CHAPTER XIll APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

Using (B-20) and replacing AW (1) by W(t) [ (A-3)], we finally obtain:

Consider the function ﬁ/ﬁ(i’), which is zero for t' < 0 and ¢’ > 1, and equal
to W, (t') for 0 < ¢ < t(cf fig. 1). Wp(t')1s the matrix element of the perturbation
“seen” by the system between the time ¢ = 0 and the measurement time f, when
we try to determine if the system is in the state | ¢, >. Result (B-24) shows that 2 (1)
is proportional to the square of the modulus of the Fourier transform of the
perturbation actually “seen 4 PT/ﬁ(t’). This Fourier transform is evaluated at an
angular frequency equal to the Bohr angular frequency associated with the transition

under consideration.

i(t)

FIGURE 1

The variation of the function J7;(1') with
respect to £ ]:ff'f,-(t’) coincides with W, (t') in
the interval 0 < ¢ < £, and goes fo Zer
outside this interval. It is the Fourier transform
of ],;",}i(',r) that enters into the transition pro-
bability &;,(1) to lowest order.

Note also that the transition probability Z(f) is zero 10 first order if the

matrix element W,,(¢) is zero for all 7.

COMMENT:

We have not discussed the validity conditions of the approximation
to first order in A Comparison of (B-11) with (B-19) shows that (S
approximation simply amounts to replacing, on the right-hand side of (B-11)
the coefficients b,(t) by their values b,(0) at time ¢ = 0. It is therefore cledt
that, so long as ¢ remains small enough for b,(0) not to differ very mué
from b,(t), the approximation remains valid. On the other hand, wll?"[
becomes large, there is no reason why the corrections of order 2, 3, €t& inh

should be negligible.

C. SINUSOIDAL OR CONSTANT PERTURBATION

AN IMPORTANT SPECIAL CASE:
A SINUSOIDAL OR CONSTANT PERTURBATION

Application of the general equations

Now assume that W(¢) has one of the two simple forms:

w(t) = W sin wt
w(t) = W cos wt

where W is a til_ﬂe-independent observable and w, a constant angular frequenc
Riich a StuALIOLD F)ften encountered in physics. For example, in complements A .
and Byyy;. we consider the perturbation of a physical system by an electronlagmﬁz,{tliif,E
. - dngulmhfreq“e?“y ; 2,(t) then represents the probability, induced by the
incident monochromatic radiation, of a transition betw il

) een th i
and the final state | ¢, . e initial state | ¢; >

With the particular form (C-1-a) of W ‘ 7

3 t), th (T ;

the form: ) (7), the matrix elements I¥(¢) take on

Wt) = Wyisin ot = S (e — e™) (5
whg-e_ WJ;i is a time-independent complex number. Let us now calculate the state
vector of the system to first order in A. If we substitute (C-2) into general
formula (B-20), we obtain: o )

A

W,

t
b( S = — Lol i(oni+o)t’ Lo —o)t’ !
n ( ) 2T1 J; [e c )f] dt (C-3)

The integral which appears on the right i C thi
L—h o o a1 ~. . 1
B ikl ight-hand side of this relation can easily be

b“)(t) — % 1 — elt@nit+al — glloni— o)t
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2ih @y +w ,. — (C-4)
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Therefore, i 2 i i
efore, in the special case we are (reating, general equation (B-24) becomes:
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W cos wt becdmes time-independent if we choose @ = 0. The transition probg.
bility #,(r) induced by a constant perturbation W can therefore be obtained by
replacing @ by 0 in (C-5-b):
WP o
9’;;(3) _ | 1:] |1 . enm;,rlz

T 2.2
h oy

= lv—:%li E(t, o) (C-6)

with

. ) 2
F(t,wp) = I:Sln(f)c;/g/ )} e

In order to study the physical content of equations (C-5) and (C-6), we shall
first consider the case in which | ¢; > and | ¢, > are two discrete levels (§ 2), and
then the one in which [ @, » belongs to a continuum of final st.altes § ;). In the
first case, 2,(1; w) [or Z,(t)] really represents a transition pr-obabl'hty which can be
measured, while, in the second case, we are actually dealing with a probability
density (the truly measurable quantities then involve a summation over a set of final
states). From a physical point of view, there is a distinct difference between these
two cases. We shall see in complements Cy,;; and Dy, that, over a sufficiently
long time interval, the system oscillates between the states | @; » and | @, » in the
first case, while it leaves the state | @, » irreversibly in the second case.

