Theoretical physics V
 Sheet 7

SoSe 2024
Due for the 06.06.2024

Exercise 19 Sine-Gordon equation

Let us consider an infinite chain of identical pendulums of mass m and length ℓ attached to a common axis. Neighbouring pendulums are coupled via torsion springs of stiffness C. Therefore, the angles θ_{n} accounting for the angular deviation of the n-th pendulum from its equilibrium position is described by the Lagrangian

$$
\begin{equation*}
L=\sum_{n=-\infty}^{+\infty}\left[\frac{1}{2} m \ell^{2} \dot{\theta}_{n}^{2}-\frac{1}{2} C\left(\theta_{n}-\theta_{n-1}\right)^{2}-m g \ell\left(1-\cos \theta_{n}\right)\right] \tag{1}
\end{equation*}
$$

where g is Earth's gravitational acceleration.
a) Assuming that the distance a between two successive pendulums is the smallest length scale of the system, then we can treat θ as a continuous field such that $\theta_{n}(t)=\theta(x=n a, t)$. Show then that the Lagrangian takes the form

$$
\begin{equation*}
L=\int_{-\infty}^{+\infty} \mathrm{d} x\left[\frac{1}{2} J\left(\frac{\partial \theta}{\partial t}\right)^{2}-\frac{1}{2} K\left(\frac{\partial \theta}{\partial x}\right)^{2}-\Omega(1-\cos \theta)\right] . \tag{2}
\end{equation*}
$$

Specify the expression of the constants J, K and Ω.
b) Derive the corresponding Euler-Lagrange equation and show that it takes the form of the sine-Gordon equation:

$$
\begin{equation*}
\frac{\partial^{2} \theta}{\partial t^{2}}-c_{0}^{2} \frac{\partial^{2} \theta}{\partial x^{2}}+\omega_{0}^{2} \sin \theta=0, \tag{3}
\end{equation*}
$$

where $c_{0}^{2}=\frac{C a^{2}}{m \ell^{2}}$ and $\omega_{0}^{2}=\frac{g}{\ell}$.
c) Using the change of variable $z=x-v t$, show that the sine-Gordon equation boils down to

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} z^{2}}=\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}} \sin \theta \tag{4}
\end{equation*}
$$

where $v<c_{0}$ behaves as a velocity.
d) Solutions of the sine-Gordon equation describe a type of waves called solitons. In order to describe a single soliton, we impose boundary conditions such that $\mathrm{d} \theta / \mathrm{d} z=0$ for $z \rightarrow \pm \infty$, as well as $\theta=0$ for $z \rightarrow-\infty$ and $\theta=2 \pi$ for $z \rightarrow+\infty$. Show then that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} z}\right)^{2}=\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}}(1-\cos \theta) \tag{5}
\end{equation*}
$$

e) Using the relation

$$
\int \frac{\mathrm{d} \theta}{\sin \left(\frac{\theta}{2}\right)}=2 \ln \left(\tan \left(\frac{\theta}{4}\right)\right)
$$

determine the form of the solution $\theta(x, t)$ of the sine-Gordon equation. Plot its form for a fixed time t.

Exercise 20 Sinusoidal perturbation and resonance

Let us consider a quantum system described by a Hamiltonian \hat{H}_{0} diagonalized by the set of vectors $\left|\epsilon_{n}\right\rangle$. This system is perturbed by an additional time-dependent term such that the Hamiltonian now reads $\hat{H}=\hat{H}_{0}+\lambda \hat{V}(t)$, where

$$
\begin{equation*}
\hat{V}(t)=\hat{V}_{0} \sin (\omega t) . \tag{6}
\end{equation*}
$$

a) Determine at first order in perturbation theory the probability amplitude $w_{i \rightarrow f}(t)$ for the system to be in state $|f\rangle$ (at energy $E_{f}=\hbar \omega_{f}$) at time t, knowing that the system was initially in state $|i\rangle$ (at energy $E_{i}=\hbar \omega_{i}$) at time $t=0$. Express it in terms of the transition frequency $\omega_{f i}=\omega_{f}-\omega_{i}$, and the matrix element $V_{f i}=\langle f| \hat{V}_{0}|i\rangle$.
(1 point)
b) Determine the expression of the transition probability $p_{i \rightarrow f}(t ; \omega)$, then take the limit when $\left|\omega-\omega_{f i}\right| \ll\left|\omega_{f i}\right|$. Show then that for a fixed time t, the probability $p_{i \rightarrow f}(\omega)$ admits a maximum.

Exercise 21 Lorentz transformation and space contraction

Let us consider a fermionic particle of mass m trapped in a volume V such that it is described by the spinor

$$
\psi(\boldsymbol{x}, t)=\frac{1}{\sqrt{V}}\left(\begin{array}{l}
1 \tag{7}\\
0 \\
0 \\
0
\end{array}\right) e^{-i p_{\mu} x^{\mu} / \hbar}
$$

A Lorentz boost is applied to the system such that in the new reference frame, the particle moves along the z-axis with a rapidity χ, such that $\tanh \chi=\beta=p c / E$. Therefore, the spinor is transformed such that $\psi^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=S \psi(\boldsymbol{x}, t)$, where

$$
\begin{equation*}
S=\cosh \frac{\chi}{2} \mathbf{1}_{4}+\alpha_{z} \sinh \frac{\chi}{2} . \tag{8}
\end{equation*}
$$

Compute the density of probability $\rho^{\prime}=\psi^{\prime \dagger} \psi^{\prime}$ and compare it to $\rho=\psi^{\dagger} \psi$ in the reference frame of the particle at rest.
Hint: Use that for a particle moving at a velocity v, its energy can be related to its mass via the relation $E=\gamma m c^{2}$, where γ is Lorentz factor.

