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Abstract. We present a random measure approach for modeling exploration, i.e., the execu-
tion of measure-valued controls, in continuous-time reinforcement learning (RL) with controlled
diffusion and jumps. First, we consider the case when sampling the randomized control in
continuous time takes place on a discrete-time grid and reformulate the resulting stochastic dif-
ferential equation (SDE) as an equation driven by suitable random measures. The construction
of these random measures makes use of the Brownian motion and the Poisson random measure
(which are the sources of noise in the original model dynamics) as well as the additional random
variables, which are sampled on the grid for the control execution. Then, we prove a limit
theorem for these random measures as the mesh-size of the sampling grid goes to zero, which
leads to the grid-sampling limit SDE that is jointly driven by white noise random measures and
a Poisson random measure. We also argue that the solution to the grid-sampling limit SDE
can substitute the solution to the exploratory SDE and the sample state process of the recent
continuous-time RL literature, i.e., it can be applied for the theoretical analysis of exploratory
control problems and for the derivation of learning algorithms.
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1. Introduction

Recent years have seen tremendous progress in the development of reinforcement learning (RL)
for systems in continuous time and space, which are formulated in the language of stochastic
differential equations (SDEs). The articles [30, 31] constitute an important starting point for
the modeling of exploration of the state space in such a framework. Roughly speaking, the
exploration mechanism consists of first choosing a relaxed control (which is a policy with values
in the set of probability distributions) and then executing the policy by drawing a sample from
the chosen distribution. Based on a heuristic argument using law of large numbers, Wang et al.
[30] identify the drift and diffusion coefficient, when averaging over many independent executions
of the relaxed control, leading to the exploratory SDE in a diffusion setting. Regularizing the
cost function by adding a running reward for exploration (e.g., in terms of Shannon entropy as
in [30, 31]), they come up with a formulation of exploratory control problems.

The exploratory control approach of [30] has been generalized in many directions, including
a mean-field setting [7, 11], regime-switching models [32], and models with jumps [1, 9]. A
significant part of the literature focuses on exploratory versions of linear-quadratic problems
(which are no longer linear-quadratic due to the presence of the regularization term) and on
applications to mean-variance portfolio selection, see, e.g., [1, 5, 11, 30, 31, 32]. Moreover,
alternatives to the Shannon entropy regularization term have been suggested, see [6, 11, 12, 23].
More information about the recent progress in continuous-time RL can be found in the survey
article by Zhou [36].
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While the exploratory SDE is tailor-made to adapt the classical dynamic programming ap-
proach and to tackle exploratory control by means of a suitable variant of the Hamilton–Jacobi–
Bellman (HJB) equation (see [29] for a detailed study of the exploratory HJB equation), it cannot
be interpreted as the response of the system to a randomized control (i.e, a sample drawn from
a given relaxed control). This is due to the averaging effect in its derivation. Hence, trajectories
of the exploratory SDE cannot be regarded as observable and, thus, learning algorithms cannot
be formulated in terms of (time-discretized) trajectories of the exploratory SDE, see also the
discussion in [16, p.9].

As a way out, Jia and Zhou [16, 17] introduce the sample state process as the solution to an
SDE, which we call the sample SDE in this article, to model the dynamics of the system along a
randomized control in continuous time. Based on this SDE and a martingale criterion for opti-
mality in continuous time, they provide continuous-time versions of several learning algorithms
(including temporal-difference learning and Q-learning), see also [27] for an overview on learning
algorithms in the classical framework of Markov decision processes. In their construction of the
sample SDE, an uncountable family (Zt)t∈[0,T ] of independent uniform random variables on the
unit cube is employed for the randomization procedure. To avoid some measurability issues in
the construction (see, e.g., [25, Proposition 2.1 and Corollary 4.3]), they exploit the theory of
rich Fubini extensions [25, 26] in the formulation of the sample SDE. However, we will argue
in Section 3 under a simplified setting of drift control with additive noise that the sampling
formulation based on the framework of rich Fubini extensions also has no proper interpretation
as response of the original SDE system to a randomized control. The key issue here is that the
sampling via an uncountable family of (essentially) pairwise independent random variables leads
to an averaging effect by Sun’s exact law of large numbers in [25].

In order to circumvent the measurability problems and to avoid the averaging effect, we
exploit an idea in [28]. Namely, we sample the independent uniform random variables on a finite
time-grid only and extend the randomization scheme piecewise constantly to a left-continuous
process (which, consequently, becomes predictable). This approach leads to a well-defined SDE,
which we call grid-sampling SDE. It has a sound interpretation as response of the system to the
grid-randomization of a relaxed control. Technically, this is an SDE with random coefficients.

We are mainly interested in the limit dynamics of this grid-sampling SDE, as the mesh-size of
the grid tends to zero. To this end, we reformulate it as an SDE with deterministic coefficients
driven by appropriate random measures which depend on the grid-sampling randomization pro-
cess. In this way, the additional randomness for policy execution is moved from the integrand to
the integrator. Our main result (Theorem 5.1 below) implies vague convergence of these grid-
dependent random measures, as the grid-size converges to zero. Replacing the grid-dependent
random measures by their limit measures, we arrive at the grid-sampling limit SDE, which we
consider as a natural SDE formulation for RL with state space exploration in continuous time.

Note that we work in a framework with controlled diffusion and controlled jumps in which the
SDE under a classical control is driven by a multidimensional Brownian motion and a Poisson
random measure. In the “control randomization limit”, i.e. in our formulation of the grid-
sampling limit SDE, the Brownian motion is replaced by a family of independent white noise
martingale measures (in the sense of [33, 19]) and the limit Poisson random measures is defined
on an extended measurable space to account for the randomization.

Our weak convergence approach extends the derivation of the exploratory dynamics for mean-
variance portfolio selection with jumps in [1]. Due to the linear dependence of the diffusion
coefficient on the control, the white noise martingale measures do not show up there but are
replaced by a high-dimensional Brownian motion (which features additional components to
model the control randomization) in the context of [1], see also Example 6.3. However, the limit
Poisson random measure is essentially the same as in [1] in our more general situation.

We also mention that recently the framework of Zhou and coauthors [16, 17, 30] has been
extended to the jump-diffusion case by Gao et al. [9]. They derive in [9] the infinitesimal gener-
ator of the averaged (over independent policy executions) dynamics heuristically by extending
the law of large numbers argument from [30] in order to define an exploratory SDE with jumps.
While the jump part features the same structure as in our grid-sampling limit SDE and as in
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[1], the diffusion part of their exploratory SDE with jumps is driven by a Brownian motion,
which can be lower-dimensional than the Brownian motion that drives the original SDE without
control randomization.

We finally remark that the grid-sampling limit SDE resembles the classical formulation of
relaxed control, see, e.g., [22] for the case of diffusion control or Chapter 13 in [21]. We emphasize,
however, that relaxed controls have been introduced as a technical tool for compactification of
the control space in the framework of classical control, while the importance of the grid-sampling
limit SDE is in its interpretation as limit to the response of the system to randomized controls.

The article is structured as follows: Section 2 presents a classical setting for controlled SDEs
with jumps and randomized policies. In Section 3, we discuss the approach using the idealized
sampling for randomization in a rich Fubini extension framework. In Section 4, we introduce
the grid-sampling SDE and construct in Proposition 4.3 some random measures related to grid
sampling and reformulate the grid-sampling SDE as an SDE driven by these random measures.
The main limit theorem is stated in Subsection 5.1, leading to the definition of the grid-sampling
limit SDE, which is shown in Subsection 5.2 to be well-posed under standard Lipschitz conditions.

In Subsection 6.1, we show how to simplify the grid-sampling limit SDE in the case of coeffi-
cients that depend linearly on the control, while, in Subsection 6.2, we compare the exploratory
SDE of [30] and the grid-sampling limit SDE. It turns out that the solutions to both SDEs share
the same probability law, although one is derived by averaging out the policy randomization
a-priori, while the other one is obtained in a limit, when one adds more and more randomiza-
tion noise. A main difference is that our limit theorem combined with stability results for SDEs
driven by martingale measures (e.g., Chapter 13 in [21]) suggests a joint convergence of SDE and
integrator for the grid-sampling limit SDE, while such a result cannot hold for the exploratory
SDE.

This difference plays a key role in Subsection 6.3, where we re-derive the temporal difference
TD(0)-algorithm of [15, 16] for policy evaluation in continuous time based on the grid-sampling
limit SDE. In doing so, we avoid reference to any kind of idealized sampling that requires
independent, identically distributed families of random variables indexed by continuous time for
control randomization.

The proof of the main result, Theorem 5.1, will be given in Section 7 and relies on a limit
theorem for triangular arrays by Jacod and Shiryaev [14]. The key step of the proof is contained
in Proposition 7.4, which implies convergence of the (modified) semimartingale characteristics
of the grid-sampling random measures (integrated against a sufficiently large class of test inte-
grands) to the semimartingale characteristics of the limit random measures.

Proofs of the well-posedness of grid-sampling SDEs and of grid-sampling limit SDEs are given
in Section 8.