In §2, in order to concentrate on the resonance phenomenon, we shall choose
a sinusoidal perturbation, but the results obtained can easily be transposed to the
case of a constant perturbation. Inversely, we shall use this latter case for the dis-
cussion of §3.

2. Sinusoidal perturbation which couples two discrete states:
the resonance phenomenon

a. RESONANT NATURE OF THE TRANSITION PROBABILITY

When the time ¢ is fixed, the transition probability 2, (r: w) is a function
only of the variable w. We shall see that this function has a maximum for:

W = W (C-8-4)
or:

W~ — Wy (C-8-bl
A resonance phenomenon therefore occurs when the angular frequgncy of the
perturbation coincides with the Bohr angular frequency associated with the paif
of states | @; > and | ¢, ». If we agree to choose @ > 0, relations (C-8) give the

iti - : (.
resonance conditions corresponding respectively to the cases w,; > 0 and @;; <
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C. SINUSOIDAL OR CONSTANT PERTURBATION

Ir.l the first case (cf. fig. 2-a), the system goes from the lower energy level £, to the
higher l;:vel £, by the resonant absorption of an energy quantum fiw. In the !second
case (¢f. fig. 2-b), the resonant-perturbation stimulates the passage of the system

lfPf> : I(Pf>

| o, >

[ o>

FIGURE 2

The relative disposition of the energies E; and E associated with the states | @; > and [, > If
E; < E; (fig. a), the |¢,> —> [ @, > transition occurs through absorption of an énergy

quantum fw. If, on the other hand, £, > E (fig. b — iti
:  on " y (fig. b), the |, > t t
through induced emission of an energy qlllantum hon. I | r? fafl tion aces

from the higher level E, to the lower level £ 1 (accompanied by the induced emission
gf an energy qugntum hw). Throughout this section, we shall assume that w
is positive (the situation of figure 2-a). The case in which ..
be treated analogously. g

To reveal the resonant nature of the transition probability, we note that

expressions (C-5-a) and (C-5-b) for Z,(1; w) involve the square of the modulus

of a sum of two complex terms. The first of these terms is proportional to:

. . T
1s negative could

_ pilapita) :
A, = 1 —ighs = — jeios+ayz SN [(“in + w)t/2]
w,; +o (wp + w)/2 (G=94)

and the second one, to:

1 ei((u].~w]r 5
AL ==—C8 " " _; ciwp—ayz S0 [(cu[,- — w)t/2]
Wy — @ ' (0, — w)/2 (C-9-b)

3;:};6 dt;nominator of the 4_ term goes to zero for w = ®» and that of the A4
lerm, or w = — @, (;opsequently, for w close to W, we expect only the A4 :
M to be important ; this is why it is called the “resonant term”, while the 4 . term
’ +

15 cal “anti
“ alled the “anti-resonant term ” (A, would become resonant if, for negative w
I were close to — ;). "

Let us then consider the case in which :

& = w < o (C-10)
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gﬁl,f(t;a)) :%F(t,w - wﬁ)
with: , )
sin (0 — @)4/2) (C-1)
F(t, w — W) = (wp — w)/2

/ i t to w, where ¢ is fixed.
.ation of 2 (t; w) with respect 10 PG 3 15 1p
vz}rlit;l{z\rtlure ijt(he transition probability. This probability
% when it is equal to |Wfi\2r2£’4?2. ?Nﬁlwei nll(o)ve dzdﬂ
’ -— = 2m/t. il D — W
‘he to zero for | — @pi| = Jo —
il between the value (W, 20 (0 — @ ;i) and zero

Figure 3 represents the
It clearly shows the reson
presents a maximum for @ = @p;
from ;. it_ decreases, o

continues to 1ncrease, it oscillates

C. SINUSOIDAL OR CONSTANT PERTURBATION

maximum of #,, attained when (0 — w,;)t/2 = 3n/2, is equal to | W}, |*t?/9n°h>,
that is, less than 5 %4 of the transition probability at resonance]. We then have:
T

Aw ~ ¥ (C-13)
The larger the time ¢, the smaller this width.

