebras. Moreover
let se respectively se be the canonical embedding of B into A0 respectively A1.

Obviously the maximal subtree of G is G itself, by this ue = 1, and therefore
only (ii) in Definition 4.1.4 provides us with a relation. Thus we conclude
πmax

1 (G, (A0, A1), B,G) ∼= A0 ∗B A1.
(ii) Let G be the following graph

p
e

Let A = Ap and B = Be be unital C∗-algebras and θ : B → A be an injective
∗-homomorphism. We set se = id and re = θ. Obviously the maximal subtree
is {p}. By this we obtain the full HNN-extension HNN(A,B, θ) as fundamental
C∗-algebra of this graph of C∗-algebras.

2. Reduced fundamental C∗-algebras
We want to define the reduced (also sometimes called edge-reduced) fundamental
C∗-algebra and the vertex-reduced C∗-algebra. To do so we equip the edges of a
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graph of C∗-algebras with conditional expectations Ese : As(e) → Bs
e := se(Be) for all

e ∈ E(G).
The reason for having different notions of reduced fundamental C∗-algebras is

the fact that the conditional expectations might behave “degenerate”. If we assume
that the conditional expectations are GNS-faithful, we obtain the (edge)-reduced
fundamental C∗-algebra, otherwise if they are not necessarily GNS-faithful, we are
in the setting of vertex-reduced fundamental C∗-algebras. Both were introduced in
[FF14] and [FG18].

To define the reduced fundamental C∗-algebra, we need some kind of GNS-
construction which we obtain from a conditional expectation, see for instance [Pas73].
For this recall the definition of a Hilbert C∗-module, Definition 2.1.7 and recall that
conditional expectations are unital completely positive maps.

Construction 4.2.1 (GNS-construction): Let A and B be a unital C∗-algebras and
ϕ : A→ B a unital completely positive map. There exists a triple (H, ρ, ξ), where H
is a Hilbert B-module, ξ ∈ H and ρ : A→ BB(H) is a unital ∗-homomorphism such
that ρ(A)ξB is dense in H and ϕ(a) = ⟨ξ, ρ(a)ξ⟩ for all a ∈ A. This construction is
unique up to isomorphism.

If we take a unital C∗-subalgebra B ⊆ A and a conditional expectation E : A→ B,
we have that the Hilbert B-submodule ηB of the GNS-construction with respect to
E is complemented in H. Indeed we have

H = ξH⊕H◦,

where

H◦ = {ρ(a)ξb | a ∈ ker(E), b ∈ B}.

We say that E is GNS-faithful or non-degenerate if ρ is faithful.

Definition 4.2.2 (GNS-faithful): Let A be a unital C∗-algebra and (Bi)i∈I be a family
of C∗-algebras. A family (φi)i∈I of unital completely positive maps φi : A→ Bi is
called GNS-faithful if ⋂i∈I ker(πi) = {0}, where (Hi, πi, ξi) is the GNS-construction
of φi.

We will use a slightly different notation for the GNS-construction, as we will set
as third argument the natural linear map η : A → H, which sends 1 to ξ. We will
then say that (H, ρ, η) is the GNS-construction.

Let (G, (Aq), (Be)) be a graph of C∗-algebras with GNS-faithful conditional expec-
tations Ese : As(e) → Bs

e := se(Be) for every edge e ∈ E(G). Then denote for every
edge e ∈ E(G) by (Hse, πse, ηse) the GNS-construction with respect to the completely
positive map s−1

e ◦Ese . Hence Hse is a Hilbert Be-module, obtained as completion of
As(e) with respect to the induced Be-valued inner product. The representation πse is
induced by left multiplication, moreover we define ξse := ηse(1).

46



Since by assumption the conditional expectations Ese are GNS-faithful, we may
identify As(e) with its image in BBe(Hse) via the representation πse for all edges
e ∈ E(G). We now can construct path Hilbert-modules, it will carry the faithful
representation of the reduced fundamental C∗-algebra.

Construction 4.2.3 (Path Hilbert C∗-modules): Let n ∈ N0 and let w = (e1, . . . , en)
be a path on G. We define Hilbert C∗-modules

Ji :=


Hse1 , if i = 0
Hsei+1 , if ei+1 ̸= ei(
Hsei+1

)◦
, if ei+1 = ei

Ar(en), if i = n.

We can construct a tensor product for these Hilbert C∗-modules, while using actions
induced by the representations, for more details see [FF14, Section 3.2]. We then
define

Hw := J0 ⊗ . . .⊗ Jn,

which we will call path Hilbert module, Hw is a Hilbert Ar(en)-module.
For two vertices p, p0 ∈ V (G) we set

Hp0,p =
⊕

Path w from p0 to p
Hw,

which is a Hilbert Ap-module.

We need to construct suitable unitaries. For this let e ∈ E(G) and p ∈ V (G), then
define

upe : Hr(e),p → Hs(e),p,

by the following case distinction:
Let w be a path of length n from r(e) to p and let ζ ∈ Hw. We have to look at

the cases n = 0, n = 1 and n ≥ 2.

• For n = 0, we have the empty path w, then set upe(ζ) = ξse ⊗ ζ ∈ Hw,
• For n = 1, then w = (e1) and ζ = a⊗ ζ ′ where a ∈ As(e1) (where we identify
As(e) with its image under the GNS-representation), and ζ ′ ∈ Ap. If e1 ̸= e,
then put upe(ζ) = ξse ⊗ ζ ∈ H(e,e1), else define

upe =
{
ξse ⊗ ζ ∈ H(e,e1), if a ∈ (Hse1)◦

re1 ◦ s−1
e1 (a)ζ ′ ∈ Ap, if a ∈ Bs

e1 .
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• For n ≥ 2, then w = (e1, . . . , en) and ζ = a ⊗ ζ ′ with a ∈ As(e1) and ζ ′ ∈
J1 . . .⊗ Jn. If e1 ̸= e, then upe(ζ) = ξse ⊗ ζ ∈ H(e,w), else

upe =
{
ξse ⊗ ζ ∈ H(e,w), if a ∈ (Hse1)◦

re1 ◦ s−1
e1 (a)ζ ′ ∈ H(e2,...,en), if a ∈ Bs

e1 .

As explained in [FF14], we can extend upe to unitaries such that (upe)∗ = upe. Moreover
we have an analogue of the property (ii) in the definition of the full fundamental
C∗-algebra Definition 4.1.4, as for all edges e ∈ E(G) and b ∈ Be

upese(b)u
p
e = re(b).

Lastly for a path w = (e1, . . . , en) and p ∈ V (G), we denote

upw = upe1u
p
e2 . . . u

p
en .

These unitaries are the suitable ones, we now can use to define the reduced funda-
mental C∗-algebra.

Definition 4.2.4 (Reduced fundamental C∗-algebra): Let (G, (Aq)q, (Be)e) be a graph
of C∗-algebras and let p0, p ∈ V (G). The reduced fundamental C∗-algebra rooted in
p0 in base p is the C∗-algebra

πp1(G, p0) := C∗((upz)∗Aqu
p
w | q ∈ V (G), w, z paths from q to p0) ⊆ BAp(Hp0,p)

Our definition depends on two arbitrary vertices, this bring us a lot of different
representations of the reduced fundamental C∗-algebra. However it can be proven,
that the definition does not really depend on the vertex p0, since we can construct an
isomorphism if we have two different rooting in our definition by the connectedness
of G. Hence we will simply write P (p0) for the reduced fundamental C∗-algebra
πp0

1 (G, p0).

If we now assume that the conditional expectations are not necessarily GNS-faithful,
we obtain the notion of vertex-reduced fundamental C∗-algebras. Instead of defining
the vertex-reduced fundamental C∗-algebra as done in [FF14], we want to use the
description as a quotient, in order to save us the technical details.

Definition 4.2.5 (Reduced Operator): Let (G, (Aq)q∈V (G), (Be)e∈E(G)) be a graph of
C∗-algebras. An element a in the fundamental C∗-algebra P is called reduced operator
from p to p for a p ∈ V (G), if

a = a0ue1a1ue2 . . . uenan

where n ≥ 1 and (e1, . . . , en) is path from p to p itself, a0 ∈ Ap, ak ∈ Ar(ek) and if
ek+1 = ek implies Esek+1(ak) = 0.

