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Exercise 13 Goeppert-Mayer transformation

Let us consider an electron of mass m and charge q = −e set in a position-dependent potential
V0. The interaction of the electron with an external electric field E = −1

c
∂A
∂t

is described by
the minimal coupling Hamiltonian

Ĥ =
1

2m

(
p̂ +

e

c
A
)2

+ V0(r̂). (1)

In the following, we will assume that we are in the Coulomb gauge (∇ ·A = 0) such that the
momentum operator p̂ commutes with the vector potential A.

a) Considering a time-dependent unitary transformation Û(t), such that a state |ψ̃〉 trans-
forms into |ψ〉 following the relation |ψ〉 = Û |ψ̃〉. Considering that the evolution of |ψ〉 is
governed by the Schrödinger equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉, (2)

determine the effective Hamiltonian Ĥ ′ describing the evolution of the transformed state
|ψ̃〉.

(1 point)

b) We introduce the unitary operator Û(t) = exp
(

i
~c d̂ ·A

)
, where d̂ = −er̂ is the dipolar

moment of the electron. Determine the expression of the commutator
[
p̂, Û

]
.

Hint: You may use that
[
p̂i, (r̂j)

k
]

= −i~k(r̂j)
k−1δij, with k ∈ N.

(2 points)

c) Show then that the effective Hamiltonian associated to the Goeppert-Meyer transforma-
tion Û(t) introduced in the previous question reads

Ĥ ′ =
1

2m
p̂2 + V0(r̂)− d̂ ·E, (3)

which is pivotal to the description of the light-matter interaction.

(2 points)



Exercise 14 Charge conjugation and antiparticles

We remind that the solutions for the Dirac equation for a free particle of mass m moving with
momentum p take the form ψ(j) such that:

ψ(j)(x, t) = Nu(j)(p)ei(p·x −Et)/~ with N =
√

(|E|+mc2)/(2|E|V ), (4)

where the spinors u(j) take the form

u(1)(p) =


1
0
cpz

E +mc2
c(px + ipy)

E +mc2

 , u(2)(p) =


0
1

c(px − ipy)
E +mc2

− cpz
E +mc2



u(3)(p) =


− cpz
|E|+mc2

−c(px + ipy)

|E|+mc2

1
0

 , u(4)(p) =


−c(px − ipy)
|E|+mc2
cpz

|E|+mc2

0
1

 ,

with E standing for the energy of the particle and V for the volume available to the particle.
Let us consider the charge conjugate of the negative-energy solutions of the Dirac equations,
namely φ(x, t) = C(ψ(3,4)(x, t))∗, where C = −iγ2. Explicitly compute the form of φ for both
cases j = 3, 4 and compare them to the positive-energy solutions of the Dirac equation.

(2 points)

Exercise 15 Klein paradox

In the following, we consider the case of a plane wave electron of energy E and momentum
p = pez incident on a potential barrier V (x) = V θ(z), θ(z) is the Heaviside distribution. The
wavefunction of the incident electron ψi therefore takes the form

ψi(z, t) =


1
0
pc

E +mc2
0

 ei(pz−Et)/~. (5)

Based on the intuition built on non-relativistic quantum mechanics, we expect the plane wave
to be partially transmitted and reflected by the potential barrier.

a) Determine the energy E ′ and the momentum p′ of the electron for z > 0 as a function of
E, m and V .

(1 point)



b) Based on continuity conditions, the reflected and transmitted waves are linked via the
relation at z = 0,

ψi(x, t) + rψr(x, t) = tψt(x, t),

where r and t are the reflection and transmition coefficients. Determine the expression of
r and t as a function of the adimensional quantity ζ

ζ =
p′

p

(E +mc2)

(E ′ +mc2)
. (6)

Note that in general r, t and ζ are complex numbers.

(3 points)

c) Compute the z-component of the vector current j3 = ψ†α3ψ for the incident ji, reflected
jr and transmitted jt currents. Verify the conservation of the currents: j3i + j3r = j3t .

(2 points)

d) Discuss the behavior of the ratio j3r/j
3
i in three different cases:

1- For E ′ > mc2;

2- For mc2 > E ′ > −mc2;
3- And for E ′ < −mc2.

(3 points)

This third case leads to a seemingly paradoxical result discovered by Klein in 1929. It
is however explained by the stimulated production of electron-positron pairs at the edge
of the potential step by the incident lane wave: while positrons propagate to the right
across the barrier, additional electrons are reflected to the left, leading to the anomalous
result of Klein.