Result (C-13) presents a certain analogy with the time-energy uncertainty
relation (¢f. chap. ITI, §D-2-¢). Assume that we want to measure the energy
difference E, — E; = hw,; by applying a sinusoidal perturbation of angular
frequency @ to the system and varying o so as to detect the resonance. If the

perturbation acts during a time ¢, the uncertainty A on the value E, — E, will be,
according to (C-13), of the order of:

AE =TIAU)2—T;- (C-14)

Therefore, the product tAE cannot be smaller than . This recalls the time-energy

uncertainty relation, although ¢ here is not a time interval characteristic of the free
evolution of the system, but is externally imposed.

(“diffraction pattern ).

c. VALIDITY OF THE PERTURBATION TREATMENT

Now let us examine the limits of validity of the calculations leading to
result (C-11). We shall first discuss the resonant approximation, which consists of
neglecting the anti-resonant term A, ., and then the first-order approximation in
the perturbation expansion of the state vector.

0. Discussion of the resonant approximation

Using the hypothesis @ ~ w;, we have neglected 4, relative to 4 _. We shall
therefore compare the moduli of 4, and 4 _.

The shape of the function |4_(w)|* is shown in figure 3. Since
A, (@)* = |4 _(— o), |4, ()] can be obtained by plotting the curve which is
symmetric with respect to the preceding one relative to the vertical axis w = 0.
If these two curves, of width Aw, are centered at points whose separation is much
larger than Aew, it is clear that, in the neighborhood of o = @®;;, the modulus

of 4, is negligible compared to that of 4_. The resonant approximation is

|
;i!
|

: O ﬁ therefore justified on the condition* that:
il
¥ .| ' ‘) ' |
‘\ FIGURE 3 ility 2,,(1, w) associated with a ml(,_,_“| 5. -
| i ition probability &1 ‘
! o ith respect to w, of the first-order transi il gl IR g | . .1
Ii 5 Variation ,wit "E 1: of anéular frequency ;! is fixed. When @ = wﬁ], " - (C"l e
“ Sinusmda! B “_‘0“ 1 to (> and whose width is inversely proportiona to t.
i intensity is proportiona 1 | |
M S o — ((-16]
[(’) fil w

INTY RELATION Result (C-11) is therefore valid only if the sinusoidal perturbation acts during

_ENERGY UNCERTA =9 g ‘ : : =
AND THE TIME-E dlime 7 which is large compared to 1/w. The physical meaning of such a condition

b. THE RESONANCE WIDTH

I th a 1ma i as e diStLl[lCe
1 ¢ [ i 'tely dehned as Lllb
¢ A(D can be pp 00X

& ys] ‘o interv
= W inside this 1€
between the first two Zeros of Z,(t; ») about w = @ IL18

i o 1 o u ( ) I satisfi ! resonant and anti-resonant terms interfere:
(¥] 0 ] ge h ﬁ] { s £ ed, th
t 1at t esonant

5 ot correct to simply add |4, |* and |4 _|2
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1 t perform numeroys
i intervs he perturbation mus
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i c.lear.- g ear to the system as a sinusoidal perturbdtlon. {f,h e B tiher
oscillations tog?{?ﬁl compared to 1/w, the perturbation woulq nolineariy 4 time
panes 'Illzﬁzrimd would be equivalent to a perturbation varying me
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[in the case (C-1-a)] or constant [in the case (C-1-b)].