48



Definition 4.2.6 (Vertex-reduced fundamental C∗-algebra): Let
(G, (Aq)q∈V (G), (Be)e∈E(G)) be a graph of C∗-algebras and denote by P its full funda-
mental C∗-algebra. The unital C∗-algebra Pr called the vertex-reduced fundamental
C∗-algebra, is the quotient λ : P → Pr of P such that

(i) There exists a GNS-faithful family {Ep | p ∈ V (G)} of unital completely positive
maps Ep : Pr → Ap such that Ep(λ(a)) = a for all a ∈ Ap and Ep(λ(b)) = 0 for
all reduced operators b ∈ P from p to p,

(ii) For any unital C∗-algebra C with a surjective ∗-homomorphism ρ : P → C
and a GNS-faithful family {φp | p ∈ V (G)} of unital completely positive
maps φp : C → Ap such that φp(ρ(a)) = a for all a ∈ Ap and φp(ρ(b)) = b
for all reduced operators b ∈ P from p to p, there exists a unique unital
∗-homomorphism ν : Pr → C factorising ρ, i.e. ν ◦ λ = ρ.

3. Free wreath products as fundamental C∗-algebras
In this section we want to construct the full and vertex-reduced free wreath product
as fundamental C∗-algebras. To do so we will mainly follow [FT24].

We denote C•(·) for either the full or the reduced C∗-algebra.

Let N ∈ N, and TN be a rooted tree with N + 1 vertices p0, . . . , pN , where p0 is
the root, and 2N edges v1, . . . , vN , v1, . . . , vN and source maps s(vk) = p0 and range
maps r(vk) = pk for all 1 ≤ k ≤ N .

p0

p1 p2 pN. . .p3

Equip the rooted tree TN with the following setting

Ap0 = C•(H)⊗ C•(S+
N ),

Apk = C•(G)⊗ CN for 1 ≤ k ≤ N,
Bvk = Bvk = C•(H)⊗ CN for 1 ≤ k ≤ N,

with source maps

svk : C•(H)⊗ CN → C•(H)⊗ Lk ⊆ C•(H)⊗ C•(S+
N ), h⊗ ej 7→ h⊗ ukj ,

where Lk := span(ukj | 1 ≤ j ≤ N) for 1 ≤ k ≤ N . The range maps rvk : C•(H)⊗
CN → C•(H)⊗ CN are the canonical inclusions.

Following [FT24, Proposition 2.5. and 2.18.] we construct conditional expectations
in the following way.
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Proposition 4.3.1: Let 1 ≤ i ≤ N . The map

Ei : C•(S+
N )→ Li, x 7→ N

N∑
j=1

h(xuij)uij

is a conditional expectation. Here h denotes the Haarstate of C•(S+
N ).

Proof. First note that Li ⊆ Pol(S+
N ) is a unital ∗-subalgebra of Pol(S+

N ). Moreover
since CN → Li, ej 7→ uij is a ∗-isomorphism, we may view Li as a finite dimensional
commutative C∗-subalgebra of C•(S+

N ). One now can easily check linearity, since h
is linear. Also positivity is clear, since uij are projections and h is a state. Moreover
since h(uij) = 1

N we obtain

Ei(1) = N
N∑
j=1

h(uij)uij =
N∑
j=1

uij = 1.

Since ∑N
j=1 uij = 1 is a partition of unity, we can conclude that two projections

uil, uik with l ̸= k are orthogonal. Therefore for arbitrary 1 ≤ k ≤ N we get

Ei(uik) = N
N∑
j=1

h(uikuij)uij = N
N∑
j=1

δkjh(uij)uij = h(uik).

Thus Ei is surjective and also Ei ◦ Ei = Ei, since Ei(b) = b for all b ∈ Ei(C•(S+
N )),

by linearity. □

Proposition 4.3.2: Let G be a compact quantum group, and H be a dual subgroup of
G. Then the unique linear map E : Pol(G)→ Pol(H) such that

(id⊗E)ux =
{
ux if x ∈ Irr(H),
0 if x ∈ Irr(G)\ Irr(H)

has a unique unital completely positive extension to a map E• : C•(G)→ C•(H).

The reduced case follows directly from [Ver04, Proposition 2.2] and the full case
follows from [Chi14, Theorem 3.1.]. From now on we denote the map E• for either
the reduced or full case by EH .

Now we can equip our graph of C∗-algebras with conditional expectations

id⊗Ek : C•(H)⊗ C•(S+
N )→ C•(H)⊗ Lk

and

EH ⊗ id : C•(G)⊗ CN → C•(H)⊗ CN
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.
Our goal is now to prove that the maximal respectively vertex-reduced fundamental

C∗-algebra are isomorphic to the maximal respectively reduced amalgamated free
wreath product C•(G ≀∗,H S+

N ).
For the first one, denote by A := πmax

1 (TN , (Aq)q∈V (TN ), (Be)e∈E(TN ), TN ) its maxi-
mal fundamental C∗-algebra relative to the maximal subtree TN , so that A is the
universal C∗-algebra generated by Apk , 1 ≤ k ≤ N with the relations rvk(a) = svk(a)
for all a ∈ C(H)⊗ CN and all 1 ≤ k ≤ N .

Recall νi : C(G)→ C(G)∗HN ⊆ C(G ≀∗,H S+
N ) denotes the embedding into the i-th

copy of C(G) in C(G)∗HN , and denote by ν the common restriction of νi to C(H).
As done in [FT24] we now want to prove A ∼= C(G ≀∗,H S+

N ).

Proposition 4.3.3: Let G be a compact quantum group and H ⊆ G a dual quantum
subgroup. There is a unique isomorphism π : A → C(G ≀∗,H S+

N ) such that{
π(h⊗ uij) = ν(h)uij , if h⊗ uij ∈ Ap0 = C(H)⊗ C(S+

N )
π(a⊗ ej) = νi(a)uij , if a⊗ ej ∈ Api = C(G)⊗ CN

for all 1 ≤ i, j ≤ N .

Proof. The existence will follow by the universal property of A. Since νi(a) and
uij commute in C(G ≀∗,H S+

N ) by definition, we get unique unital ∗-homomorphisms
πi : Api → C(G ≀∗,H S+

N ) such that πi(a ⊗ ej) = νi(a)uij for all a ∈ C(G) and
1 ≤ j ≤ N . Moreover define π0 : Ap0 → C(G ≀∗,H S+

N ) by π0(h ⊗ uij) = ν(h)uij for
all h⊗ uij ∈ Ap0 . Obviously we have

π0(svi(h⊗ ej)) = π0(h⊗ uij) = ν(h)uij
πi(rvi(h⊗ ej)) = πi(h⊗ ej) = νi(h)uij = ν(h)uij ,

for all 1 ≤ i, j ≤ N and h ∈ C(H). Note the last step follows since we assume that
the restrictions of νi for all 1 ≤ i ≤ N on C(H) are the same.

By the universal property of A we now obtain a unital ∗-homomorphism fulfilling
the conditions we want. The image of π contains all uij for all 1 ≤ i, j ≤ N and

N∑
j=1

πi(a⊗ ej) =
N∑
j=1

νi(a)uij = νi(a)
N∑
j=1

uij = νi(a)

for all 1 ≤ i ≤ N , for the last step recall the definition of S+
N . By this we get

surjectivity of π.
Lastly we want to construct an inverse, to show that π is an isomorphism. By

the universal property of C(G ≀∗,H S+
N ) we obtain a unique unital surjective ∗-

homomorphism µ : C(G)∗N ∗C(S+
N )→ C(G ≀∗,H S+

N ) such that µ(νi(a)) = a⊗1 ∈ Api
and µ(b) = 1⊗ b ∈ Ap0 for all 1 ≤ i ≤ N , a ∈ C(G) and b ∈ C(S+

N ). We now want
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to prove that I from the definition of C(G ≀∗,H S+
N ) is contained in ker(µ), by this we

obtain a map ρ : C(G ≀∗,H S+
N )→ A. Indeed, note that

µ(νi(a)uij) = a⊗ uij = (a⊗ 1)(1⊗ uij) = µ(νi(a))svj (1⊗ ej)
= µ(νi(a))rvj (1⊗ ej) = (a⊗ 1)(1⊗ ej)
= (1⊗ ej)(a⊗ 1) = rvi(1⊗ ej)µ(νi(a))
= svi(1⊗ ej)µ(νi(a)) = (1⊗ uij)µ(νi(a)) = µ(uijνi(a))

for all 1 ≤ i, j ≤ N and a ∈ C(G). Thus I ⊆ ker(µ).
Recall now that ι : C(H) → C(G) is the faithful ∗-homomorphism from Defini-

tion 3.3.18. Then the following holds

µ(νi(ι(h))) = ι(h)⊗ 1 = svi(h⊗ 1) = rvi(h⊗ 1) = h⊗ 1
= rvj (h⊗ 1) = svj (h⊗ 1) = ι(h)⊗ 1 = µ(νj(ι(h))).

