Theoretical physics V
 Sheet 4

Exercise 11 Minimal coupling to the electromagnetic field

Let us consider a particle of mass m and electric charge q coupled to an electromagnetic field $(\boldsymbol{E}, \boldsymbol{B})$ via the Lorentz force

$$
\begin{equation*}
\boldsymbol{F}=q\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right), \tag{1}
\end{equation*}
$$

with $\boldsymbol{v}=\dot{\boldsymbol{x}}$ being the velocity of the particle at position \boldsymbol{x} at time t.
a) With the help of the relations $\boldsymbol{E}=-\boldsymbol{\nabla} \phi-\frac{1}{c} \frac{\partial \boldsymbol{A}}{\partial t}$ and $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$, show that the Lorentz force can be written in terms of a potential U, such that

$$
\begin{equation*}
F_{i}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial U}{\partial \dot{x}_{i}}\right)-\frac{\partial U}{\partial x_{i}} . \tag{2}
\end{equation*}
$$

Determine U.
Hint: One shall use that $\boldsymbol{v} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\boldsymbol{\nabla}(\boldsymbol{v} \cdot \boldsymbol{A})-(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{A}$.
b) Determine the form of the Lagrangian L of the particle.
c) What is the canonically-conjugated momentum \boldsymbol{p} to the position \boldsymbol{x}. Derive then the form of the Hamiltonian H and determine the corresponding Hamilton equations. Show that they are equivalent to the Newton equation of motion.

Exercise 12 Fine structure of the hydrogen atom

Let us consider an hydrogen atom consisting in a single electron of mass m_{e} and electric charge $q=-e$ interacting with a proton. In its non-relativistic description, the electron is described by the Hamiltonian

$$
\begin{equation*}
\hat{H}_{0}=\frac{\hat{\boldsymbol{p}}^{2}}{2 m_{e}}-\frac{e^{2}}{4 \pi \epsilon_{0}|\hat{\boldsymbol{r}}|}, \tag{3}
\end{equation*}
$$

which has eigenvalues of the form $E_{n}=-\frac{1}{2} m_{e} c^{2} \frac{\alpha^{2}}{n^{2}}$, where α is the fine structure constant $\alpha=\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{\hbar c}$. These energy levels are degenerate and correspond to the eigenstates $\left|n, l, m_{l}\right\rangle$, where $n=1,2,3, \ldots$, while $l=0,1, \ldots, n-1$ and $m_{l}=-l, \ldots, l$.
a) Show that at leading order, the relativistic correction to the kinetic energy takes the form

$$
\begin{equation*}
\hat{H}_{r}=-\frac{1}{8} \frac{\hat{\boldsymbol{p}}^{4}}{m_{e}^{3} c^{2}} . \tag{4}
\end{equation*}
$$

Hint: $\sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\mathcal{O}\left(x^{3}\right)$.
b) Deduce then the expression of the corresponding relativistic energy correction ΔE_{r} at first order in perturbation theory.
Hint: You shall use the following relations:

$$
\left\langle\frac{1}{\hat{r}}\right\rangle_{n, l, m}=\frac{m_{e} c \alpha}{\hbar n^{2}} \text { and }\left\langle\frac{1}{\hat{r}^{2}}\right\rangle_{n, l, m}=\left(\frac{m_{e} c \alpha}{\hbar}\right)^{2} \frac{1}{n^{3}(l+1 / 2)}
$$

c) Another correcting term arising from relativistic effects is the spin-orbit coupling

$$
\begin{equation*}
\hat{H}_{S O}=\frac{1}{2 m_{e}^{2} c^{2} r}\left(\partial_{r} V(r)\right) \hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}} \tag{5}
\end{equation*}
$$

which also accounts for the spin degrees of freedom of the electron. Therefore, the state of the electron is now described by a state of the form $|n, l, m\rangle \otimes\left|s, m_{s}\right\rangle$, where $s=1 / 2$. Determine the form of the spin-orbit correction $\Delta E_{S O}$ in terms of l and j, where j are the eigenvalues of the total angular momentum operator $\hat{\boldsymbol{J}}^{2}=(\hat{\boldsymbol{L}}+\hat{\boldsymbol{S}})^{2}$.
Hint: Use that $\left\langle\frac{1}{r^{3}}\right\rangle_{n, l, m}=\left(\frac{m_{e} c \alpha}{\hbar n}\right)^{3} \frac{1}{l(l+1)(l+1 / 2)}$, for $l>0$.
(2 points)
d) The final correction we account for is the so-called Darwin term

$$
\begin{equation*}
\hat{H}_{D}=\frac{\hbar^{2}}{8 m^{2} c^{2}} \partial_{r}^{2} V(r)=\frac{\pi \hbar^{3} \alpha}{2 m_{e}^{2} c} \delta(r) \tag{6}
\end{equation*}
$$

Determine the form of the corresponding correction ΔE_{D}.
Hint: Use that $|\langle\boldsymbol{r} \mid n, l, m\rangle|_{r=0}^{2}=\frac{1}{\pi}\left(\frac{m_{e} c \alpha}{\hbar n}\right)^{3}$, for $l=0$, and $|\langle\boldsymbol{r} \mid n, l, m\rangle|_{r=0}^{2}=0$ otherwise.
(1 point)
e) Combining these different contributions, show that at first order in perturbation theory the energy levels E_{n} are shifted by a factor

$$
\begin{equation*}
\Delta E_{n, j}=\frac{1}{2} m c^{2}\left(\frac{\alpha}{n}\right)^{4}\left(\frac{3}{4}-\frac{n}{j+1 / 2}\right), \tag{7}
\end{equation*}
$$

for $l>0$.
Hint: One shall treat the cases $j=l+1 / 2$ and $j=l-1 / 2$ seperately.