2. Preliminaries

2.1. Notations. Let N := {1, 2, . . .} and Rm
0 := Rm\{0}. For a, b ∈ R, denote a∨b := max{a, b}

and a∧ b := min{a, b} as usual. We let
∫ b
a :=

∫
(a,b] and

∫
∅ =

∑
i∈∅ := 0 by convention. Notation

log stands for the natural logarithm.
In this article, all vectors are interpreted as column matrices. For a vector x we use x(i) to

denote its i-th component. For a matrix A, the entry in the i-th row and j-th column is A(i,j).
Notation AT stands for the transpose of A. The collection of real matrices of size m × p is
denoted by Rm×p which is equipped with the Euclidean/Frobenius norm ∥A∥F :=

√
trace[ATA].

For m ∈ N, we denote by Im the identity matrix of the size m×m.
Let | · | be the Euclidean norm in Rm. The open ball in Rm centered at 0 with radius r > 0

is Bm(r) := {x ∈ Rm : |x| < r}. In Rm we always use the Borel σ-field B(Rm) induced by the
Euclidean norm. For A ∈ B(R), λA means the 1-dimensional Lebesgue measure restricted on A.

Let U ∈ B(Rd). Denote by Bb(U ;Rm) the family of all Borel measurable functions f : U → Rm

satisfying ∥f∥Bb(U ;Rm) := supu∈U |f(u)| <∞. For m = 1, we simply write Bb(U) := Bb(U ;R).
Notations ∂kf , ∂

2
k,lf stand for usual partial derivatives of f with respect to scalar components.

Let ∇f and ∇2f denote the gradient and the Hessian of f respectively. The family C2
b (Rm)
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consists of all twice continuously differentiable and bounded functions f : Rm → R with bounded
gradient and Hessian. C2

c (Rm) contains all f ∈ C2
b (Rm) with compact support. We let f ∈

C1,2([0, T ]×Rm) if f is (resp. twice) continuously differentiable with respect to t ∈ [0, T ] (resp.
to y ∈ Rm) and its partial derivatives are jointly continuous.

Stochastic basis. Let T ∈ (0,∞). Assume that (Ω,F ,F,P) satisfies the usual conditions, which
means that (Ω,F ,P) is a complete probability space, the filtration F = (Ft)t∈[0,T ] is right-
continuous and F0 contains all P-null sets. This allows us to assume that every F-adapted local
martingale has càdlàg (right-continuous with finite left limits) paths. For a random variable ξ,
the expectation and conditional expectation given a sub-σ-algebra G ⊆ F , if it exists under P,
is respectively denoted by E[ξ] and E[ξ|G]. We also use the notation Lp(P) := Lp(Ω,F ,P).

We write PF for the predictable σ-field on Ω×[0, T ] with respect to the filtration F and say that
an Rd-valued stochastic process X = (Xt)t∈[0,T ] is F-predictable, if the map X : Ω× [0, T ]→ Rd

is PF/B(Rd)-measurable.
For a càdlàg process X = (Xt)t∈[0,T ], set ∆Xt := Xt −Xt− for t ∈ [0, T ], where X0− := X0

and Xt− := limt>s↑tXs for t ∈ (0, T ]. For processes X = (Xt)t∈[0,T ], Y = (Yt)t∈[0,T ], we write
X = Y to indicate that Xt = Yt for all t ∈ [0, T ] a.s., and the same meaning applied when the
relation “=” is replaced by some other relations such as “≤”, “>”, etc.

We refer to [14] for unexplained notions such as semimartingales, (optional) quadratic covari-
ation [X,Y ] and predictable quadratic covariation ⟨X,Y ⟩ of semimartingales X, Y .

2.2. Controlled SDEs with jumps. We think of the model dynamics as a system with input
coefficients (a, b, γ below) that depend on a control (policy) h in feedback form. The output of
the system is influenced by the random noise generated by a multivariate Brownian motion B and
an independent Poisson random measure N . Here, we assume that (B,N) is defined on a filtered
probability space (Ω,F , F̄,P), which satisfies the usual conditions, and note that the filtration F̄
may be larger than the one generated by (B,N). Thus, for a classical (non-randomized) policy
h, we end up with the dynamics, for t ∈ [0, T ],

dXh
t = b(t,Xh

t−, h(t,X
h
t−))dt+ a(t,Xh

t−, h(t,X
h
t−))dBt

+

∫
0<|z|≤r

γ(t,Xh
t−, z, h(t,X

h
t−))Ñ(dt,dz) +

∫
|z|>r

γ(t,Xh
t−, z, h(t,X

h
t−))N(dt,dz), (2.1)

with initial condition Xh
0 = x0 ∈ Rm. The coefficients b : [0, T ]×Rm×Rd → Rm, a : [0, T ]×Rm×

Rd → Rm×p and γ : [0, T ]× Rm × Rq
0 × Rd → Rm and the feedback policy h : [0, T ]× Rm → Rd

are measurable and assumed to be sufficiently regular to guarantee existence of a unique strong
solution. Moreover, B = (Bt)t∈[0,T ] is a standard p-dimensional Brownian motion, N(dt,dz) is a
(possibly inhomogeneous) Poisson random measure independent of B with intensity ν(dt,dz) =
νt(dz)dt where (νt(dz))t∈[0,T ] is a transition kernel consisting of Lévy measures on Rq

0 (i.e., νt is

a Borel measure with
∫
Rq
0
(|z|2 ∧ 1)νt(dz) <∞ for all t ∈ [0, T ]).

The following Assumption 2.1 is imposed throughout this article:

Assumption 2.1. One has for some fixed r ∈ [0,∞] that∫ T

0

∫
Rq
0

(|z|21{0<|z|≤r} + 1{|z|>r})νt(dz)dt <∞. (2.2)

The parameter r is regarded as the threshold to distinguish between small jumps and large
jumps – and, as usual, the small jumps are integrated with respect to the compensated random
measure Ñ(dt,dz) := N(dt,dz)− νt(dz)dt.

Remark 2.2. (1) One typically takes r = 1 which corresponds to the canonical truncation
function z1{0<|z|≤1}. However, since the random measures introduced below are handled
differently between the “compensated jump part” and the “finite activity jump part”,
we include here the case r = 0, which means that the jump part

∫ ·
0

∫
Rq
0
zN(dt,dz) of the

driving (inhomogeneous) Lévy process is of finite activity, and the case r = ∞ which

means that the jump part
∫ ·
0

∫
Rq
0
zÑ(dt,dz) is a square integrable martingale.
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(2) Note that (2.2) holds for some r ∈ (0,∞) if and only if (2.2) holds for all r ∈ (0,∞).

2.3. Randomized policies. A relaxed (or, measure-valued) control in feedback form is a map-
ping h : [0, T ]× Rm → Pr(B(Rd)), where Pr(B(Rd)) denotes the space of probability measures
on the Borel field B(Rd). For the execution of a relaxed control, we consider an F̄-predictable sto-
chastic process ξ = (ξt)t∈[0,T ] independent of (B,N), whose marginal distribution ξt is a uniform

distribution on [0, 1]d for every t ∈ [0, T ]. Such a ξ is called a randomization process. We think
of a Borel measurable function h : [0, T ]×Rm× [0, 1]d → Rd as a randomized control in feedback
form. The actual randomization is performed by plugging a randomization process in the last
variable of h. Adapting the terminology in [28] to our setting, we say that a randomized control
h executes a relaxed control h, if the random variable h(t, x, ξt) has the distribution h(t, x) for
every t ∈ [0, T ] and x ∈ Rm (for some, and then for any, randomization process ξ). For a given
randomization process ξ, the random field (h(t, x, ξt))t∈[0,T ], x∈Rm is called a ξ-randomized policy
in feedback form.

The crucial property of the randomization process ξ is its predictability which necessarily
implies the predictability of the random field (h(t, x, ξt))t∈[0,T ], x∈Rm . Hence, for a randomized
control h and a randomization process ξ, it makes sense to consider the random coefficient SDE

dXξ,h
t = b(t,Xξ,h

t− ,h(t,Xξ,h
t− , ξt))dt+ a(t,Xξ,h

t− ,h(t,Xξ,h
t− , ξt))dBt

+

∫
0<|z|≤r

γ(t,Xξ,h
t− , z,h(t,Xξ,h

t− , ξt))Ñ(dt,dz)

+

∫
|z|>r

γ(t,Xξ,h
t− , z,h(t,Xξ,h

t− , ξt))N(dt,dz), (2.3)

which describes the dynamics of the system along the ξ-randomized policy (h(t, x, ξt))t∈[0,T ], x∈Rm .

Remark 2.3. (1) We have only fixed the marginal distribution of the randomization process
ξ, but not the joint distribution. In particular, ξs and ξt are, for the moment, not
supposed to be independent for s ̸= t. Two approaches for ξ will be discussed in Section 3
(idealized sampling) and Section 4 (grid-sampling) below.