Thus the images of C(H) on µ coincide, and from I ⊆ ker(µ) we obtain a unique
unital ∗-homomorphism ρ : C(G ≀∗,H S+

N ) → A factorising µ. Since µ is surjective,
also ρ is surjective and we can easily prove that ρ is the inverse of π. Indeed, since
the images of C(H) on µ coincide, they also coincide on ρ and we get

(ρ ◦ π)(h⊗ uij) = ρ(ν(h)uij) = h⊗ uij ,
(ρ ◦ π)(a⊗ uij) = ρ(νi(a)uij) = a⊗ uij ,

for all 1 ≤ i, j ≤ N , h ∈ C(H) and a ∈ C(G). Hence ρ is the inverse of π and thus π
is an isomorphism. □

We now proved that A ∼= C(G ≀∗,H S+
N ), this will be used later to calculate the

K-theory of C(G ≀∗,H S+
N ). We now also want to do the same for the reduced case.

For this we will need to look at the Haar state.
But let us fix some notation before doing so. Denote by Ar the vertex-reduced

fundamental C∗-algebra of the constructed graph of C∗-algebras with faithful condi-
tional expectations as constructed and view Apk ⊆ A for all 0 ≤ k ≤ N . We write λ
for the canonical surjection of the full to the reduced fundamental C∗-algebra.

By the universal property ofA, there exists a unique surjective unital ∗-homomorphism
λ′ : A → Ar such that the restrictions fulfil λ′|Ap0

= λH⊗λS+
N

and λ′|Apk
= λG⊗idCN

for all 1 ≤ k ≤ N . Let E : A → Cr(H)⊗Cr(S+
N ) be a GNS-faithful conditional expec-

tation and define ω := hH⊗hS+
N
◦E such that the restrictions fulfil ω|Ap0

= hH⊗hS+
N

and ω(c) = 0 for all reduced operators in A. The state ω ∈ A∗ is called the funda-
mental state. Let λ : C(G ≀∗,H S+

N )→ Cr(G ≀∗,H S+
N ) be the canonical surjection.

Proposition 4.3.4: Let G be a compact quantum group and H ⊆ G a dual quantum
subgroup. The unique Haar state h ∈ C(G ≀∗,H S+

N )∗ vanishes on reduced operators
of the form

a0νi1(b1)a1νi2(b2) . . . νin(bn)an,

52



where ak ∈ C(S+
N ) ⊂ C(G ≀∗,H S+

N ), and bk ∈ C(G) are such that EH(bk) = 0 for all
k and if ik = ik+1, then Eik(ak) = 0.

There exists a unique unital ∗-isomorphism πr : Ar → Cr(G ≀∗,H S+
N ) such that

λ ◦ π = πr ◦ λ′, where π : A → C(G ≀∗,H S+
N ) is the isomorphism of Proposition

Proposition 4.3.3.

Proof. Define the state ω̃ := ω ◦ λ′ ◦ µ ∈ C(G ≀∗,H S+
N )∗, where the ∗-homomorphism

µ := π−1 : C(G ≀∗,H S+
N )→ A has been constructed in the proof of the full case in

Proposition 4.3.3. Let C ⊂ A be the linear span of C(S+
N ), ν(C(H)), and all reduced

operators in C(G ≀∗,H S+
N ), note that C is dense in A by definition. By construction,

the state ω̃ satisfies ω̃|C(S+
N ) = hS+

N
, ω̃ ◦ ν = hH , and ω̃(c) = 0 for c ∈ C(G ≀∗,H S+

N )
being a reduced operator. Thus, ω̃ satisfies the properties of the state h as stated
in the theorem. Hence, h = ω̃ by the density of C. We then will show that ω̃ is
invariant with respect to ∆, hence ω̃ is the Haar state. To do this we it suffices to
prove that ω̃ is invariant on C. For an element x ∈ C, which is the sum of an element
x0 ∈ C(S+

N )⊗ C(H) and reduced operators. By construction of ω̃ it suffices to show
that ∆(x) ∈ C ⊙ C(G ≀∗,H S+

N ), as it is done in [FT24, Theorem 3.2].
Since then ω̃ = h is the Haar state, and since E is GNS faithful and hH ⊗ hS+

N

is faithful on Cr(H) ⊗ Cr(S+
N ), we obtain that Ar is isomorphic to the reduced

C∗-algebra Cr(G ≀∗,H S+
N ), since it is constructed by the GNS construction with

respect to the Haar state. □

Overall, we can therefore summarise, where A• stands either for the full or the
vertex-reduced fundamental C∗-algebra.

Corollary 4.3.5: Let G be a compact quantum group and H ⊆ G a dual quantum
subgroup. Then C•(G ≀∗,H S+

N ) is isomorphic to the vertex-reduced/full fundamental
C∗-algebra A• of the constructed graph of C∗-algebras equipped with conditional
expectations.

We will now use this in the next chapter to compute the K-theory of free wreath
products with trivial amalgamation.
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Chapter V.

K-theory of free wreath products

In this chapter we want to compute the K-theory of free wreath products of compact
quantum groups with the quantum symmetric group S+

N . To do so we need to prove
the 6-term exact sequences for the KK-theory of a fundamental C∗-algebra and
after this we can directly compute the K-theory of free wreath products. Before
we want to have a look at the vertex-reduced free product and the vertex-reduced
HNN-extension. This chapter is based primarily on the work of Fima on graph of
C∗-algebras [Fim13; FF14; FP16; FG18; FG20; FT24].

1. Vertex-reduced free product and HNN-extension
In [FG20; Fim13], Fima and Germain proved the KK-equivalence of the full free
amalgamated products with the vertex-reduced free amalgamated product, respec-
tively the KK-equivalence of the full HNN-extension with the vertex-reduced one. To
prove this they constructed six-term exact sequences. In [FG18] Fima and Germain
generalised it in the sense of graph of C∗-algebras and fundamental C∗-algebras.

Indeed as we saw in Example 4.1.7, for the graph consisting of two vertices and one
geometric edge, we obtain as full fundamental C∗-algebra the full amalgamated free
product, analogously if one equip this setting with conditional expectations, which are
not GNS-faithfully, then one obtain as vertex-reduced fundamental C∗-algebra the
vertex-reduced amalgamated free product. Note that there is also another possibility
if the conditional expectations are GNS-faithful, the edge-reduced amalgamated free
product, introduced by Voiculescu. However it turns out, that this construction is
too “small” in some sense. For the HNN-extension the same can be done.

For this let us introduce their vertex-reduced counterpart, before introducing
Serre’s dévissage process.

We will begin with the vertex-reduced HNN-extension. To do so we will modify
the definition, such that we can “more naturally” define the vertex-reduced HNN-
extension. Recall Example 4.1.7.
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Remark 5.1.1 (HNN-extension): Let A,B be unital C∗-algebras, let πk : B → A be
unital faithful ∗-homomorphism and let Ek : A→ B be a unital completely positive
map such that Ek ◦ πk = idB for all k = −1, 1. The full HNN-extension is the
universal C∗-algebra generated by A and a unitary u such that uπ−1(b)u∗ = π1(b)
for all b ∈ B. We denote it by HNN(A,B, π1, π−1).
Definition 5.1.2 (Vertex-reduced HNN-extension): The vertex-reduced HNN-extension
C is the unique, up to isomorphism, unital C∗-algebra satisfying the following prop-
erties:

(i) There exists a unital ∗-homomorphism ρ : A → C and a unitary u ∈ C such
that uρ(π−1(b))u∗ = ρ(π1(b)) for all b ∈ B and C is generated by ρ(A) and u.

(ii) There exists a GNS-faithful unital completely positive map E : C → A such that
E ◦ ρ = idA and E(x) = 0 for all x ∈ C of the form x = ρ(a0)uϵ1 · · ·uϵnρ(an)
where n ≥ 1, ak ∈ A and ϵk ∈ {−1, 1} are such that, for all 1 ≤ k ≤ n − 1,
ϵk+1 = −ϵk then E−ϵk(ak) = 0.

(iii) If D is a unital C∗-algebra with a unital ∗-homomorphism ν : A→ D, a unitary
v ∈ D and a GNS-faithful unital completely positive map E′ : D → A such
that

• vν(π−1(b))v∗ = ν(π1(b)) for all b ∈ B and D is generated by ν(A) and v.
• E′◦ν = idA and E′(x) = 0 for all x ∈ D of the form x = ν(a0)vϵ1 · · · vϵnν(an)

with n ≥ 1, ϵk ∈ {−1, 1}, ak ∈ A such that, for all 1 ≤ k ≤ n− 1 one has
ϵk+1 = −ϵk then E−ϵk(ak) = 0.