COMMENT:

o be satisfied
: tion (C-16) can never b .
tant perturbation, condi ]
i i cr:?)nsHo\melzfer it is not difficult to adapt the calculla;‘uotl;b Of_[.§ b
i tzlfl:is .case We,have already obtained [in (C-6)] tt € an51019n
’ . . X w =
dbﬂgebzﬁi 2 (1) for a constant perturbation by directly 53 H\;ghich Sho\:l
péosa‘lrj) b)ilote!fthat the two terms A, and A_ are then ectluneﬂligible
Eh';t_if iC—16) is not satisfied, the anti-resonant tetjrtr;l 19;61;;ect %0 the.energy
ili ) i
The variation of the probablllt)_f P, (1) b foure 4. This probabiliy
' ith the time ¢ fixed) is shown 1n figure = 1 &b abou
difforence Rey; I 0. which corresponds to what we found in §b above:
g s \Zero the perturbation is resonant when o, =0
o » ency 1 s K . n H
12 its dnglia;e\i;:tsl)u Mgre generally, the considerations of § b concerning the
egenera . = i se.
E‘eatgures of the resonance can be transposed to this ca

FIGURE 4

Variation of the fransition pmb.abilit}.j (1) ::S:,
ciated with a constant perturbation with respe 3
o, = (Ef — E )/, for fixed t. A res?llanc: a|:||:: ’)
cefnitered about @ =10 (conservation ;mi sggu.[
with the same width as the resonance of % g c‘ous-
an intensity four times greater (because of o
tructive interference of the resonant an.d anu-: ol
terms, which, for a constant perturbation, ar

B Limits of the first-order calculation

. . first-order
¢f. comment at the end of §B-3-b) that the ,ﬁlsé OThiS
s lid when the time ¢ becomes too larg ‘ineui
(C-11), which, at resonance, can be wI

We have already noted (
approximation can ceas¢ to be va
can indeed be seen from expression

\Weil” A
. e =i i EZ
g’if(t,w;caﬁ) e
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This function becomes infinite when 1 —» co, which is absurd, since a probability
can never be greater than 1.

In practice, for the first-order approximation to be valid at resonance, the
probability in (C-17) must be much smaller than 1, that is*:

t < i (C-18)
[ ST =

l Wfi'

To show precisely why this inequality is related to the validity of the first-order approximation,
it would be necessary to calculate the higher-order corrections from (B-14) and to examine under
what conditions they are negligible. We would then see that although inequality (C-18) is
necessary, it is not rigorously sufficient. For example, in the terms of second or higher order,

there appear matrix elements W,m of W other than W;;, on which certain conditions must be

imposed for the corresponding corrections to be small.

Note that the problem of calculating the transition probability when ¢ does
not satisfy (C-18) is taken up in complement C,,;,, in which an approximation
of a different type is used (the secular approximation)

3. Coupling with the states of the continuous spectrum

If the energy E, belongs to a continuous part of the spectrum of H,, that
is, if the final states are labeled by continuous indices, we cannot measure the
probability of finding the system in a well-defined state |(pf> at time 7. The
postulates of chapter I1I indicate that in this case the quantity |< ¢ ;| ¥(2) >|* which
we found above (approximately) is a probability density. The physical predictions
for a given measurement then involve an integration of this probability density over
a certain group of final states (which depends on the measurement to be made).

We shall consider what happens to the results of the preceding sections in this
case.

a, INTEGRATION OVER A CONTINUUM OF FINAL STATES ; DENSITY OF STATES

% Example

To understand how this integration is performed over the final states, we
shall first consider a concrete example.

We shall discuss the problem of the scattering of a spinless particle of mass m
by a potential W(r) (¢f. chap. VIII). The state | y(¢) » of the particle at time ¢ can

* For this theory to be meaningful, it is obviously necessary for conditions (C-16) and (C-18) to
be tompatible, That is, we must have:

1 < n
et SO
log] W

This inequality means that the energy difference

i |E; — E|| = R|w,,| is much larger than the matrix
et of 1/(r) between | ¢, > and [e; >
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