(2) It is well known that for every distribution P on B(Rd), there is a measurable function H
such that H(η) is P -distributed for any uniform random variable η on [0, 1]d. This is one
motivation to assume that the marginals of ξ are uniformly distributed. Note, however,
that for any vector (η1, . . . , ηd) of independent standard Gaussian random variables,
the vector (Φ(η1), . . . ,Φ(ηd)) is uniformly distributed on [0, 1]d. Here, Φ denotes the
cumulative distribution function of a standard Gaussian. Hence, changing the marginal
distribution of (ξt)t∈[0,T ], e.g., to a multivariate Gaussian as in [1] does not make any
essential difference in the constructions to come.

3. Idealized sampling and rich Fubini extensions

Ideally, the randomization procedure would be performed at each time point t independently
of the other time points, leading to the requirement that the family ξ = (ξt)t∈[0,T ] consists of
independent random variables. Although there is no problem to construct the triplet (B,N, ξ) on
an appropriate product space, it is known that a family of non-constant independent identically
distributed random variables (ξt)t∈[0,T ] cannot be realized in a jointly measurable way with

respect to the standard product σ-field. Namely, the map ξ : Ω × [0, T ] → [0, 1]d cannot be
F ⊗ B([0, T ])/B([0, 1]d)-measurable, see, e.g., [25, Proposition 2.1] and the detailed discussion
on the relevance of the results in [25] for policy execution in [28]. In particular, with this type of
idealized sampling, we can never obtain the crucial predictability property of ξ, and, hence, it
is not clear how to make any good sense of the SDE (2.3) (in the classical way) for a sufficiently
large class of ξ-randomized policies.

To overcome this measurability issue, several authors, e.g., [17, 8], have pointed to the frame-
work of rich Fubini extensions introduced in [25] for defining the sample state process as the
solution of a suitable reformulation of (2.3). However, we will show in this section that, even
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with the rich Fubini extension framework, the sample state process does not model the execution
of relaxed controls.

Our discussion below elaborates the one in [8]. For simplicity, we consider the one-dimensional

case and let T = 1 but still write [0, T ] and
∫ T
0 instead of [0, 1] and

∫ 1
0 , respectively, to distinguish

the time- and space-variables. As stochastic integration under the rich Fubini extension setting
is beyond the scope of the classical Itô calculus, we only consider the case of drift control with
additive noise given in terms of a one-dimensional Brownian motion B. We now discuss how to
make sense of an SDE of the form

Yt = y0 +

∫ t

0
b(s, Ys,h(s, Ys, ξs))ds+ σBt, t ∈ [0, T ], (3.1)

where, ideally, ξ = (ξt)t∈[0,T ] is a family of independent random variables, which are uniformly
distributed on [0, 1]. Moreover, ξ is assumed to be independent of the Brownian motion B. In
(3.1), the functions b : [0, T ] × R × R → R and h : [0, T ] × R × [0, 1] → R are measurable with
respect to the standard Borel σ-fields, and σ ≥ 0, y0 ∈ R are constants.

According to [26, Theorem 1], there exist an extension ([0, T ],Λ, ρ) of the Lebesgue probability
space ([0, T ],B([0, T ]),λ[0,T ]) and some probability space (Ω1,F1,P1) such that the product space
([0, T ] × Ω1,Λ ⊗ F1, ρ ⊗ P1) has a rich Fubini extension ([0, T ] × Ω1,Λ ⊠ F1, ρ ⊠ P1), i.e., the
following properties hold:

(1) There exists a Λ⊠ F1/B(R)-measurable process ξ : [0, T ]×Ω1 → R such that, for ρ-a.e.
t ∈ [0, T ], ξt is uniformly distributed on [0, 1] and independent of ξs for ρ-a.e. s ∈ [0, T ].

(2) For any ρ⊠ P1-integrable function F , iterated integration is meaningful and∫
[0,T ]×Ω1

F (t, ω1)(ρ⊠ P1)(dt,dω1)

=

∫
Ω1

(∫ T

0
F (t, ω1)ρ(dt)

)
P1(dω1) =

∫ T

0

(∫
Ω1

F (t, ω1)P1(dω1)

)
ρ(dt),

see [26, Definition 3] or [25, Definition 2.2] for the complete statement of (2).
Moreover, we let (Ω2,F2,P2) be a probability space, which carries a one-dimensional Brownian

motion B with respect to its own filtration. We consider the usual product space (Ω,F ,P) :=
(Ω1 × Ω2,F1 ⊗ F2,P1 ⊗ P2) and extend ξ and B to mappings on [0, T ] × Ω1 × Ω2 by setting
ξt(ω1, ω2) = ξt(ω1) and Bt(ω1, ω2) = Bt(ω2), respectively. Then, there exists a ρ-null set Nρ ∈ Λ
such that for every t ∈ [0, T ]\Nρ, ξt is a random variable (i.e., F/B(R)-measurable) and, by the
product construction, the families (ξt)t∈[0,T ]\Nρ

and (Bt)t∈[0,T ] are independent. We note that
ξ “almost” satisfies the properties required for the ideal sampling procedure mentioned above.
However, ξ is not B([0, T ])⊗F/B(R)-measurable and, hence, not predictable in the usual sense.
Instead, ξ only satisfies the weaker measurability property with respect to the larger σ-field
(Λ ⊠ F1) ⊗ F2. While this ξ does not qualify as a randomization process in the sense of our
definition, SDE (3.1) can be given a rigorous meaning in the framework of rich Fubini extensions,
replacing the Lebesgue measure by its extension ρ:

Yt = y0 +

∫ t

0
b(s, Ys,h(s, Ys, ξs))ρ(ds) + σBt, t ∈ [0, T ]. (3.2)

We first motivate the notion of a solution to this SDE. Since ρ({s}) = λ[0,T ]({s}) = 0 for
every s ∈ [0, T ], integrals with respect to ρ are continuous as functions in the upper integration
limit. Hence, a solution Y to (3.2) should have continuous paths and, then, t 7→ Yt(ω) is
B([0, T ])/B(R)-measurable for every ω ∈ Ω. Moreover, the function t 7→ ξt(ω) is Λ/B(R)-
measurable for P-almost every ω ∈ Ω by the definition of the Fubini extension and, thus, s 7→
b(s, Ys(ω),h(s, Ys(ω), ξs(ω))) is Λ/B(R)-measurable for P-almost every ω ∈ Ω. Consequently,
the integral in (3.2) “makes sense” pathwise.

Definition 3.1. We say, a map Y : [0, T ]× Ω→ R is a solution to (3.2), if

(i) Y has continuous paths;
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(ii) There is a P-null set N0 such that for every ω ∈ Ω\N0, the map

[0, T ] ∋ s 7→ b(s, Ys(ω),h(s, Ys(ω), ξs(ω)))

is ρ-integrable and equation (3.2) is satisfied for every (t, ω) ∈ [0, T ]× (Ω\N0).

Recalling that the function t 7→ ξt(ω) is Λ/B(R)-measurable for P-almost every ω ∈ Ω, we
can introduce the measures

ρ̂(ω; dt,du) = δξt(ω)(du)ρ(dt)

on Λ⊗B(R) for P-almost every ω ∈ Ω. If Y is a solution to (3.2), then, by the (classical) Fubini
theorem, Y satisfies

Yt = y0 +

∫
(0,t]×[0,1]

b(s, Ys,h(s, Ys, u))ρ̂(ds, du) + σBt, t ∈ [0, T ] (3.3)

outside a P-null set.
The next theorem shows that the restriction of the measures ρ̂(ω, ·) to B([0, T ]) ⊗ B(R) is

nothing but the Lebesgue measure on [0, T ]× [0, 1].

Theorem 3.2. There is a P-null set N such that for every ω ∈ Ω\N and A ∈ B([0, T ])⊗B(R),
ρ̂(ω;A) = (λ[0,T ] ⊗ λ[0,1])(A),

where in slight abuse of notation we write λ[0,1](B) = λR(B ∩ [0, 1]) for B ∈ B(R).

Proof. Let A = B × C ∈ B([0, T ]) ⊗ B(R). If λ[0,T ](B) > 0, then, by Sun’s exact law of large
numbers [25, Theorem 2.6], for P-almost every ω ∈ Ω,

ρ̂(ω;A) =

∫
B
1{ξt(ω)∈C}ρ(dt) =

∫
B
E[1{ξt∈C}]ρ(dt) = λ[0,1](C)ρ(B) = (λ[0,T ] ⊗ λ[0,1])(A).

If λ[0,T ](B) = 0, then obviously both sides of the previous equation are zero. Thus, we find
a P-null set N such that for every ω ∈ Ω\N , the measures ρ̂(ω; ·) and λ[0,T ] ⊗ λ[0,1] coincide
on all Cartesian products of subintervals with rational endpoints. Now, Dynkin’s π-λ theorem
completes the proof. □

Since (s, u) 7→ b(s, Ys(ω),h(s, Ys(ω), u)) is B([0, T ])⊗ B(R)-measurable for any ω ∈ Ω, Theo-
rem 3.2 and (3.3) imply that every solution Y to (3.2) solves

Yt = y0 +

∫ t

0

∫ 1

0
b(s, Ys,h(s, Ys, u))duds+ σBt, t ∈ [0, T ] (3.4)

outside a P-null set. Note that (3.4) coincides with the exploratory SDE introduced in [30].
This argument shows that the sample SDE (3.2) (with the family ξ defined via the rich Fubini
extension framework) and the exploratory SDE (3.4) are equivalent in the pathwise sense (and
not just in law) for drift control with additive noise. In particular, if the SDE (3.2) is solvable
then we can choose a version of the solution which does not depend on ξ. Therefore, a solution
Y of (3.2) has no proper meaning as response to a sample drawn from a measure-valued control.