Then there exists a unique unital ∗-homomorphism ν̃ : C → D such that
ν̃ ◦ ρ = ν and ν̃(u) = v. Moreover, E′ ◦ ν̃ = E. We denote this C∗-algebra by
HNNvert(A,B, π1, π−1).

The construction of the vertex-reduced amalgamated free product is a little bit
more technical. For this recall notations from Section 2 of Chapter 4.

For two C∗-algebras A1, A2 and a common C∗-subalgebra B, we will denote
Af := A1 ∗B A2 for the full free amalgamated product. Moreover we assume that we
have conditional expectations Ek : Ak → B for k = 1, 2. We write

A◦
k = {a ∈ Ak | Ek(a) = 0},

and we denote by (Kk, ρk, νk) the GNS-construction as in Construction 4.2.1, and
recall that K◦

k is the orthogonal complement of ηkB in Kk. Now Let
I := {(i1, . . . , in) ∈ {1, 2}n | n ≥ 1 and ik−1 ̸= ik for all 2 ≤ k ≤ n}

and define for i = (i1, . . . , in) ∈ I the Hilbert Ain-module

Hi :=


Ki1 ⊗K◦

i2 ⊗ . . .⊗K
◦
in−1 ⊗Ain , for n ≥ 3,

Ki1 ⊗Ai2 , for n = 2,
Ai1 , for n = 1.
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The left action of Ai1 on Hi is given by

λi : Ai1 → BAin (Hi), λi =
{
ρi1 ⊗ id , for n ≥ 2,
LAi1 , for n = 1,

where LAi1 is the left multiplication operator of Ai1 .
Moreover we set for k, l ∈ {1, 2}

Ik,l := {(i1, . . . , in) ∈ I | i1 = k, in = l}

and

Hk,l =
⊕
i∈Ik,l

Hi, λk,l =
⊕
i∈Ik,l

λi : Ak → BAl(Hk,l).

We now define unitaries uk,l on BAl(Hk,l, Hk,l).
Let i = (i1, . . . , in) ∈ I, with i1 = k and il = l. For ξ ∈ Hi we define uk,lξ ∈ Hi in

the following way

• If n ≥ 2, write i = (k, i′), where i′ = (i2, . . . , in) ∈ Ik,l. For ξ = ρk(a)ηk ⊗ ξ′,
with a ∈ Ak and ξ′ ∈ Hi′ , we define

uk,lξ =
{
ηk ⊗ ξ′, if Ek(a) = 0,
λ′
k(a)ξ′, if a ∈ B.

• If n = 1 then k = l and i′ is empty and ξ ∈ Al = Hk,l. We define uk,lξ =
λ′
k(ξ) = ηk ⊗ ξ.

For all k, l ∈ {1, 2}, the operator uk,l commutes with the right actions of Al on
Hk,l and Hk,l and extends to a unitary operator, which we will still denote by
uk,l ∈ BAl(Hk,l, HT,k,l) such that u∗

k,l = uk,l.
We now can define the k-vertex-reduced amalgamated free product.

Definition 5.1.3 (k-vertex-reduced): Let k ∈ {1, 2}. The k-vertex-reduced amalga-
mated free product is the C∗-subalgebra Av,k ⊂ BAk(Hk,k) generated by λk,k(Ak) ∪
uk,kλk,k(Ak)uk,k ⊂ BAk(Hk,k).

By definition of uk,l we also have

u∗
k,lλk,l(b)uk,l = λk,l(b)

for all b ∈ B, which imply the existence of a unique unital ∗-homomorphism

πk : Af → Av,k, πk(a) =
{
λk,k(a), if a ∈ Ak,
u∗
k,kλk,k(a)uk,k, if a ∈ Ak.
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Definition 5.1.4 (Vertex-reduced free product): The vertex-reduced amalgamated free
product is the C∗-algebra obtained by separation and completion of the full free
amalgamated free product Af = A1 ∗B A2 with respect to the C∗-seminorm ∥·∥ on
Af defined by

∥x∥ := max{∥π1(x)∥ , ∥π2(x)∥},

for x ∈ Af . We denote A1
v∗B A2 for the vertex-reduced free product.

Note that the details of the construction are not that much relevant for this thesis,
however it is necessary to give a definition. For more details for the vertex-reduced
free product and its properties, see for instance [FG20].

Now we want to quickly describe Serre’s dévissage process for graphs of groups,
which can be done analogue for graph of C∗-algebras. This technique will be an
important idea to prove the six-term exact sequence in Theorem 5.2.1.

Remark 5.1.5 (Serre’s dévissage technique): To obtain the fundamental group of
a graph of groups in Bass-Serre theory, Serre described in [Ser77] the so called
dévissage technique, to easily compute the fundamental group. Doing this he proved
that fundamental groups of graph of groups are inductive limit of iterations of
amalgamated free products and HNN extensions.

Start with a connected (finite graph) G and remove an edge e and e, and obtain a
new graph G′. If G′ is still connected, then the fundamental group is a HNN extension
of the fundamental group of the remaining graph. Otherwise if G′ is disconnected,
then the fundamental group is the free amalgamated product of the fundamental
groups of the two connected components.

The same can be proven for graph of C∗-algebras, see [FF14; FG18].

2. 6-term exact sequences for KK-theory of a fundamental
C∗-algebra

In the following setting we assume that we have conditional expectations, which do
not need to be GNS-faithful.

Recall that a sequence

G1 G2 G3 G4 . . .
f1 f2 f3 f4

of groups G1, G2, . . . and group homomorphisms f1, f2, . . . is called to be exact at Gi
if ker(fi+1) = im fi. The sequence is called exact if it is exact at every Gi. Note that
every exact sequence is a chain complex, since fi+1 ◦ fi = 0.

Our main idea to prove the following theorem will be mainly to use Serre’s dévissage
process and induction on the number of edges. Also we need to use the six-term
exact sequences for the free product and the HNN-extension.
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Theorem 5.2.1: For a graph of separable C∗-algebras (G, (Aq)q∈V (G), (Be)e∈E(G)),
where we denote by P• either the full or vertex-reduced fundamental C∗-algebra,
we have the following two 6-term exact sequences.

⊕
e∈E+(G)KK

0(C,Be)
⊕

p∈V (G)KK
0(C,Ap) KK0(C,P•)

KK1(C,P•) ⊕
p∈V (G)KK

1(C,Ap)
⊕

e∈E+(G)KK
1(C,Be),

∑
s∗
e−r∗

e

∑
s∗
e−r∗

e

and⊕
e∈E+(G)KK

0(Be, C) ⊕
p∈V (G)KK

0(Ap, C) KK0(P•, C)

KK1(P•, C) ⊕
p∈V (G)KK

1(Ap, C) ⊕
e∈E+(G)KK

1(Be, C).

∑
se∗−re∗ ∑

se∗−re∗

We will only prove the exactness of the first diagram, since for the second case it is
more or less the same, and does not bring any new aspects.

Before we can prove the theorem, we need to construct the boundary maps, i.e.
the vertical maps. Since this is very technical we will skip the details and try to give
a quick idea how to construct these maps. Details can be found in [FG18].

As done in [FG18] one can construct a unique unital completely positive map
EAp : Pvert → Ap for all p ∈ V (G) such that EAp ◦ λ(a) = a for all a ∈ Ap and
p ∈ V (G), where λ : P → Pvert is the canonical surjection.

Then we can define a unital completely positive map Ee = Ere ◦EAr(e) : Pvert → Br
e ,

and we will denote the GNS-construction by (Ke, ρe, ηe) for all e ∈ E(G). Setting
Re ⊆ Ke as the Hilbert Br

e -submodule of Ke of words ending with e, we take the
projection Qe from Ke into Re. One then can prove that

[Qeρe(λ(a))] ∈ KBre (Ke)

for all a ∈ P , where [·, ·] denotes the commutator. We then define Ve = 2Qe − 1 ∈
BBre (Ke), which fulfils V 2

e = 1, V ∗
e = Ve and for all x ∈ Pvert we have [Veρe(x)] ∈

KBre (Ke). Recalling the definition of Kasparov modules, and KK-groups, we therefore
have an KK-element yG

e ∈ KK1(Pvert, B
r
e). Then define

xG
e = yG

e ⊗Bre [r−1
e ] ∈ KK1(Pvert, Be)

and

zG
e = [λ]⊗Pvert x

G
e ∈ KK1(P,Be).
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One then can define the boundary maps γG
e by

γG
e : KK∗(C,P•)→ KK∗+1(C,Be), y 7→

{
y ⊗P zG

e , in the full case,
y ⊗Pvert x

G
e , in the vertex-red. case.

