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Exercise 13 Goeppert-Mayer transformation

Let us consider an electron of mass m and charge ¢ = —e set in a position-dependent potential
Vo. The interaction of the electron with an external electric field E = —%% is described by
the minimal coupling Hamiltonian
= (p+ ) + i) (1)
= — - 7).
2m c 0

In the following, we will assume that we are in the Coulomb gauge (V - A = 0) such that the
momentum operator p commutes with the vector potential A.

a) Considering a time-dependent unitary transformation U(t), such that a state |¢)) trans-
forms into |¢) following the relation |¢)) = U|y). Considering that the evolution of |¢) is
governed by the Schrodinger equation
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th—ly) = H|Y), 2
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determine the effective Hamiltonian H describing the evolution of the transformed state

[¥).

(1 point)

b) We introduce the unitary operator U(t) = exp (hicci A), where d = —e? is the dipolar
moment of the electron. Determine the expression of the commutator [ﬁ, U } .

Hint: You may use that [ﬁi, (f])k] = —ihk(7;)"16;;, with k € N.
(2 points)

¢) Show then that the effective Hamiltonian associated to the Goeppert-Meyer transforma-
tion U(t) introduced in the previous question reads

ﬁ/:—mp +Vo(?) —d- E, (3)

which is pivotal to the description of the light-matter interaction.

(2 points)



Exercise 14  Charge conjugation and antiparticles

We remind that the solutions for the Dirac equation for a free particle of mass m moving with
momentum p take the form ) such that:

V(@ 1) = Nul? (p)e'®® “E" with N = /(|E| +me?) /(2| E|V), (4)

where the spinors ) take the form
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with E standing for the energy of the particle and V' for the volume available to the particle.
Let us consider the charge conjugate of the negative-energy solutions of the Dirac equations,
namely ¢(zx,t) = C(yp3Y(x,t))*, where C = —iy?. Explicitly compute the form of ¢ for both
cases j = 3,4 and compare them to the positive-energy solutions of the Dirac equation.

(2 points)

Exercise 15  Klein paradozx

In the following, we consider the case of a plane wave electron of energy F and momentum
p = pe, incident on a potential barrier V(x) = V6(z), 6(2) is the Heaviside distribution. The
wavefunction of the incident electron v; therefore takes the form

1

0
i(z,t) = pc e Pz—Et)/h (5)
E + mc?
0

Based on the intuition built on non-relativistic quantum mechanics, we expect the plane wave
to be partially transmitted and reflected by the potential barrier.

a) Determine the energy £’ and the momentum p’ of the electron for z > 0 as a function of
E, mand V.

(1 point)



b)

Based on continuity conditions, the reflected and transmitted waves are linked via the
relation at z = 0,

%‘(93» t) + T@/JT(CB, t) = t¢t<m7 t)v

where r and t are the reflection and transmition coefficients. Determine the expression of
r and t as a function of the adimensional quantity ¢

P (E+mc?)

NICETT)

(6)
Note that in general r, t and ¢ are complex numbers.
(3 points)

Compute the z-component of the vector current j3 = ¥Ta3y for the incident j;, reflected
J» and transmitted j; currents. Verify the conservation of the currents: j3 + 72 = j2.

(2 points)
Discuss the behavior of the ratio 52/ in three different cases:
1- For E' > mc?;
2- For me? > E' > —mc?;
3- And for E' < —mc?.
(8 points)

This third case leads to a seemingly paradoxical result discovered by Klein in 1929. It
is however explained by the stimulated production of electron-positron pairs at the edge
of the potential step by the incident lane wave: while positrons propagate to the right
across the barrier, additional electrons are reflected to the left, leading to the anomalous
result of Klein.