This point may become even more transparent, if we consider the special case b(t, y, z) = z,
h(t, y, u) = Φ−1(u) (where Φ is the cumulative distribution function of a standard Gaussian), i.e.,
the measure-valued control is (independent of time and state) a standard Gaussian distribution.
Then, (3.2) takes the form

Yt = y0 +

∫ t

0
Φ−1(ξs)ρ(ds) + σBt.

Hence, applying Sun’s law of large numbers again and noting that E[Φ−1(ξs)] = 0 for ρ-a.e.
s ∈ [0, T ], we obtain

Yt = y0 + σBt,

and any dependence on the “randomization” process ξ has disappeared.
The bottom line is that the integral in (3.2) is just a technically and notationally different

way to re-write integration with respect the Lebesgue measure on [0, T ] × [0, 1] and does not
model the execution of controls with values in the set of probability measures.
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4. The grid-sampling SDE

The problems discussed in Section 3 illustrate that the randomization procedure based on
(essentially pairwise) independent families ξ = (ξt)t∈[0,T ] of uniformly distributed random vari-
ables may not be suitable in continuous time. Motivated by [28], we replace ξ by a piecewise
constant interpolation of finitely many independent uniform random variables on a finite grid
of [0, T ].

Let Π be a partition of [0, T ] with grid points 0 = t0 < t1 < · · · < tn = T , n ∈ N. We denote
the mesh-size of Π by |Π| := max1≤i≤n |ti − ti−1| and suppose that the underlying probability
space carries an independent family (ξ1, . . . , ξn) of uniforms on [0, 1]d independent of (B,N).
For the randomization on the grid Π, we define the grid-sampling process ξΠ = (ξΠt )t∈[0,T ] by

ξΠt :=

n∑
j=1

ξj1(tj−1,tj ](t), t ∈ [0, T ].

We emphasize that the authors in [28] and [10] have already applied this type of grid-sampling
as a substitution for the infeasible idealized sampling when executing Gaussian relaxed policies
in the context of linear-quadratic control.

Denote by FΠ = (FΠ
t )t∈[0,T ] the right-continuous, augmented version of the filtration generated

by (B,N, ξΠ). Then, ξΠ is left-continuous and adapted and, thus, is FΠ-predictable. Note that
ξΠti = ξi is FΠ

ti−1
-measurable, but independent of FΠ

(ti−1)−. Moreover, B and N(dt,dz) are still a

Brownian motion and a Poisson random measure with intensity νt(dz)dt with respect to FΠ.
By the FΠ-predictability of the grid-sampling process ξΠ, we may consider the SDE (2.3) with

ξ = ξΠ, which is given for t ∈ (ti−1, ti], i = 1, . . . , n by

XΠ,h
t = XΠ,h

ti−1
+

∫ t

ti−1

b(s,XΠ,h
s− ,h(s,XΠ,h

s− , ξΠti ))ds+

∫ t

ti−1

a(s,XΠ,h
s− ,h(s,XΠ,h

s− , ξΠti ))dBs

+

∫
(ti−1,t]

∫
0<|z|≤r

γ(s,XΠ,h
s− , z,h(s,XΠ,h

s− , ξΠti ))Ñ(ds, dz)

+

∫
(ti−1,t]

∫
|z|>r

γ(s,XΠ,h
s− , z,h(s,XΠ,h

s− , ξΠti ))N(ds, dz). (4.1)

We call (4.1) the grid-sampling SDE for policy h along the randomization process ξΠ.

Remark 4.1. Suppose that the randomized control h is continuous and executes a relaxed
control h and that the sampling grid Π is “sufficiently fine”. Then, we may consider

h(ti−1, X
Π,h
ti−1

, ξΠti ) = lim
s↘ti−1

h(s,XΠ,h
s− , ξΠti )

as a “good” approximation to h(s,XΠ,h
s− , ξΠti ) for s ∈ (ti−1, ti]. Note that XΠ,h

ti−1
= XΠ,h

(ti−1)− a.s.

Thus, XΠ,h
ti−1

is FΠ
(ti−1)−-measurable and, consequently, independent of ξΠti . Therefore, we can

interpret the approximation h(ti−1, X
Π,h
ti−1

, ξΠti ) in the following way: The actor first chooses the

distribution h(ti−1, X
Π,h
ti−1

) and, then, the independent uniform random variable ξΠti is generated
to sample from this distribution.

For the coefficients b, a, γ in Subsection 2.2 and a randomized control h : [0, T ]×Rm×[0, 1]d →
Rd, we define the Borel functions bh : [0, T ]×Rm×[0, 1]d → Rm, ah : [0, T ]×Rm×[0, 1]d → Rm×p,
and γh : [0, T ]× Rm × Rq

0 × [0, 1]d → Rm via

bh(s, x, u) := b(s, x,h(s, x, u)), ah(s, x, u) := a(s, x,h(s, x, u)),

γh(s, x, z, u) := γ(s, x, z,h(s, x, u)).

Assumption 4.2. The coefficients bh, ah, γh satisfy the following integrability condition: The
function

G0(s) :=

∫
[0,1]d

[
|bh(s, 0, u)|2 + ∥ah(s, 0, u)∥2F +

∫
0<|z|≤r

|γh(s, 0, z, u)|2νs(dz)
]
du
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takes finite values for all s ∈ [0, T ] and G0 ∈ L1([0, T ],λ[0,T ]). Moreover, bh, ah, γh are Lipschitz
continuous with respect to the space variable x in the following sense: There exists a constant
KLip ≥ 0 independent of s and u (but may depend on r) such that the following condition holds

for any s ∈ [0, T ], u ∈ [0, 1]d, and x1, x2 ∈ Rm:

|bh(s, x1, u)− bh(s, x2, u)|2 + ∥ah(s, x1, u)− ah(s, x2, u)∥2F

+

∫
0<|z|≤r

|γh(s, x1, z, u)− γh(s, x2, z, u)|2νs(dz) ≤ K2
Lip|x1 − x2|2. (4.2)

Proposition 4.3. Under Assumption 4.2, the grid-sampling SDE (4.1) for policy h with initial
condition x0 ∈ Rm has a unique (up to an indistinguishability) strong solution XΠ,h, for any
choice of the partition Π. Moreover, the strong solution XΠ,h also solves the SDE

XΠ,h
t = x0 +

∫
(0,t]×[0,1]d

bh(s,X
Π,h
s− , u)MΠ

D(ds, du) +

p∑
l=1

∫
(0,t]×[0,1]d

a
(·,l)
h (s,XΠ,h

s− , u)MΠ
B(l)(ds, du)

+

∫
(0,t]×{0<|z|≤r}×[0,1]d

γh(s,X
Π,h
s− , z, u)M̃Π

J (ds, dz,du)

+

∫
(0,t]×{|z|>r}×[0,1]d

γh(s,X
Π,h
s− , z, u)MΠ

J (ds, dz, du), t ∈ [0, T ], (4.3)

driven by the following random measures:

MΠ
D(ω,dt,du) :=

n∑
i=1

1(ti−1,ti](t)δξΠti (ω)
(du)dt,

MΠ
B(l)(ω, t, A) :=

(∫ t

0

n∑
i=1

1(ti−1,ti](s)1A(ξ
Π
ti ) dB

(l)
s

)
(ω), A ∈ B([0, 1]d), t ∈ [0, T ], l = 1, . . . , p,

MΠ
J (ω,dt,dz, du) :=

n∑
i=1

∑
t∈(ti−1,ti]

1{∆Lt(ω)̸=0}δ(t,∆Lt(ω), ξΠti
(ω))(dt,dz, du),

where Lt :=
∫ t
0

∫
0<|z|≤r zÑ(ds, dz) +

∫ t
0

∫
|z|>r zN(ds, dz) and δy is the Dirac distribution on the

point y; here, MΠ
B(l) are orthogonal martingale measures with intensity measure MΠ

D , and MΠ
J

is an integer-valued random measure with FΠ-predictable compensator measure

µΠ
J (ω,dt,dz,du) :=

n∑
i=1

1(ti−1,ti](t)δξΠti (ω)
(du)νt(dz)dt

and corresponding compensated measure M̃Π
J := MΠ

J − µΠ
J .

For integration with respect to compensated integer-valued random measures and to orthog-
onal martingale measures, we refer to [14] and [19], respectively. The proof of Proposition 4.3
is presented in Subsection 8.1.

5. The grid-sampling limit SDE

5.1. Limit theorem and grid-sampling limit SDE. In this subsection, we establish a limit
theorem for the grid-sampling random measures (MΠ

D ,MΠ
B(1) , . . . ,M

Π
B(p) ,M

Π
J ) defined in Propo-

sition 4.3, which drive the grid-sampling SDE (4.3), as the mesh-size of Π goes to zero. This limit
theorem suggests a formulation for the grid-sampling limit SDE in which the grid-sampling ran-
dom measures in (4.3) are replaced by the limit random measures (MD,MB(1) , . . . ,MB(p) ,MJ).