Later we will write xe for xG
e and ze for zG

e .
Let us fix some notation. We will denote P for either the full or the vertex-reduced

fundamental C∗-algebra of G. Taking subgraphs H ⊆ G we will denote PH for the
full or vertex-reduced fundamental C∗-algebra of H. If G has after removing the
geometric edge e0 two connected components, we will write V1 and V2 for the two
sets of vertices and E1 and E2 for the sets of edges. Obviously they are both disjoint.
We write πG

v for the canonical ∗-homomorphism Av → PH for any subgraph H ⊆ G.
For all the following propositions, where we want to show that step by step, that

we have indeed exactness, we will use Serre’s dévissage technique, see Remark 5.1.5.
We choose a positive edge e0 of the graph G and remove e0 and e0. Either it is still a
connected graph G0 and the fundamental C∗-algebra is a HNN-extension (Case 1) or
it is disconnected in two graphs G1,G2 and thus we have a amalgamated free product
(Case 2).

Proposition 5.2.2: We have the exactness of

⊕
e∈E+(G)KK

0(C,Be)
⊕

p∈V (G)KK
0(C,Ap) KK0(C,P•)

∑
s∗
e−r∗

e

∑
π∗
p .

Proof. We will look at the two cases mentioned above.
Case 1: P is a HNN-extension of P G0 and Be0 . The set of vertices of G0 and G
are by assumption the same, and we may assume that p0 = s(e0) = r(e0), by
identifying s(p0) = r(p0) in spirit of Example 4.1.7. Let x ∈⊕pKK

0(C,Ap) with
x = ⊕pxp such that x ∈ ker(∑p π

∗
p), i.e. ∑

p π
∗
p(xp) = 0 and if y = ∑

v π
0
v

∗(xv),
then we have πG0(y) = 0. Then, the long exact sequence for P seen as an HNN
extension, proven in [Fim13], implies that there exists y0 ∈ KK0(C,Be0) such that
(πv0 ◦ se0)∗(y0)− (πv0 ◦ re0)∗(y0) = y = ∑

v π
0
v

∗(xv). Hence,∑
v

π0
v

∗(⊕v ̸=v0xv ⊕ (xv0 − s∗
e0(y0) + r∗

e0(y0)) = 0.

Using the exactness for P0 as G0 has one edge less, we get that there exists for any
e ̸= e0 a ye such that∑

e ̸=e0

s∗
e(ye)− r∗

e(ye) = ⊕v ̸=v0xv ⊕ (xv0 − s∗
e0(y0) + r∗

e0(y0)).

Thus, ∑
e̸=e0

s∗
e(ye)− r∗

e(ye) + s∗
e0(y0)− r∗

e0(y0) = x.
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This proves the exactness in this case.
Case 2: Now P is the amalgamated free product of P1 = PG1 and P2 = PG2 over Be0 .
Denote by the map πiv : Av → Pi the canonical embedding and write v1 = s(e0) and
v2 = r(e0).

Now let x = ⊕xv be in ⊕pKK
0(C,Ap) such that ∑v π

∗
v(xv) = 0 and moreover let

xi = ⊕v∈Viπ
i
v

∗(xv). Obviously we have π∗
G1

(x1) + π∗
G2

(x2) = 0. Then, the long exact
sequence for P seen as an amalgamated free product, as done in [FP16], gives us an
element y0 ∈ KK0(C,Be0) such that

(π1
v1 ◦ se0)∗(y0)− (π2

v2 ◦ re0)∗(y0) = x1 ⊕ x2.

We then define x̄1 = ⊕v∈V1xv − s∗
e0(y0) and x̄2 = ⊕v∈V2xv + r∗

e0(y0). We have∑
v∈Vi π

i
v

∗(x̄i) = 0 for i = 1, 2. As the graphs G1,G2 have strictly less edges than
G, by inductive arguments on the number of edges there exists for any e ̸= e0 a
ye ∈ KK0(C,Be) such that

x̄1 ⊕ x̄2 =
∑
e̸=e0

s∗
e(ye)− r∗

e(ye).

Hence we obtain

x =
∑
e̸=e0

s∗
e(ye)− r∗

e(ye) + s∗
v0(y0)− r∗

v0(y0).

Hence also in this case we obtain exactness. □

Proposition 5.2.3: We have the exactness of

⊕
p∈V (G)KK

0(C,Ap) KK0(C,P•) ⊕
eKK

1(C,Be).
∑

π∗
p ⊕γe

Proof. Case 1: Let x ∈ KK0(C,P ) such that γG
e (x) = 0 for any edge e, in particular

for e0. Using the long exact sequence for P seen as an HNN-extension as in [Fim13],
and since γG

e0(x) = 0 we get that there exists x0 ∈ KK0(C,P0) such that π∗
G0

(x0) = x.
For any edges e ̸= e0, one then has γG0

e (x0) = γG
e (π∗

G0
(x0)) = 0. Hence by inductive

arguments on the number of edges there exists for any v ∈ V (G0) = V (G) an element
yv ∈ KK0(C,Av) such that ∑v π

0
v

∗(yv) = x0. Hence

x =
∑
v

(πG0 ◦ π0
v)∗(yv) =

∑
v

π∗
v(yv).

Case 2: Using that P is the free amalgamated product of P1 and P2 over Be0 , we
get an element xi ∈ KK0(C,Pi) for i = 1, 2 such that x = π∗

G1
(x1) + π∗

G2
(x2). For

any edge e of Gi, i = 1, 2, we have

γGi
e (xi) = γG

e (π∗
Gi(xi)) = γG

e (x)− γG
e (π∗

Gj (xj)) for j ̸= i.
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But since e is not an edge of Gj , we have γG
e ◦ π∗

Gj = 0. Hence γGi
e (xi) = 0. Again

by induction we get for any vertex of V1 ∪ V2 = V (G) an element yv ∈ KK0(C,Ap)
such that xi = ∑

p∈Vi π
i
v

∗(yv) for i = 1, 2. Thus we obtain x = ∑
v π

∗
v(yv). □

Proposition 5.2.4: We have the exactness of

KK0(C,P•) ⊕
eKK

1(C,Be)
⊕

pKK
1(C,Ap)

⊕γe
∑

s∗
e−re∗

Proof. Case 1: Let x = ⊕exe such that ∑e s
∗
e(xe) − r∗

e(xe) = 0. Then for the
distinguished vertex v0, one has

(π0
v0)∗(s∗

e0(xe0))− (π0
v0)∗(r∗

e0(xe0)) = −
∑
e̸=e0

(π0
v0)∗(s∗

e(xe0))− (π0
v0)∗(r∗

e(xe0)).

Since e is an edge of G0, and se and re are conjugated by a unitary of P0, we have
that their difference is 0 in any KK-group. Thus

(π0
v0)∗(s∗

e0(xe0))− (π0
v0)∗(r∗

e0(xe0)) = 0.

Using the long exact sequence for P as an HNN-extension, see [Fim13], we get an
element y0 ∈ KK0(C,P ) such that γG

e0(y0) = xe0 . Now set x̄e = xe − γG
e (y0) for any

e ̸= e0. Then∑
e ̸=e0

s∗
e(x̄e)− r∗

e(x̄e) =
∑
e ̸=e0

s∗
e(xe)− r∗

e(xe)−
∑
e

s∗
e(γG

e (y0))− r∗
e(γG

e (y0))

+s∗
e0(γG

e0(y0))− r∗
e0(γG

e0(y0))
=

∑
e

s∗
e(xe)− r∗

e(xe),

by the properties of the boundary maps. Hence we get ∑e̸=e0 s
∗
e(x̄e)− r∗

e(x̄e) = 0.
Again by induction there exists an element ȳ1 ∈ KK0(C,P0) such that for all e ̸= e0,
we have γG0

e (y1) = x̄e. Set y1 = π∗
G0

(ȳ1) ∈ KK0(C,P ). Then it holds

γG
e0(y0 + y1) = x0 + γG

e0 ◦ π
∗
G0(ȳ1).

But since e0 is not an edge of G0 we have γG
e0 ◦ π

∗
G0

= 0. Thus γG
e0(y0 + y1) = x0.

For e ̸= e0 we have γG
e (y0 + y1) = γG

e (y0) + x̄e as γG0
e = γG

e ◦ π∗
G0

. It follows that
γG
e (y0 + y1) = xe and by this the exactness in this case.

Case 2: Note that for any positive edge e, if s(e) ∈ V1 then either e ∈ E1 or e = e0
and if r(e) ∈ V2 then e ∈ E2.

