

## Assignment for the lecture Functional Analysis Winter term 2022/23

Sheet 12 Due on Mon 6.2.2023

**Exercise 1** (30 Points). On Sheet 9, Exercise 1 we showed that  $l_1(\mathbb{Z})$  endowed with the convolution \* as multiplication is a Banach algebra and on Sheet 10, Exercise 1 that every complex homomorphism of  $l_1(\mathbb{Z})$  is of the form

$$\varphi_z \colon l_1(\mathbb{Z}) \to \mathbb{C}, \quad (a_n)_{n \in \mathbb{Z}} \mapsto \sum_{n \in \mathbb{Z}} a_n z^n,$$

for a  $z \in \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , i.e. we can identify  $\Sigma(l_1(\mathbb{Z}))$  and  $\mathbb{T}$  as sets. Hence the Gelfand transform is exactly the Fourier transform: For  $x = (a_n)_{n \in \mathbb{Z}}$  we have

$$\hat{x}(z) \cong \hat{x}(\varphi_z) = \varphi_z(x) = \sum_{n \in \mathbb{Z}} a_n z^n$$

and clearly  $\widehat{x * y}(z) = \hat{x}(z) \cdot \hat{y}(z)$  for any  $x, y \in l_1(\mathbb{Z})$ .

- a) Show that  $\Sigma(l_1(\mathbb{Z}))$  and  $\mathbb{T}$  are isomorphic as topological spaces.
- b) Let  $x \in A := l_1(\mathbb{Z})$ , then  $\hat{x}$  is a continuous function on  $\mathbb{T}$ . Actually,  $\hat{A} \subset C(\mathbb{T})$  is a proper subalgebra (note that A cannot be made into a  $C^*$ -Algebra). Show that

 $\hat{A} = \{ f \in C(\mathbb{T}) \colon f \text{ has an absolutely convergent Fourier series} \},$ 

where we say f has an absolutely convergent Fourier series if and only if  $f(z) = \sum_{n \in \mathbb{Z}} \gamma_n z^n$  with  $\sum_{n \in \mathbb{Z}} |\gamma_n| < \infty$ . Give an example of a function  $f \in C(\mathbb{T})$  that is not in  $\hat{A}$ .

- c) Show that the Gelfand representation  $\hat{\cdot} : A \to C(\mathbb{T})$  is injective but not isometric.
- d) Prove the *Theorem of Wiener*: If  $f \in C(\mathbb{T})$  has an absolutely convergent Fourier series and  $f(z) \neq 0$  for all  $z \in \mathbb{T}$ , then  $\frac{1}{f}$  also has an absolutely convergent Fourier series.

**Exercise 2** (10 Points). Let A be a  $C^*$ -algebra and let  $a \in A$  be a normal element. Consider a continuous function on the spectrum of  $a, f \in C(\sigma(a))$ . Show that  $\sigma(f(a)) = f(\sigma(a))$ , where  $f(\sigma(a)) = \{f(\lambda) : \lambda \in \sigma(a)\}$ .

**Exercise 3** (10 Points). Let  $\Phi: A \to B$  be a \*-homomorphism of unital C\*-algebras. Show that  $\Phi$  is continuous with  $\|\Phi\| \leq 1$ . (*Hint:* Show that  $\sigma(\Phi(x^*x)) \subset \sigma(x^*x)$ )