We define
MD(A) := λ[0,T ] ⊗ λ⊗d

[0,1](A), A ∈ B([0, T ])⊗ B([0, 1]d),
where λU is the restriction of the 1-dimensional Lebesgue measure to a Borel set U ∈ B(R).
Moreover, we let (MB(1) , . . . ,MB(p)) denote p independent martingale measures with continuous
paths and intensity measure MD. Continuous martingale measures with deterministic intensities
are also called white noise martingale measures, and we refer to [19] for a construction of such
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martingale measures and more background information. Also, Lemma 6.1 below provides some
information on their relation to Brownian motion.

Finally, MJ denotes a Poisson random measure on [0, T ]×Rq
0× [0, 1]d with intensity measure

µJ(dt,dz, du) := νt(dz)dudt.

An explicit construction of MJ can be found in [2]. As usual M̃J := MJ − µJ stands for the
compensated Poisson random measure.

We assume that the original filtered probability space (Ω,F , F̄,P) has been chosen sufficiently
large to carry (MB(1) , . . . ,MB(p)) and MJ . Then, (MB(1) , . . . ,MB(p)) and MJ are automatically
independent (see the argument in [2]). Denote by F the right-continuous, augmented version of
the filtration generated by (MB(1) , . . . ,MB(p) ,MJ).

Theorem 5.1. Let (Πn)n∈N be a sequence of finite partitions of [0, T ] with limn→∞ |Πn| = 0. For

any m ∈ N, R ∈ (0,∞)∪{r}, and for any bounded measurable functions f
(k)
l : [0, T ]× [0, 1]d → R

(l = 0, . . . , p; k = 1, . . . ,m), f
(k)
l : [0, T ] × Rq

0 × [0, 1]d → R (l = p + 1, p + 2; k = 1, . . . ,m),

consider the sequence of Rm-valued processes X n = (X n,(1), . . . ,X n,(m)) defined via

X n,(k)
t =

∫
(0,t]×[0,1]d

f
(k)
0 (s, u)MΠn

D (ds, du) +

p∑
l=1

∫
(0,t]×[0,1]d

f
(k)
l (s, u)MΠn

B(l)(ds, du)

+

∫
(0,t]×{0<|z|≤R}×[0,1]d

f
(k)
p+1(s, z, u)|z|M̃

Πn
J (ds, dz,du)

+

∫
(0,t]×{|z|>R}×[0,1]d

f
(k)
p+2(s, z, u)M

Πn
J (ds, dz, du), t ∈ [0, T ], k = 1, . . . ,m.

Then, (X n)n∈N converges weakly in the Skorokhod topology on the space DT (Rm) of Rm-valued,

càdlàg functions to X = (X (1), . . . ,X (m)), where

X (k)
t =

∫
(0,t]×[0,1]d

f
(k)
0 (s, u)MD(ds, du) +

p∑
l=1

∫
(0,t]×[0,1]d

f
(k)
l (s, u)MB(l)(ds, du)

+

∫
(0,t]×{0<|z|≤R}×[0,1]d

f
(k)
p+1(s, z, u)|z|M̃J(ds, dz,du)

+

∫
(0,t]×{|z|>R}×[0,1]d

f
(k)
p+2(s, z, u)MJ(ds, dz, du), t ∈ [0, T ], k = 1, . . . ,m.

The proof of Theorem 5.1 is provided in Section 7.

Remark 5.2. As a consequence of Theorem 5.1, (MΠn
D ,MΠn

B(1) , . . . ,M
Πn

B(p) ,M
Πn
J ) vaguely con-

verges to (MD,MB(1) , . . . ,MB(p) ,MJ) in the following sense: For any m ∈ N, and for any con-

tinuous functions with compact support f
(k)
l : [0, T ] × [0, 1]d → R (l = 0, . . . , p; k = 1, . . . ,m),

f
(k)
p+2 : [0, T ] × Rq

0 × [0, 1]d → R (k = 1, . . . ,m), the sequence of Rm-valued processes X n =

(X n,(1), . . . ,X n,(m)) defined via

X n,(k)
t =

∫
(0,t]×[0,1]d

f
(k)
0 (s, u)MΠn

D (ds, du) +

p∑
l=1

∫
(0,t]×[0,1]d

f
(k)
l (s, u)MΠn

B(l)(ds, du)

+

∫
(0,t]×Rq

0×[0,1]d
f
(k)
p+2(s, z, u)M

Πn
J (ds, dz,du), t ∈ [0, T ], k = 1, . . . ,m,

weakly converges in the Skorokhod topology on DT (Rm) to X = (X (1), . . . ,X (m)), where

X (k)
t =

∫
(0,t]×[0,1]d

f
(k)
0 (s, u)MD(ds, du) +

p∑
l=1

∫
(0,t]×[0,1]d

f
(k)
l (s, u)MB(l)(ds, du)

+

∫
(0,t]×Rq

0×[0,1]d
f
(k)
p+2(s, z, u)MJ(ds, dz,du), t ∈ [0, T ], k = 1, . . . ,m.
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Indeed, if the f
(k)
l ’s (l = p+1, p+2; k = 1, . . . ,m) in Theorem 5.1 have compact support, then

there is an ε > 0 (independent of k, l, t, u) such that f
(k)
l = 0, if 0 < |z| ≤ ε. Hence, we can apply

Theorem 5.1 with R = ε. We also refer to [18] for background information on the general theory
of vague convergence of random measures and to [34, 35] for the case of martingale measures.

In view of Theorem 5.1, the random measure formulation (4.3) of the grid-sampling SDE
(4.1), and the definition of MD, a natural limit formulation of the grid-sampling SDE for a given
randomized policy h : [0, T ]× Rm × [0, 1]d → Rd is

Xh
t = x0 +

∫ t

0

∫
[0,1]d

b(s,Xh
s−,h(s,X

h
s−, u))duds

+

p∑
l=1

∫
(0,t]×[0,1]d

a(·,l)(s,Xh
s−,h(s,X

h
s−, u))MB(l)(ds, du)

+

∫
(0,t]×{0<|z|≤r}×[0,1]d

γ(s,Xh
s−, z,h(s,X

h
s−, u))M̃J(ds, dz,du)

+

∫
(0,t]×{|z|>r}×[0,1]d

γ(s,Xh
s−, z,h(s,X

h
s−, u))MJ(ds, dz,du). (5.1)

We call this SDE the grid-sampling limit SDE for policy h.

Remark 5.3. We emphasize that the random measures (MD,MB(1) , . . . ,MB(p) ,MJ) appearing
in the limit are independent, whereas the pre-limit randommeasures (MΠ

D ,MΠ
B(1) , . . . ,M

Π
B(p) ,M

Π
J )

are jointly constructed in terms of the randomization process ξΠ and are, thus, dependent. In
particular, a solution Xh of the grid-sampling limit SDE (5.1) cannot be interpreted as the
model dynamics evaluated along a (ξt)t∈[0,T ]-randomized policy, i.e., it cannot be reformulated
in the form (2.3) for some randomization process ξ in general. Nonetheless, we think that the
limit SDE (5.1) is practically relevant for justifying learning algorithms derived by the first-
optimize-then-discretize approach. This aspect will be briefly sketched in Subsection 6.3 below.

5.2. Well-posedness of grid-sampling limit SDE. We illustrate in Proposition 5.4 below the
existence and uniqueness of strong solutions to the SDE (5.1). Its proof is given in Subsection 8.2.

Proposition 5.4. Let r ∈ [0,∞]. Under Assumption 4.2, the grid-sampling limit SDE (5.1) for
policy h with initial data x0 ∈ Rm has a unique (up to an indistinguishability) strong solution
Xh. Moreover, the law of Xh solves the martingale problem for the operator Lh defined for
f ∈ C2

c (Rm) by

(Lhf)(s, x) :=
∫
[0,1]d

[ m∑
i=1

b
(i)
h (s, x, u)

∂f

∂xi
(x) +

1

2

m∑
i,j=1

A
(i,j)
h (s, x, u)

∂2f

∂xi∂xj
(x)

+

∫
Rq
0

(
f(x+ γh(s, x, z, u))− f(x)−

m∑
i=1

1{0<|z|≤r}γ
(i)
h (s, x, z, u)

∂f

∂xi
(x)

)
νs(dz)

]
du,

with initial distribution δx0, where Ah := aha
T
h.

Remark 5.5. Suppose that we are in the no-jump case, i.e, γ ≡ 0.

(1) Well-posedness of SDEs driven by white noise martingale measures is studied, e.g., in
[19, Proposition IV-1], and in that case Proposition 5.4 can be seen as a variant of their
result.

(2) By combining Theorem 5.1 with the stability results for SDEs driven by continuous
orthogonal martingale measures in [21, p.354], we observe that under at most technical
assumptions the following limit theorem is valid: If h1, . . . ,hK : [0, T ]×Rm×[0, 1]d → Rd

are randomized policies, then one obtains the joint weak convergence

(XΠn,h1 , . . . , XΠn,hK ,MΠn
D ,MΠn

B(1) , . . . ,M
Πn

B(p))→ (Xh1 , . . . , XhK ,MD,MB(1) , . . . ,MB(p)).