Let x = ⊕exe such that ∑e s
∗
e(xe)− r∗

e(xe) = 0. We can rewrite it as∑
e∈E+

1

s∗
e(xe)− r∗

e(xe) + s∗
e0(xe0) = 0 ∈

⊕
p∈V1

KK1(C,Ap)
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and ∑
e∈E+

2

s∗
e(xe)− r∗

e(xe)− r∗
e0(xe0) = 0 ∈

⊕
p∈V2

KK1(C,Ap).

We have π1
v1(xe0) = −∑e∈E+

1
(π1
s(e)◦se)∗(xe)−(π1

r (e)◦re)∗(xe). Since se and re are
conjugated in P1 because e is an edge of G1, we obtain that it must be 0. Analogously
we have π2

v2(xe0) = 0. Hence by using the long exact sequence for P as a free product
of P1 and P2, there is an element y0 ∈ KK0(C,P ) such that γG

e0(y0) = xe0 . Now for
all edges e ̸= e0 we set x̄e = xe − γG

e (y0). Then

∑
e∈E+

1

s∗
e(x̄e)− r∗

e(x̄e) =
∑
e∈E+

1

s∗
e(xe)− r∗

e(xe)−

 ∑
e∈E+

1

s∗
e ◦ γG

e (y0)− r∗
e ◦ γG

e (y0)

 .
By the properties of the boundary map γG

e we have that∑
e∈E+

1

s∗
e ◦ γG

e + s∗
e0 ◦ γ

G
e0 −

∑
e∈E+

1

r∗
e ◦ γG

e = 0

using the fact that the sequence is a chain complex (see also at the begin of the proof
of Theorem 5.2.1). Hence we obtain∑

e∈E+
1

s∗
e(x̄e)− r∗

e(x̄e) =
∑
e∈E+

1

s∗
e(xe)− r∗

e(xe) + s∗
e0(xe0) = 0.

In the same way we get ∑e∈E+
2
s∗
e(x̄e)− r∗

e(x̄e) = 0. Therefore by induction again,
there exists for i = 1, 2, an element yi ∈ KK0(C,Pi) such that for all e in E+

i ,
γGi
e (yi) = x̄e.
We now set y = y0 + πG1(y1) + πG2(y2) in KK0(C,P ). Then by construction we

have
γG
e0(y) = xe0 + γG

e0 ◦ π
∗
G1(y1) + γG

e0 ◦ π
∗
G2(y2) = xe0

as γG
e0 ◦ πGi = 0 since e0 is not an edge of G1 and G2.

For e ∈ E1 we have
γG
e (y) = γG

e (y0) + γG1
e (y1) + 0

as e is not an edge of G2. Hence γG
e (y) = γG

e (y0) + x̄e = xe. The same is true for an
edge in E2.

This completes the proof. □

Proof (of Theorem 5.2.1). By Bott-periodicity for KK-theory, it is equivalent to
prove that the following chain complex is exact

−→
⊕

e

KK∗(C,Be)
∑

e
s∗

e−r∗
e−→
⊕

v

KK∗(C,Av)
∑

v
π∗

v−→ KK∗(C,P ) ⊕eγe−→
⊕

e

KK∗+1(C,Be) −→
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Note that at the beginning of the proof of [FG18, Theorem 4.1] it is proven that this
is indeed a chain complex. In particular one has to use properties of the boundary
maps, we did not mention.

The exactness of the chain complex were done in the last propositions. □

The following corollary out of Theorem 5.2.1 is also proved in [FG18].
Let (G, (Ap), (Be), (se)) and (G, (A′

p), (B′
e), (s′

e)) be graphs of unital C∗-algebras
with conditional expectations Ese respectively (Ese)′. We assume that there are
unital ∗-homomorphism νp : Ap → A′

p and νe : Be → B′
e such that νe = νe and

νs(e) ◦ se = s′
e ◦ νe. Denoting P and P ′ for the full fundamental C∗-algebras with

unitaries ue and u′
e, we obtain by using the relations for the maps νe and νp and the

universality of P , respectively P ′, that there exists a unique unital ∗-homomorphism
ν : P → P ′ such that

ν
∣∣
Ap

= νp, ν(ue) = u′
e for all p ∈ V (G), e ∈ E(G).

Corollary 5.2.5: If the maps νp, νe are K-equivalences such that

(Ese)′ ◦ νs(e) = νs(e) ◦ Ese

for all p ∈ V (G) and e ∈ E(G), then ν : P → P ′ is a K-equivalence.

Recall the Five Lemma: Let A,A′, B,B′, . . . , E,E′ be abelian groups and we have
the following diagram

A B C D E

A′ B′ C ′ D′ E′

.

If the rows are exact and every square commutes, then C → C ′ is an isomorphism.
Note that ν : P → P ′ is a K-equivalence if and only if KK(D,P ) is isomorphic to

KK(D,P ′) and KK(P,D) is isomorphic to KK(P ′, D) via the by ν induced map
for all unital C∗-algebras D.

Proof (of Corollary 5.2.5). We will use Theorem 5.2.1 and the Five Lemma men-
tioned above. Recall the established maps in the 6-term exact sequences.

By the first 6-term exact sequence we have the following diagram with exact rows

⊕
e
KK(D,Be) →

⊕
p
KK(D,Ap) → KK(D,P ) →

⊕
e
KK1(D,Be) →

⊕
p
KK1(D,Ap)

↓
⊕

·⊗[νe] ↓
⊕

·⊗[νp] ↓ ·⊗[ν] ↓
⊕

·⊗[νe] ↓
⊕

·⊗[νp]⊕
e
KK(D,B′

e) →
⊕

p
KK(D,A′

p) → KK(D,P ′) →
⊕

e
KK1(D,B′

e) →
⊕

p
KK1(D,A′

p)
.

We need to prove that for any unital C∗-algebra D the squares are commutative.
The first and last square are obviously since we assumed, that νs(e) ◦ se = s′

e ◦ νe.
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The second square from left is also obvious, since by universality of ν we have that
ν ◦ ι = ι′ ◦ νp for all p ∈ V (G), where ι, ι′ are the canonical embeddings Ap ⊆ P
respectively A′

p ⊆ P ′.
We are done by proving that the third square is commutative. The commutativity

of the square is equivalent to the equality ze ⊗ [νe] = [ν]⊗ z′
e ∈ KK1(P,B′

e) where
ze ∈ KK1(P,Be) and z′

e ∈ KK1(P ′, B′
e) as constructed for the proof of Theorem 5.2.1.

By the assumption (Ese)′ ◦ νs(e) = νs(e) ◦ Ese , which gives us an Hilbert C∗-module
isomorphism Ke ⊗B′

e
∼= K ′

e, where Ke,K
′
e are the Hilbert C∗-modules we construct

for the construction of the boundary maps above. Finally, this implement an
isomorphism between the Kasparov modules represented by ze ⊗ [νe] and [ν]⊗ z′

e.
Thus by the Five Lemma, we have KK(D,P ) ∼= KK(D,P ′) for all unital C∗-

algebras. Analogously one shows the same for KK(P,D) ∼= KK(P ′, D) while using
the second six-term exact sequence. Hence ν is a K-equivalence. □

3. K-theory of free wreath products
We are now in a position to prove the other main result of this thesis, namely we want
to explicitly compute the K-theory of free wreath products of compact quantum
groups with S+

N . As done in [FT24] we need to use Theorem 5.2.1. First let us
introduce the notion of K-amenability for compact quantum groups.

Definition 5.3.1 (K-amenable): Let G be a compact quantum group. We say that
Ĝ is K-amenable if the canonical surjection λ : C(G)→ Cr(G) from the full to the
reduced C∗-algebra is a KK-equivalence.

A useful equivalence is the following, proven by Vergnioux in [Ver04].

Proposition 5.3.2: Let G be a compact quantum group. Denote by ε : C(G) → C
the map defined by ε(uαij) = δij for all α ∈ Irr(G). We call this map counit or
trivial representation of G. Then Ĝ is K-amenable if and only if there exists
α ∈ KK(Cr(G),C) such that

[λ]⊗Cr(G) α = [ε] ∈ KK(C(G),C).

Now let us quickly mention what the K-theory of S+
N is. It was proven by Voigt

in [Voi17].

Proposition 5.3.3: Let N ≥ 4. Then the quantum permutation group S+
N is K-

amenable and

K0(C(S+
N )) ∼= Z(N−1)2+1 and K1(C(S+

N )) ∼= Z.

