Theoretical physics V
 Sheet 13

Exercise 32 The complex scalar field

Let us consider the Lagrangian density associated to a complex-valued Klein-Gordon field ψ :

$$
\begin{equation*}
\mathcal{L}=\left(\partial^{\nu} \psi\right)\left(\partial_{\nu} \psi\right)^{*}-\mu^{2}|\psi|^{2}, \tag{1}
\end{equation*}
$$

where $\mu=m c / \hbar$.
a) Show that the Lagrangian density is invariant under the transformation $\psi \rightarrow \psi^{\prime}=e^{i \lambda} \psi$.

Hint: You shall consider an infinitesimal transformation for $\lambda \ll 1$ and determine the variation of $\delta \mathcal{L}$.
b) Using the prescription of minimal coupling, we define the gauge covariant derivative as

$$
\begin{equation*}
-i \hbar \partial_{\mu} \rightarrow-i \hbar D_{\mu}=-i \hbar \partial_{\mu}-e A_{\mu} \tag{2}
\end{equation*}
$$

derive the field equation for ψ interacting with A_{μ}. Show that if ψ is a solution he equation of motion for $A_{\mu}=\left(A_{0}, 0,0,0\right)$, then ψ^{*} is a solution when A_{0} is replaced by $-A_{0}$.

Exercise 33 The Jordan-Wigner transformation

Let us consider a chain of evenly spaced particles with spins $S=1 / 2$. In a ferromagnetic system, the spins of these particles interact such as to align, therefore leading to an emergent long-range order. Several types of Hamiltonian describe such a behavior, we will however focus here on the case of the so called quantum $X Y$-model:

$$
\begin{equation*}
\hat{H}=-J \sum_{i=1}^{N}\left(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x}+\hat{S}_{i}^{y} \hat{S}_{i+1}^{y}\right), \tag{3}
\end{equation*}
$$

where we assume periodic boundary conditions, namely $\hat{S}_{N+1}^{x, y}=\hat{S}_{1}^{x, y}$.
a) Defining the raising and lowering spin operators as $\hat{S}_{j}^{ \pm}=\left(\hat{S}_{j}^{x} \pm i \hat{S}_{j}^{y}\right)$, show that the spin commutation relation $\left[\hat{S}_{i}^{\alpha}, \hat{S}_{j}^{\beta}\right]=i \epsilon^{\alpha \beta \gamma} \delta_{i j} \hat{S}_{j}^{\gamma}$ leads to the relations

$$
\begin{equation*}
\left[\hat{S}_{i}^{z}, \hat{S}_{j}^{ \pm}\right]= \pm \delta_{i j} \hat{S}_{j}^{ \pm} \quad ; \quad\left[\hat{S}_{i}^{+}, \hat{S}_{j}^{-}\right]=2 \delta_{i j} \hat{S}_{j}^{z} \tag{4}
\end{equation*}
$$

b) In a one-dimensional system, a way to treat the problem of spin chains (for $S=1 / 2$) consists in associating the orientation of a spin to the presence or abscence of a fermion, in other words $|\uparrow\rangle_{j} \equiv|1\rangle_{j}=\hat{f}_{j}^{\dagger}|0\rangle_{j}$ while $|\downarrow\rangle_{j} \equiv|0\rangle_{j}$. Note that the Pauli exclusion principle encodes that only two spin orientations are possible. There is however a discrepancy between the algebra describing these two types of object: while spin operators commute, fermionic operators anticommute. In order to solve this problem, we introduce the socalled Jordan-Wigner transformation, such that

$$
\begin{equation*}
\hat{S}_{i}^{+}=\hat{f}_{i}^{\dagger} e^{i \pi \sum_{k<i} \hat{n}_{k}}, \quad \hat{S}_{i}^{-}=e^{-i \pi \sum_{k<i} \hat{n}_{k}} \hat{f}_{i}, \quad \hat{S}_{i}^{z}=\hat{f}_{i}^{\dagger} \hat{f}_{i}-\frac{1}{2} . \tag{5}
\end{equation*}
$$

Show the anticommutation relation $\left\{e^{i \pi \hat{n}_{i}}, \hat{f}_{i}\right\}=0$, then deduce that the Jordan-Wigner transformation preserves the spin commutation relations.
c) Using the Jordan-Wigner transformation, show that the Hamiltonian of the $X Y$-model takes the simple form

$$
\begin{equation*}
\hat{H}=-\frac{J}{2} \sum_{i=1}^{N}\left(\hat{f}_{i+1}^{\dagger} \hat{f}_{i}+\hat{f}_{i}^{\dagger} \hat{f}_{i+1}\right) . \tag{6}
\end{equation*}
$$

Then, via a Fourier transform $\hat{f}_{j}=1 / \sqrt{N} \sum_{k} \hat{f}_{k} e^{i k j}$, show that the Hamiltonian reads

$$
\begin{equation*}
\hat{H}=\sum_{k} \omega_{k} \hat{f}_{k}^{\dagger} \hat{f}_{k} . \tag{7}
\end{equation*}
$$

Give the explicit form of ω_{k}.
Hint: We remind that

$$
\sum_{j} e^{i\left(k-k^{\prime}\right) j}=N \delta_{k k^{\prime}}
$$

d) Based on the interpretation given for the negative-energy solutions to the Dirac equation, comment on the form of ω_{k}, the nature of the ground state of the $X Y$-model and its excitations.