This result serves as another justification for using the grid-sampling limit SDE (5.1).
We leave a detailed study of this aspect in the general case with jumps to future research.
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Remark 5.6. (1) The proof of Proposition 5.4 reveals that the conclusion in Proposition 5.4
still holds true when the Lipschitz condition (4.2) in Assumption 4.2 is weakened to:
There is a constant K ≥ 0 independent of s (but may depend on r) such that for any
s ∈ [0, T ], x1, x2 ∈ Rm,(∫

[0,1]d
|bh(s, x1, u)− bh(s, x2, u)|du

)2

+

∫
[0,1]d

∥ah(s, x1, u)− ah(s, x2, u)∥2F du

+

∫
{0<|z|≤r}×[0,1]d

|γh(s, x1, z, u)− γh(s, x2, z, u)|2 νs(dz)du ≤ K2|x1 − x2|2.

(2) If r =∞, then there exists a constant K̃ ≥ 0 not depending on x0 such that the strong
solution Xh to (5.1) satisfies (see Remark A.4)

E
[

sup
0≤t≤T

|Xh
t |2

]
≤ K̃2(1 + |x0|2).

6. Examples and discussion

6.1. Examples. We first discuss two examples in which the grid-sampling limit SDE (5.1) is
simplified. They rely on the following elementary lemma, whose proof is given in [2].

Lemma 6.1. Suppose that η : Ω×[0, T ]×[0, 1]d → Rm is an F-predictable random field satisfying∫
[0,1]d

(ηtη
T
t )(u)du = Im P⊗ λ[0,T ]-a.e. (ω, t) ∈ Ω× [0, T ].

Define

B
η,(k,l)
t =

∫ t

0

∫
[0,1]d

η(k)s (u)MB(l)(ds, du), t ∈ [0, T ], l = 1, . . . , p, k = 1, . . . ,m.

Then, Bη = (Bη,(k,l) : l = 1, . . . , p, k = 1, . . . ,m) is an mp-dimensional Brownian motion.

Example 6.2. Suppose that h is a classical, non-randomized control in feedback form, i.e., h
does not depend on u. By Lemma 6.1 (with η being the R-valued function which is constant 1),

B1 =

(∫ ·

0

∫
[0,1]d

MB(1)(ds, du), . . . ,

∫ ·

0

∫
[0,1]d

MB(p)(ds, du)

)T

is a p-dimensional Brownian motion. Moreover,

N1(dt,dz) =

∫
[0,1]d

MJ(dt,dz,du)

is a Poisson random measure independent of Bη with intensity νt(dz)dt. Then, SDE (5.1) can
be re-written as

Xh
t = x0 +

∫ t

0
b(s,Xh

s−,h(s,X
h
s−))ds+

∫ t

0
a(s,Xh

s−,h(s,X
h
s−))dB

1
s

+

∫
(0,t]×{0<|z|≤r}

γ(s,Xh
s−, z,h(s,X

h
s−))Ñ

1(ds, dz)

+

∫
(0,t]×{|z|>r}

γ(s,Xh
s−, z,h(s,X

h
s−))N

1(ds, dz),

i.e., we recover the dynamics (2.1), as it should be.

Example 6.3. We now assume the drift coefficient b and the diffusion coefficient a are affine-
linear in the control, i.e.,

a(t, x, y) = a0(t, x) +

d∑
j=1

y(j)aj(t, x), b(t, x, y) = b0(t, x) +

d∑
j=1

y(j)bj(t, x)
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for measurable functions aj : [0, T ] × Rm → Rm×p and bj : [0, T ] × Rm → Rm. The randomized

control is given in terms of the measurable function h : [0, T ] × Rm × [0, 1]d → Rd. We assume
that the coefficients are sufficiently regular to guarantee that a solution Xh to (5.1) exists.
Supposing that h is square integrable with respect to the uniform distribution in the u-variable,
we then consider the mean vector and covariance matrix

µh(t, x) =

∫
[0,1]d

h(t, x, u)du, Θh(t, x) =

∫
[0,1]d

(h(t, x, u)− µh(t, x))(h(t, x, u)− µh(t, x))
Tdu

as a function of (t, x). Assuming that Θh(t, x) is positive definite for every (t, x) ∈ [0, T ]× Rm,
we write ϑh(t, x) for the positive definite matrix root of Θh(t, x) and define

ηh : [0, T ]× Rm × [0, 1]d → Rd, (t, x, u) 7→ ϑh(t, x)
−1(h(t, x, u)− µh(t, x)).

Note that for every (t, x) ∈ [0, T ]× Rm,∫
[0,1]d

ηh(t, x, u)du = 0,

∫
[0,1]d

(ηhη
T
h)(t, x, u)du = Id.

Thus, the Rd+1-valued random field

ηt(u) = (η
(1)
h (t,Xh

t−, u), . . . , η
(d)
h (t,Xh

t−, u), 1)
T

satisfies the assumptions of Lemma 6.1 and we denote the corresponding Brownian motion by
Bη = (Bη,(i,l))i=1,...,d+1, l=1,...,p. Then, the white noise measures can be replaced by the (d+1)p-
dimensional Brownian motion Bη and (5.1) becomes

Xh
t = x0 +

∫ t

0

(
b0(s,X

h
s−) +

d∑
j=1

bj(s,X
h
s−)µ

(j)
h (s,Xh

s−)

)
ds

+

p∑
l=1

∫ t

0

(
a
(·,l)
0 (s,Xh

s−) +
d∑

j=1

a
(·,l)
j (s,Xh

s−)µ
(j)
h (s,Xh

s−)

)
dBη,(d+1,l)

s

+

p∑
l=1

d∑
i=1

∫ t

0

( d∑
j=1

a
(·,l)
j (s,Xh

s−)ϑ
(j,i)
h (s,Xh

s−)

)
dBη,(i,l)

s

+

∫
(0,t]×{0<|z|≤r}×[0,1]d

γ(s,Xh
s−, z,h(s,X

h
s−, u))M̃J(ds, dz,du)

+

∫
(0,t]×{|z|>r}×[0,1]d

γ(s,Xh
s−, z,h(s,X

h
s−, u))MJ(ds, dz, du).

This example extends the analogous SDE formulation for entropy-regularized mean-variance
portfolio optimization with jumps derived in [1]. Note, however, that the white noise measure
approach clarifies that (and how exactly) the driving Brownian motion depends on the choice
of the randomized control h.

6.2. Comparison to the exploratory SDE of [30]. In this subsection, we briefly compare
the grid-sampling limit SDE (5.1) to the exploratory SDE introduced in [30]. In order to keep
the notation simple, we confine ourselves to the one-dimensional case (m = p = d = 1) without
jumps γ = 0, compare [30]. We note, however, that the multivariate case of the exploratory SDE
is covered in [16] and, recently, a setting with jumps has been developed in [9]. In any of these
cases, the derivation of the exploratory SDE relies on a heuristic law of large numbers argument
to extract the semimartingale characteristics when averaging over independent executions of a
relaxed control.

Given a relaxed control h : [0, T ] × R → Pr(B(R)) with Lebesgue density ḣ(t, x, ·), the ex-
ploratory SDE takes the form

X̃h
t = x0 +

∫ t

0

∫
R
b(s, X̃h

s , y)ḣ(s, X̃
h
s , y)dyds+

∫ t

0

√∫
R
a(s, X̃h

s , y)
2ḣ(s, X̃h

s , y)dy dWs
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for some 1-dimensional Brownian motion W . Lemma 2 in [16] states sufficient conditions on b,

a, and ḣ for existence and uniqueness of a strong solution. Note that the law of X̃h then solves
the martingale problem for the operator

(Lhf)(t, x) :=
∫
R

(
1

2
a(t, x, y)2f ′′(x) + b(t, x, y)f ′(x)

)
ḣ(t, x, y)dy. (6.1)

We suppose for the rest of this subsection that h is a randomized control, which executes h,
and that the assumptions of Proposition 5.4 are satisfied. Then, by a change of variables, the
operators Lh and Lh coincide. Hence, the law of the unique solution Xh to the grid-sampling
limit SDE solves the martingale problem for the same operator Lh(= Lh) and, by the uniqueness

of the martingale problem under the Lipschitz assumptions [19, Proposition IV.1], X̃h and Xh

have the same probability law. Hence, in a stochastic control framework (e.g., to compute the
expected cost of a given relaxed/randomized control pair h, h or for the derivation of an HJB

equation), the grid-sampling limit SDE Xh and the exploratory SDE X̃h will lead to the same
result – and it is a matter of taste which one to use. In the first SDE the white noise martingale
measure comes up, while, in the second SDE, one has to deal with the square-root in the diffusion
coefficient, compare the Remarks in [21, pp. 350–351].

However, if one considers several controls at the same time then their joint distributions,
for example the distributions of (X̃h1 , X̃h2) and (Xh1 , Xh2), may differ as illustrated by the
following simple example.