Generators for the K0-group are given by the projections [1], [uij ] ∈ K0(C(S+
N )) for

1 ≤ i, j ≤ N − 1.
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Remark 5.3.4: Note that for N ≤ 3, we have C•(S+
N ) = C(SN ) = CN !. Thus

K0(C(SN )) = ZN ! and K1(C(SN )) = 0.

Theorem 5.3.5: For any compact quantum group G and integer N ∈ N we have,

K0(C•(G ≀∗ S+
N )) ∼= K0(C•(G))⊗ ZN

2 ⊕K0(C•(S+
N ))/ZN2

∼=
{
K0(C•(G))⊕N2

/Z2N−2 if N ̸= 3
K0(C•(G))⊕N2

/Z3 if N = 3
,

K1(C•(G ≀∗ S+
N )) ∼= K1(C•(G))⊕N2 ⊕K1(C•(S+

N ))

∼=
{
K1(C•(G))⊕N2 ⊕ Z if N ≥ 4
K1(C•(G))⊕N2 if N ≤ 3

,

where C•(G) denotes either the reduced or full C∗-algebra.

Proof. Consider the graph of C∗-algebras we constructed in Section 3 of Chapter 3.
Recall that we can equip both graphs of C∗-algebras with conditional expectations.

We need to use the first 6-exact sequence of Theorem 5.2.1, where we choose
C = C. We denote S for the map ∑ s∗

v − r∗
v. Moreover we assume H to be trivial.

We obtain by definition of K0 and K1 the following diagram

ZN2
(
K0(C•(G))⊗ ZN2

)
⊕K0(C•(S+

N )) K0(C•(G ≀∗ S+
N ))

K1(C•(G ≀∗ S+
N ))

(
K1(C•(G))⊗ ZN2

)
⊕K1(C•(S+

N )) ZN2
.

S

S

Let {[ej ] | 1 ≤ j ≤ N} be a basis of K0(CN ) = ZN , where (ej) is the canonical basis
of CN . Clearly {[1 ⊗ ej ] | 1 ≤ j ≤ N} ⊆ K0(C•(G) ⊗ CN ) is linearly independent
and hence for all 1 ≤ j ≤ N also {[1⊗ ej ]− [uji]} ⊆ K0(C(G)⊗ CN )⊕K0(C•(S+

N ))
is also linearly independent. By this clearly the map

s∗
v − r∗

v : ZN →
(
K0(C•(G))⊗ ZN

)
⊕K0(C•(S+

N )), [ej ] 7→ [1⊗ ej ]− [uji]

is injective, therefore the map

S : (ZN )⊕N →
(
K0(C•(G))⊗ ZN

2)⊕K0(C•(S+
N )), [eij ] 7→ [1⊗ eij ]− [uji],

where [eij ] denotes the class of the element [ej ] in the i-th copy of (ZN )⊕N , since
again the elements of the form [1 ⊗ eij ] for 1 ≤ i, j ≤ N are linearly independent.
The same holds for the elements of the form [1⊗ eij ]− [uji].

Since the image of the second upper arrow is equal to the kernel of the right
vertical arrow, and the image of the right vertical arrow is the same as the kernel as
the first lower arrow by exactness, we obtain that(

K0(C•(G))⊗ ZN
2)⊕K0(C•(S+

N ))→ K0(C•(G ≀∗ S+
N ))
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is surjective and by using again exactness we get the isomorphism(
K0(C•(G))⊗ ZN

2)⊕K0(C•(S+
N ))/ Im(S) ∼= K0(C•(G ≀∗ S+

N )).

By identifying [1⊗eij ] with [uij ], we obtain Im(S) ∼= ZN2 , and therefore the statement
about K0 follows directly by Proposition 5.3.3 and Remark 5.3.4.

For the K1-isomorphism note that S has trivial image by definition, and via an
analogue statement as above one shows surjectivity of the map(

K1(C•(G))⊗ ZN
2)⊕K1(C•(S+

N ))→ K1(C•(G ≀∗ S+
N )).

The kernel is then also trivial since the image of S is trivial, and by this the
isomorphism. □

Corollary 5.3.6: The quantum hyperoctahedral group H+
N is K-amenable and

K0(C(H+
N )) ∼=

{
ZN2+N !, for N = 1, 2, 3,
Z2N2−2N+2, for N ≥ 4,

K1(C(H+
N )) ∼=

{
0, for N = 1, 2, 3
Z, for N ≥ 4

.

Proof. By Proposition 3.5.14, we know that H+
N
∼= Ẑ/2Z ≀∗ S+

N . Moreover by
Lemma 3.5.13 we have Ẑ/2Z ∼= C∗(Z/2Z) ∼= C2 and

K0(C2) = Z2, K1(C2) = {0}.

By this the statement follows obviously. □

Corollary 5.3.7: Let G be a compact quantum group, then Ĝ ≀∗ S+
N is K-amenable if

and only if Ĝ is K-amenable.

Proof. This follows directly from Theorem 5.3.5. □

More generally we can prove the same for the amalgamated free wreath product.
Recall the notations of Section 3 of Chapter 4.

Proposition 5.3.8: Let G be a compact quantum group, and H be a dual quantum
subgroup. Then Ĝ is K-amenable if and only if ̂G ≀∗,H S+

N is K-amenable.

Proof. Assume that ̂G ≀∗,H S+
N is K-amenable, i.e. there exists α ∈ KK(Ar,C)

such that [λ] ⊗Ar α = [ε], where ε : A → C is the counit of the free wreath prod-
uct, by Proposition 5.3.2. We show that Ĝ∗HN is K-amenable, since then also
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G is K-amenable. Denote by π : C(G∗HN ) → A the canonical inclusion. By tak-
ing restrictions and using Proposition 4.3.4, we obtain a unital ∗-homomorphism
πr : Cr(G∗HN ) → Ar such that πr : λ′ = λ ◦ π, where λ′ : C(G∗HN ) → Cr(G∗HN ) is
the canonical surjection. By defining β := [πr]⊗Ar α ∈ KK(Cr(G∗HN ),C), we have
by functoriality of the Kasparov product

[λ′]⊗ β = [λ′]⊗ [πr]⊗ α = [πr ◦ λ′]⊗ α
= [λ ◦ π]⊗ α = [π]⊗ [λ]⊗ [α]
= [π]⊗ [ε] = [ε ◦ π] = [ε′],

where ε′ : C(G∗HN )→ C is the counit. Hence by Proposition 5.3.2 we get that Ĝ∗HN

is K-amenable. Thus Ĝ is K-amenable.
For the other direction, let Ĝ be K-amenable, then also Ĥ as dual quantum

subgroup is K-amenable. By Proposition 5.3.3 we know that Ŝ+
N is K-amenable.

Since we equipped the graph of C∗-algebras for the free wreath product for the full
and reduced case with conditional expectation, we are in the case of Corollary 5.2.5.
One then can apply [FF14, Theorem 5.1] to prove that ̂G ≀∗,H S+

N is K-amenable,
since our graph is finite. This proves the equivalence. □

4. Questions
To end this bachelor thesis, we would like to address some questions that might arise
after reading.

Question 5.4.1 (Free wreath product): For a compact quantum group G we did de-
fine the free wreath product G ≀∗ S+

N with S+
N . In a natural way one can ask if one

can generalise this somehow.
Indeed one can see S+

N as the quantum automorphism group, [Wan98], of CN with
the trace τ corresponding to the uniform probability measure on N points, this
defines us a so called δ-form. We then write S+

N = Qut(CN , τ). So we might think
about a generalisation, where we take another quantum automorphism group instead
of S+

N , and it could be interesting to try to compute the K-theory of this free wreath
product with another quantum automorphism group. See for instance [FP16] for the
construction of the free wreath product with a quantum automorphism group.

Another question can arise from Theorem 5.3.5.

Question 5.4.2 (Amalgamation): Looking at the proof of this mentioned theorem,
we see that we assumed the dual quantum subgroup to be trivial. Thus it might
be interesting to compute the K-theory for a free wreath product with non-trivial
amalgamation, since in [FT24] they have at most considered special cases.

A question in a more general context could be the following.
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Question 5.4.3 (S+
N and H+

N ): How we can see, the computation of the K-theory of
H+
N but also the K-theory of S+

N in [Voi17] is quite complex and one needs a lot of
different structure and theory. However both of them are easily described. Therefore
it might be interesting to search “easier” ways to compute the K-theory of them, as
this could possibly also show other structural properties of S+

N and H+
N .

68



Bibliography

[AH61] M. F. Atiyah and F. Hirzebruch. “Vector bundles and homogeneous
spaces”. In: Proc. Sympos. Pure Math., Vol. III. Amer. Math. Soc.,
Providence, RI, 1961, pp. 7–38.

