Theoretical physics V Sheet 14

Due for the 25.07.2024

Exercise 34 Energy conservation and time-translational invariance

Let us consider the Lagrangian density associated to a real-valued bosonic field

$$\mathcal{L} = \frac{1}{2} (\partial^{\nu} \psi) (\partial_{\nu} \psi) - V(\phi^2), \qquad (1)$$

where V is an arbitrary continuous function. Show that for such a Lagrangian density, the conservation of the energy implies the time translation symmetry of the system.

(2 points)

Exercise 35 Quantized Dirac field

Let us recall that the quantized Dirac field can be written in terms of fermionic creation and annihilation operators $a_{p,s}$ and $b_{p,s}$, such that for a periodic box-like space of volume Ω

$$\hat{\psi}(\boldsymbol{r},t) = \sum_{\boldsymbol{p},s} \sqrt{\frac{mc^2}{\Omega E_{\boldsymbol{p}}}} \left[\hat{a}_{\boldsymbol{p},s} u(\boldsymbol{p},s) e^{i(\boldsymbol{p}\cdot\boldsymbol{r}-E_{\boldsymbol{p}}t)/\hbar} + \hat{b}_{\boldsymbol{p},s}^{\dagger} v(\boldsymbol{p},s) e^{-i(\boldsymbol{p}\cdot\boldsymbol{r}-E_{\boldsymbol{p}}t)/\hbar} \right],\tag{2}$$

with $u^{\dagger}(\boldsymbol{p}, s)u(\boldsymbol{p}, s') = v^{\dagger}(\boldsymbol{p}, s)v(\boldsymbol{p}, s') = E_{\boldsymbol{p}}\delta_{ss'}/mc^2$. In other words, the operator $\hat{a}_{\boldsymbol{p},s}$ destroys a particle with wavefunction $u(\boldsymbol{p}, s)$, while $\hat{b}_{\boldsymbol{p},s}$ annihilates an antiparticle with wavefunction $v^{\dagger}(\boldsymbol{p}, s)$.

a) Using the following definitions,

$$\hat{H} = \int d^3 \boldsymbol{r} \hat{\psi}^{\dagger}(\boldsymbol{r}, t) (-i\hbar\boldsymbol{\alpha} \cdot \boldsymbol{\nabla} + \beta mc^2) \hat{\psi}(\boldsymbol{r}, t), \qquad (3)$$

$$\hat{\boldsymbol{P}} = -i\hbar \int \mathrm{d}^{3}\boldsymbol{r}\hat{\psi}^{\dagger}(\boldsymbol{r},t)\boldsymbol{\nabla}\hat{\psi}(\boldsymbol{r},t), \qquad (4)$$

$$\hat{Q} = -e \int d^3 \boldsymbol{r} \hat{\overline{\psi}}(\boldsymbol{r}, t) \gamma^0 \hat{\psi}(\boldsymbol{r}, t), \qquad (5)$$

determine the form of the Hamiltonian \hat{H} , the momentum operator \hat{P} and the charge \hat{Q} in terms of operator $\hat{a}_{p,s}$ and $\hat{b}_{p,s}$.

(3 points)

b) Considering the two-particle state $|\Psi\rangle = \hat{a}^{\dagger}_{\boldsymbol{p},s}\hat{a}^{\dagger}_{\boldsymbol{p}',s'}|0\rangle$, show that such a state is antisymmetric and determine the expectation values of \hat{H} , \hat{P} and \hat{Q} .

(1 point)

c) For a two-anti-particle state $|\Psi\rangle = \hat{b}^{\dagger}_{\boldsymbol{p},s}\hat{b}^{\dagger}_{\boldsymbol{p}',s'}|0\rangle$, perform the same calculations as in the two-particle state case.

(1 point)

SoSe 2024