Example 6.4. Suppose T = 1, b = 0 and a(t, x, u) = u. We apply the randomized controls
hj(t, x, u) = µj+σjΦ

−1(u), (µj ∈ R, σj > 0, j = 1, 2), which execute a Gaussian law hj(t, x) with
mean µj and variance σ2

j independent of the time and state of the system. For a fixed sampling

partition Π, the predictable covariation of the model dynamics along the ξΠ-randomized controls
satisfies

⟨XΠ,h1 , XΠ,h2⟩1 =
n∑

i=1

(ti − ti−1)(µ1 + σ1Φ
−1(ξΠti ))(µ2 + σ2Φ

−1(ξΠti ))

If, e.g., Πn is the equidistant partition of the unit interval into n subintervals, then a straight-
forward application of the strong law of large numbers implies, a.s.,

⟨XΠn,h1 , XΠn,h2⟩1 → E
[
(µ1 + σ1Φ

−1(ξΠt1))(µ2 + σ2Φ
−1(ξΠt1))

]
= µ1µ2 + σ1σ2.

This limit coincides with the predictable covariation of the grid-sampling limit SDEs, because,
by Proposition I-6(2) in [19],

⟨Xh1 , Xh2⟩1 =
〈∫

(0,·]×[0,1]d
(µ1 + σ1Φ

−1(u))MB(ds, du),

∫
(0,·]×[0,1]d

(µ2 + σ2Φ
−1(u))MB(ds, du)

〉
1

=

∫
(0,1]×[0,1]d

(µ1 + σ1Φ
−1(u))(µ1 + σ1Φ

−1(u))dsdu = µ1µ2 + σ1σ2.

However, the predictable covariation of the corresponding exploratory SDE is

⟨X̃h1 , X̃h2⟩1

=

〈∫ ·

0

√∫
R
y2

1√
2πσ2

1

e−(y−µ1)2/(2σ2
1)dy dWs,

∫ ·

0

√∫
R
y2

1√
2πσ2

2

e−(y−µ2)2/(2σ2
2)dy dWs

〉
1

=
√

(µ2
1 + σ2

1)(µ
2
2 + σ2

2).

Let us summarize: By the considerations at the beginning of this subsection X̃h and Xh

have the same probability law, if h executes h. The SDEs governing these two processes cannot
be interpreted as dynamics of the system along a ξ-randomized control. One way to justify
these SDEs is to view them as the limit dynamics of the grid-sampling SDE, which has a sound
interpretation in terms of ξΠ-randomized controls. By Remark 5.5(2), we observe that the law

of XΠn,h converges to the law of X̃h under at most technical conditions for one fixed control pair
h, h. However, as illustrated by Example 6.4, one cannot hope that the joint convergence result
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to the grid-sampling limit SDEs indicated in Remark 5.5(2) carries over to the exploratory SDE.
We will illustrate in the next subsection that this difference can be essential for the justification
of learning algorithms.

6.3. Outlook: Towards learning. In this part, we exemplify how the algorithms of the first-
optimize-then-discretize approach of [15, 16, 17] can be justified by applying the grid-sampling
limit SDE (5.1) instead of the sample state process of [16, 17]. In this way we can ensure that
the derivation bypasses any potential problems related to idealized sampling.

For sake of illustration, we will here only consider the problem of policy evaluation of a fixed
randomized control h and restrict ourselves to the no-jump case in dimension one (m = d =
p = 1). Assume that the conditions in Proposition 5.4 are satisfied, the unique solution of the
grid-sampling limit SDE takes the form

Xh
t = x0 +

∫ t

0

∫ 1

0
b(s,Xh

s ,h(s,X
h
s , u))duds+

∫
(0,t]×[0,1]

a(s,Xh
s ,h(s,X

h
s , u))MB(ds, du).

We suppose that the law of h(t, x, η) (where η is a uniform random variable on [0, 1]) is absolutely

continuous with respect to the Lebesgue measure with density ḣ(t, x, ·) for every (t, x) ∈ [0, T ]×R
and that its Shannon entropy

−
∫
R
ḣ(t, x, y) log ḣ(t, x, y)dy

exists in R and is measurable and bounded as a function in (t, x). We consider the problem of
evaluating the expected terminal cost with a running entropy-regularization term, which rewards
exploration, as suggested in [30]. The corresponding cost process is given by

J h
t = E

[
g(Xh

T ) + λ

∫ T

t

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

∣∣∣∣Ft

]
for some fixed temperature parameter λ > 0. We here assume, for the sake of simplicity, that
the terminal cost function g is bounded, and, consequently, the process J h is bounded as well.
We say that a measurable function Jh : [0, T ]×R→ R is a version of the value function of h, if

Jh(t,Xh
t ) = J h

t P-a.s., t ∈ [0, T ].

The aim of policy evaluation is to learn the value function Jh from observations of the system
Xξ,h, when feeding in the ξ-randomized policy h(t, x, ξt) for some randomization process ξ,
without knowing the true model parameters b, a. Recall that in the simplified setting of this
subsection

dXξ,h
t = b(t,Xξ,h

t ,h(t,Xξ,h
t , ξt))dt+ a(t,Xξ,h

t ,h(t,Xξ,h
t , ξt))dBt, Xξ,h

0 = x0. (6.2)

The algorithms for policy evaluation derived in [15, 16] rely on the martingale characterization of
the value function Jh, which can be formulated for the grid-sampling limit SDE in the following
way (see [2] for the routine proof).

Proposition 6.5. (1) Suppose that the following partial differential equation has a bounded
solution J ∈ C1,2([0, T ]× R):
∂J

∂t
(t, x) + (LhJ(t, ·))(t, x) + λ

∫
R
ḣ(t, x, y) log ḣ(t, x, y)dy = 0, (t, x) ∈ [0, T )× R,

with the terminal condition J(T, ·) = g (where the differential operator Lh is defined in
(6.1)). Then, J is a version of the value function of h.

(2) Assume that J̃ : [0, T ]× R → R is measurable with J̃(T, ·) = g. Then, J̃ is a version of
the value function of h, if and only if

J̃(t,Xh
t ) + λ

∫ t

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds, 0 ≤ t ≤ T,

is an F-martingale.
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We now provide an alternative derivation of the offline variant of the continuous-time TD(0)-
algorithm in [15, 16]: To this end, fix a parametric class of functions {Jϑ : ϑ ∈ Θ} for some open
parameter set Θ ⊆ RL. We will implicitly assume that the function

JΘ : [0, T ]× R×Θ→ R, (t, x, ϑ) 7→ Jϑ(t, x)

satisfies sufficient smoothness and boundedness assumptions to justify the manipulations below.
Moreover, we postulate that Jϑ(T, ·) = g for every ϑ ∈ Θ. We aim at finding a parameter ϑ∗ ∈ Θ
such that Jϑ∗ is a good approximation to the value function Jh of the randomized control h.
Since integrals of sufficiently good integrands with respect to a martingale have zero expectation,
the martingale characterization of the value function in Proposition 6.5 motivates to search for
a parameter ϑ∗ such that

E
[ ∫ T

0
∇ϑJΘ(s,X

h
s , ϑ

∗)

(
dJϑ∗(s,Xh

s , ϑ
∗) + λ

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

)]
= 0,

compare [15]. Here, ∇ϑ stands for the gradient in the ϑ-variable. Then, stochastic approximation
[24] suggests to consider the update step

ϑ← α

∫ T

0
∇ϑJΘ(s,X

h
s , ϑ)

(
dJϑ(s,X

h
s ) + λ

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

)
(6.3)

for some step-size α > 0. Up to here, the derivation follows exactly the one in [15, 16] with the
grid-sampling limit SDE in place of the sample SDE of [16]. Note that, although the unknown
coefficients b and a do not show up in (6.3), its implementation is infeasible, because Xh is
not observable (it is not the response of the system to a ξ-randomized control). We view (6.3)
as an idealized continuous-limit update step, which will be discretized next. By Itô’s formula,
recalling that Lh in (6.1) is the infinitesimal generator of Xh, we obtain∫ T

0
∇ϑJΘ(s,X

h
s , ϑ)

(
dJϑ(s,X

h
s ) + λ

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

)
=

∫ T

0
∇ϑJΘ(s,X

h
s , ϑ)

∂Jϑ
∂t

(s,Xh
s )ds

+

∫ T

0
∇ϑJΘ(s,X

h
s , ϑ)

(
(LhJϑ(s, ·))(s,Xh

s ) + λ

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dy

)
ds

+

∫
(0,T ]×[0,1]

∇ϑJΘ(s,X
h
s , ϑ)a(s,X

h
s ,h(s,X

h
s , u))

∂Jϑ
∂x

(s,Xh
s )MB(ds, du). (6.4)

By change of variables and applying the notation introduced in Proposition 5.4, the second
integral on the right-hand side of (6.4) becomes∫ T

0

∫ 1

0
∇ϑJΘ(s,X

h
s , ϑ)

(
1

2
ah(s,X

h
s , u)

2∂
2Jϑ
∂x2

(s,Xh
s ) + bh(s,X

h
s , u)