[BC07] Teodor Banica and Benoît Collins. “Integration over compact quantum
groups”. In: Publ. Res. Inst. Math. Sci. 43.2 (2007), pp. 277–302.

[BG10] Teodor Banica and Debashish Goswami. “Quantum isometries and non-
commutative spheres”. In: Comm. Math. Phys. 298.2 (2010), pp. 343–
356.

[Bic04] Julien Bichon. “Free wreath product by the quantum permutation group”.
In: Algebr. Represent. Theory 7.4 (2004), pp. 343–362.

[Bla06] B. Blackadar. Operator algebras. Vol. 122. Encyclopaedia of Mathematical
Sciences. Theory of C∗-algebras and von Neumann algebras, Operator
Algebras and Non-commutative Geometry, III. Springer-Verlag, Berlin,
2006.

[Bla98] Bruce Blackadar. K-theory for operator algebras. Second. Vol. 5. Mathe-
matical Sciences Research Institute Publications. Cambridge University
Press, Cambridge, 1998.

[BV09] Teodor Banica and Roland Vergnioux. “Fusion rules for quantum reflection
groups”. In: J. Noncommut. Geom. 3.3 (2009), pp. 327–359.

[Chi14] Alexandru Chirvasitu. “Cosemisimple Hopf algebras are faithfully flat over
Hopf subalgebras”. In: Algebra Number Theory 8.5 (2014), pp. 1179–1199.

[FF14] Pierre Fima and Amaury Freslon. “Graphs of quantum groups and K-
amenability”. In: Adv. Math. 260 (2014), pp. 233–280.

[FG18] Pierre Fima and Emmanuel Germain. “The KK-theory of fundamental
C∗-algebras”. In: Trans. Amer. Math. Soc. 370.10 (2018), pp. 7051–7079.

[FG20] Pierre Fima and Emmanuel Germain. “The KK-theory of amalgamated
free products”. In: Adv. Math. 369 (2020), pp. 107174, 35.

[Fim13] Pierre Fima. “K-amenability of HNN extensions of amenable discrete
quantum groups”. In: J. Funct. Anal. 265.4 (2013), pp. 507–519.

69



[FP16] Pierre Fima and Lorenzo Pittau. “The free wreath product of a compact
quantum group by a quantum automorphism group”. In: J. Funct. Anal.
271.7 (2016), pp. 1996–2043.

[Fre23] Amaury Freslon. “Free wreath products with amalgamation”. In: Comm.
Algebra 51.1 (2023), pp. 72–94.

[FSS17] Uwe Franz, Adam Skalski, and Piotr M. Sołtan. “Introduction to compact
and discrete quantum groups”. In: Topological quantum groups. Vol. 111.
Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, 2017, pp. 9–
31. isbn: 978-83-86806-35-5.

[FT24] Pierre Fima and Arthur Troupel. “Operator algebras of free wreath
products”. In: Adv. Math. 441 (2024), Paper No. 109546, 53.

[GN43] I. Gelfand and M. Neumark. “On the imbedding of normed rings into the
ring of operators in Hilbert space”. In: Rec. Math. [Mat. Sbornik] N.S.
12/54 (1943), pp. 197–213.

[JT91] Kjeld Knudsen Jensen and Klaus Thomsen. Elements of KK-theory.
Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston,
MA, 1991. isbn: 0-8176-3496-7.

[JV84] Pierre Julg and Alain Valette. “K-theoretic amenability for SL2(Qp),
and the action on the associated tree”. In: J. Funct. Anal. 58.2 (1984),
pp. 194–215.

[Kas80] G. G. Kasparov. “The operator K-functor and extensions of C∗-algebras”.
In: Izv. Akad. Nauk SSSR Ser. Mat. 44.3 (1980), pp. 571–636, 719.

[LVW20] Xin Li, Christian Voigt, and Moritz Weber. ISEM24 C∗-algebras and
dynamics Lecture notes. https://www.math.uni-sb.de/ag/speicher/
weber/ISem24/ISem24LectureNotes.pdf. 2020.

[Mur90] F. J. Murray. “The rings of operators papers”. In: The legacy of John von
Neumann (Hempstead, NY, 1988). Vol. 50. Proc. Sympos. Pure Math.
Amer. Math. Soc., Providence, RI, 1990, pp. 57–60. isbn: 0-8218-1487-7.

[MV98] Ann Maes and Alfons Van Daele. “Notes on compact quantum groups”.
In: Nieuw Arch. Wisk. (4) 16.1-2 (1998), pp. 73–112.

[Par09] Walther Paravicini. Focused Semester on KK-Theory and its Applications.
https://ivv5hpp.uni-muenster.de/u/echters/Focused-Semester/
lecturenotes/KK-Paravicini.pdf. 2009.

[Pas73] William L. Paschke. “Inner product modules over B∗-algebras”. In: Trans.
Amer. Math. Soc. 182 (1973), pp. 443–468.

[Pon34] L. Pontrjagin. “The theory of topological commutative groups”. In: Ann.
of Math. (2) 35.2 (1934), pp. 361–388.

70

https://www.math.uni-sb.de/ag/speicher/weber/ISem24/ISem24LectureNotes.pdf
https://www.math.uni-sb.de/ag/speicher/weber/ISem24/ISem24LectureNotes.pdf
https://ivv5hpp.uni-muenster.de/u/echters/Focused-Semester/lecturenotes/KK-Paravicini.pdf
https://ivv5hpp.uni-muenster.de/u/echters/Focused-Semester/lecturenotes/KK-Paravicini.pdf


[Ser77] Jean-Pierre Serre. Arbres, amalgames, SL2. Vol. No. 46. Astérisque. Société
Mathématique de France, Paris, 1977.

[Tim08] Thomas Timmermann. An invitation to quantum groups and duality. EMS
Textbooks in Mathematics. From Hopf algebras to multiplicative unitaries
and beyond. European Mathematical Society (EMS), Zürich, 2008. isbn:
978-3-03719-043-2.

[Ued05] Yoshimichi Ueda. “HNN extensions of von Neumann algebras”. In: J.
Funct. Anal. 225.2 (2005), pp. 383–426.

[Ued08] Yoshimichi Ueda. “Remarks on HNN extensions in operator algebras”. In:
Illinois J. Math. 52.3 (2008), pp. 705–725.

[VDN92] D. V. Voiculescu, K. J. Dykema, and A. Nica. Free random variables.
Vol. 1. CRM Monograph Series. A noncommutative probability approach
to free products with applications to random matrices, operator algebras
and harmonic analysis on free groups. American Mathematical Society,
Providence, RI, 1992.

[Ver04] Roland Vergnioux. “K-amenability for amalgamated free products of
amenable discrete quantum groups”. In: J. Funct. Anal. 212.1 (2004),
pp. 206–221.

[Voi17] Christian Voigt. “On the structure of quantum automorphism groups”.
In: J. Reine Angew. Math. 732 (2017), pp. 255–273.

[Wan95] Shuzhou Wang. “Free products of compact quantum groups”. In: Comm.
Math. Phys. 167.3 (1995), pp. 671–692.

[Wan98] Shuzhou Wang. “Quantum symmetry groups of finite spaces”. In: Comm.
Math. Phys. 195.1 (1998), pp. 195–211.

[Web23] Moritz Weber. “Quantum permutation matrices”. In: Complex Anal. Oper.
Theory 17.3 (2023), Paper No. 37, 26.

[Wor87] S. L. Woronowicz. “Compact matrix pseudogroups”. In: Comm. Math.
Phys. 111.4 (1987), pp. 613–665.

[Wor98] S. L. Woronowicz. “Compact quantum groups”. In: Symétries quantiques
(Les Houches, 1995). North-Holland, Amsterdam, 1998, pp. 845–884. isbn:
0-444-82867-2.

71


	Preliminaries
	C*-algebras
	K-theory of C*-algebras

	KK-theory of C*-algebras
	Kasparov modules
	Definition of the KK-groups and the Kasparov product

	Compact quantum groups and their representation theory
	The category of compact quantum groups
	Compact matrix quantum groups
	Representation theory of compact quantum groups
	The dual discrete quantum group
	The free wreath product of compact quantum groups

	Graphs of C*-algebras
	Graphs of C*-algebras and the maximal fundamental C*-algebra
	Reduced fundamental C*-algebras
	Free wreath products as fundamental C*-algebras

	K-theory of free wreath products
	Vertex-reduced free product and HNN-extension
	6-term exact sequences for KK-theory of a fundamental C*-algebra
	K-theory of free wreath products
	Questions


