Theoretical physics V
 Sheet 5

SoSe 2024
Due for the 23.05.2024

Exercise 13 Goeppert-Mayer transformation

Let us consider an electron of mass m and charge $q=-e$ set in a position-dependent potential V_{0}. The interaction of the electron with an external electric field $\boldsymbol{E}=-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}$ is described by the minimal coupling Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m}\left(\hat{\boldsymbol{p}}+\frac{e}{c} \boldsymbol{A}\right)^{2}+V_{0}(\hat{\boldsymbol{r}}) . \tag{1}
\end{equation*}
$$

In the following, we will assume that we are in the Coulomb gauge $(\boldsymbol{\nabla} \cdot \boldsymbol{A}=0)$ such that the momentum operator $\hat{\boldsymbol{p}}$ commutes with the vector potential \boldsymbol{A}.
a) Considering a time-dependent unitary transformation $\hat{U}(t)$, such that a state $|\tilde{\psi}\rangle$ transforms into $|\psi\rangle$ following the relation $|\psi\rangle=\hat{U}|\tilde{\psi}\rangle$. Considering that the evolution of $|\psi\rangle$ is governed by the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi\rangle=\hat{H}|\psi\rangle, \tag{2}
\end{equation*}
$$

determine the effective Hamiltonian \hat{H}^{\prime} describing the evolution of the transformed state $|\tilde{\psi}\rangle$.
b) We introduce the unitary operator $\hat{U}(t)=\exp \left(\frac{i}{\hbar c} \hat{\boldsymbol{d}} \cdot \boldsymbol{A}\right)$, where $\hat{\boldsymbol{d}}=-e \hat{\boldsymbol{r}}$ is the dipolar moment of the electron. Determine the expression of the commutator $[\hat{\boldsymbol{p}}, \hat{U}]$.
Hint: You may use that $\left[\hat{p}_{i},\left(\hat{r}_{j}\right)^{k}\right]=-i \hbar k\left(\hat{r}_{j}\right)^{k-1} \delta_{i j}$, with $k \in \mathbb{N}$.
c) Show then that the effective Hamiltonian associated to the Goeppert-Meyer transformation $\hat{U}(t)$ introduced in the previous question reads

$$
\begin{equation*}
\hat{H}^{\prime}=\frac{1}{2 m} \hat{\boldsymbol{p}}^{2}+V_{0}(\hat{\boldsymbol{r}})-\hat{\boldsymbol{d}} \cdot \boldsymbol{E}, \tag{3}
\end{equation*}
$$

which is pivotal to the description of the light-matter interaction.

Exercise 14 Charge conjugation and antiparticles

We remind that the solutions for the Dirac equation for a free particle of mass m moving with momentum \boldsymbol{p} take the form $\psi^{(j)}$ such that:

$$
\begin{equation*}
\psi^{(j)}(\boldsymbol{x}, t)=\mathcal{N} u^{(j)}(\boldsymbol{p}) e^{i(\boldsymbol{p} \cdot \boldsymbol{x}-E t) / \hbar} \text { with } \mathcal{N}=\sqrt{\left(|E|+m c^{2}\right) /(2|E| V)}, \tag{4}
\end{equation*}
$$

where the spinors $u^{(j)}$ take the form

$$
\begin{aligned}
& u^{(1)}(\boldsymbol{p})=\left(\begin{array}{c}
1 \\
0 \\
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}
\end{array}\right), u^{(2)}(\boldsymbol{p})=\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
-\frac{c p_{z}}{E+m c^{2}}
\end{array}\right) \\
& u^{(3)}(\boldsymbol{p})=\left(\begin{array}{c}
-\frac{c p_{z}}{|E|+m c^{2}} \\
-\frac{c\left(p_{x}+i p_{y}\right)}{|E|+m c^{2}} \\
1 \\
0
\end{array}\right), u^{(4)}(\boldsymbol{p})=\left(\begin{array}{c}
-\frac{c\left(p_{x}-i p_{y}\right)}{|E|+m c^{2}} \\
\frac{c p_{z}}{|E|+m c^{2}} \\
0 \\
1
\end{array}\right),
\end{aligned}
$$

with E standing for the energy of the particle and V for the volume available to the particle. Let us consider the charge conjugate of the negative-energy solutions of the Dirac equations, namely $\phi(\boldsymbol{x}, t)=\mathcal{C}\left(\psi^{(3,4)}(\boldsymbol{x}, t)\right)^{*}$, where $\mathcal{C}=-i \gamma^{2}$. Explicitly compute the form of ϕ for both cases $j=3,4$ and compare them to the positive-energy solutions of the Dirac equation.
(2 points)

Exercise 15 Klein paradox

In the following, we consider the case of a plane wave electron of energy E and momentum $\boldsymbol{p}=p \boldsymbol{e}_{z}$ incident on a potential barrier $V(\boldsymbol{x})=V \theta(z), \theta(z)$ is the Heaviside distribution. The wavefunction of the incident electron ψ_{i} therefore takes the form

$$
\psi_{i}(z, t)=\left(\begin{array}{c}
1 \tag{5}\\
0 \\
\frac{p c}{E+m c^{2}} \\
0
\end{array}\right) e^{i(p z-E t) / \hbar}
$$

Based on the intuition built on non-relativistic quantum mechanics, we expect the plane wave to be partially transmitted and reflected by the potential barrier.
a) Determine the energy E^{\prime} and the momentum p^{\prime} of the electron for $z>0$ as a function of E, m and V.
b) Based on continuity conditions, the reflected and transmitted waves are linked via the relation at $z=0$,

$$
\psi_{i}(\boldsymbol{x}, t)+r \psi_{r}(\boldsymbol{x}, t)=t \psi_{t}(\boldsymbol{x}, t)
$$

where r and t are the reflection and transmition coefficients. Determine the expression of r and t as a function of the adimensional quantity ζ

$$
\begin{equation*}
\zeta=\frac{p^{\prime}}{p} \frac{\left(E+m c^{2}\right)}{\left(E^{\prime}+m c^{2}\right)} \tag{6}
\end{equation*}
$$

Note that in general r, t and ζ are complex numbers.
c) Compute the z-component of the vector current $j^{3}=\psi^{\dagger} \alpha^{3} \psi$ for the incident \boldsymbol{j}_{i}, reflected \boldsymbol{j}_{r} and transmitted \boldsymbol{j}_{t} currents. Verify the conservation of the currents: $j_{i}^{3}+j_{r}^{3}=j_{t}^{3}$.
(2 points)
d) Discuss the behavior of the ratio j_{r}^{3} / j_{i}^{3} in three different cases:

1 - For $E^{\prime}>m c^{2}$;
2- For $m c^{2}>E^{\prime}>-m c^{2}$;
3- And for $E^{\prime}<-m c^{2}$.

This third case leads to a seemingly paradoxical result discovered by Klein in 1929. It is however explained by the stimulated production of electron-positron pairs at the edge of the potential step by the incident lane wave: while positrons propagate to the right across the barrier, additional electrons are reflected to the left, leading to the anomalous result of Klein.