∂Jϑ
∂x

(s,Xh
s )

+ λ log ḣ(s,Xh
s ,h(s,X

h
s , u))

)
duds,

which, in fact, is an integral with respect to the limit drift measure MD. Thus, the joint
convergence in Remark 5.5(2) suggests that∫ T

0
∇ϑJΘ(s,X

h
s , ϑ)

(
dJϑ(s,X

h
s ) + λ

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)duds

)
can be approximated in law by∫

(0,T ]×[0,1]
∇ϑJΘ(s,X

Π,h
s , ϑ)

(
∂Jϑ
∂t

(s,XΠ,h
s ) + λ log ḣ(s,XΠ,h

s ,h(s,XΠ,h
s , u))

+
1

2
ah(s,X

Π,h
s , u)2

∂2Jϑ
∂x2

(s,XΠ,h
s ) + bh(s,X

Π,h
s , u)

∂Jϑ
∂x

(s,XΠ,h
s )

)
MΠ

D(ds, du)
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+

∫
(0,T ]×[0,1]

∇ϑJΘ(s,X
Π,h
s , ϑ)ah(s,X

Π,h
s , u)

∂Jϑ
∂x

(s,XΠ,h
s )MΠ

B (ds, du)

for a sufficiently fine sampling grid Π, where XΠ,h solves the SDE (6.2) with ξ = ξΠ. In view of
Proposition 4.3, and applying Itô’s formula once more, this expression equals

n∑
i=1

∫ ti

ti−1

∇ϑJΘ(s,X
Π,h
s , ϑ)

(
dJϑ(s,X

Π,h
s ) + λ log ḣ(s,XΠ,h

s ,h(s,XΠ,h
s , ξΠti ))ds

)
,

leading to the modified update step

ϑ← α

n∑
i=1

∫ ti

ti−1

∇ϑJΘ(s,X
Π,h
s , ϑ)

(
dJϑ(s,X

Π,h
s ) + λ log ḣ(s,XΠ,h

s ,h(s,XΠ,h
s , ξΠti ))ds

)
. (6.5)

Here, the ti’s are, of course, the grid points of the sampling grid Π. We emphasize that the update
step (6.5) is independent of the unknown parameters b and a and only depends on observables,
namely the grid-sampling randomization process ξΠ and the response XΠ,h of the system to
the ξΠ-randomized policy h(t, x, ξΠt ). We note that the update-step (6.5) is still formulated in
continuous time. For the actual implementation, it is natural to consider the time-discretization
relative to the grid Π given by

ϑ← α
n∑

i=1

∇ϑJΘ(ti−1, X
Π,h,E
ti−1

, ϑ)
[
Jϑ(ti, X

Π,h,E
ti

)− Jϑ(ti−1, X
Π,h,E
ti−1

)

+ λ(ti − ti−1) log ḣ(ti−1, X
Π,h,E
ti−1

,h(s,XΠ,h,E
ti−1

, ξΠti ))
]
,

where XΠ,h,E is the Euler approximation to XΠ,h relative to Π. This expression coincides with
the TD(0)-update step for policy evaluation in [16], see, e.g., lines -12 and -8 in their Algorithm 4.
Hence, we have provided a new justification of the continuous-time TD(0)-algorithm for policy
evaluation, which avoids making use of idealized sampling.

7. Proof of Theorem 5.1

7.1. Preliminaries. To avoid double-indexing, we assume that Πn partitions [0, T ] into n subin-
tervals and write 0 = tn0 < · · · < tnn = T for the grid points of Πn. We emphasize that the same
proof also works, even if Πn decomposes [0, T ] into k(n) ∈ N, which is not necessarily equal to
n, subintervals. Denote

U := [0, T ]× [0, 1]d, V := [0, T ]× Rq
0 × [0, 1]d.

The assumptions imply that fl ∈ Bb(U;Rm) for l = 0, . . . , p and fl ∈ Bb(V;Rm) for l =
p+ 1, p+ 2. Moreover, by Remark 2.2,∫ T

0

∫
Rq
0

(|z|21{0<|z|≤R} + 1{|z|>R})νs(dz)ds <∞, ∀R ∈ (0,∞) ∪ {r}. (7.1)

In view of Proposition 4.3, we have the representation

X n
t =

n∑
i=1

[ ∫ t

0
f0(s, ξ

n
i )1(tni−1,t

n
i ]
(s)ds+

p∑
l=1

∫ t

0
fl(s, ξ

n
i )1(tni−1,t

n
i ]
(s)dB(l)

s

+

∫ t

0

∫
0<|z|≤R

fp+1(s, z, ξ
n
i )1(tni−1,t

n
i ]
(s)|z|Ñ(ds, dz)

+

∫ t

0

∫
|z|>R

fp+2(s, z, ξ
n
i )1(tni−1,t

n
i ]
(s)N(ds, dz)

]
. (7.2)

We will also consider the piecewise constant interpolation of X n between the grid points of
Πn. Introducing the notation

ρn(t) := sup{tni : tni ≤ t}, t ∈ [0, T ],

it can be written as X n
ρn(t)

, t ∈ [0, T ].
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By Theorem 3.1 in [3], it suffices to show that, as n→∞,

d̃mT (X n,X n
ρn)

P−→ 0, (7.3)

and

X n
ρn

DT−−→ X , (7.4)

where the metric d̃mT , which is defined by

d̃mT (x, y) := inf
λ∈ΛT

max

{
sup

0≤t≤T
|λ(t)− t|, sup

0≤t≤T
|x(t)− y(λ(t))|

}
,

induces the Skorokhod topology on the space DT (Rm) of càdlàg functions F : [0, T ]→ Rm, and
DT−−→ stands for convergence in distribution in the Skorokhod space (DT (Rm), d̃mT ). Here, ΛT

consists of all strictly increasing and continuous functions λ : [0, T ] → [0, T ] with λ(0) = 0,
λ(T ) = T . For further details, we refer to [3], or to [2] for a short recap on the Skorokhod space.

The proof of assertions (7.3) and (7.4) will be provided in Subsection 7.2 and Subsection 7.3,
respectively.

7.2. Proof of assertion (7.3). Let κ ∈ (0,∞) ∩ (0, R] and let κ = 0 if R = 0. We define the
process X n,κ by setting

X n,κ := X n −
n∑

i=1

∫ ·

0

∫
0<|z|≤κ

fp+1(s, z, ξ
n
i )1(tni−1,t

n
i ]
(s)|z|Ñ(ds, dz).

By separating Ñ = N−ν on [0, T ]×{κ < |z| ≤ R}, which is possible as
∫ T
0

∫
κ<|z|≤R |z|νs(dz)ds <

∞ and fp+1 is bounded, and then rearranging terms we get

X n,κ =
n∑

i=1

∫ ·

0
f0(s, ξ

n
i )1(tni−1,t

n
i ]
(s)ds−

n∑
i=1

∫ ·

0

∫
κ<|z|≤R

fp+1(s, z, ξ
n
i )1(tni−1,t

n
i ]
(s)|z|νs(dz)ds

+
n∑

i=1

p∑
l=1

∫ ·

0
fl(s, ξ

n
i )1(tni−1,t

n
i ]
(s)dB(l)

s

+
n∑

i=1

∫ ·

0

∫
|z|>κ

[fp+1(s, z, ξ
n
i )|z|1{0<|z|≤R} + fp+2(s, z, ξ

n
i )1{|z|>R}]1(tni−1,t

n
i ]
(s)N(ds, dz)

=: (X n,κ
D −X n,κ

ν + X n,κ
B ) + X n,κ

J

=: X n,κ
C + X n,κ

J .

Using the triangle inequality we obtain

d̃mT (X n,X n
ρn) ≤ d̃mT (X n,X n,κ) + d̃mT (X n,κ,X n,κ

ρn ) + d̃mT (X n,κ
ρn ,X n

ρn)

≤ sup
t∈[0,T ]

|X n
t −X

n,κ
t |+ d̃mT (X n,κ,X n,κ

ρn ) + sup
t∈[0,T ]

|X n,κ
ρn(t)

−X n
ρn(t)
|

≤ 2 sup
t∈[0,T ]

|X n
t −X

n,κ
t |+ d̃mT (X n,κ,X n,κ

ρn ). (7.5)

For ε > 0, since X n −X n,κ is an FΠn-martingale, applying Doob’s maximal inequality yields

P
({

sup
t∈[0,T ]

|X n
t −X

n,κ
t | > ε

})
≤ 4ε−2E

[ ∫ T

0

∫
0<|z|≤κ

n∑
i=1

|fp+1(s, z, ξ
n
i )|21(tni−1,t

n
i ]
(s)|z|2νs(dz)ds

]

≤ 4ε−2∥fp+1∥2Bb(V;Rm)

∫ T

0

∫
0<|z|≤κ

|z|2νs(dz)ds. (7.6)

We now deal with the term d̃mT (X n,κ,X n,κ
ρn ). Set τn0 := 0 and

τni := inf{t ∈ (tni−1, t
n
i ] : |∆Lt| > κ} ∧ tni , i = 1, . . . , n,
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with the convention inf ∅ :=∞, and denote the events An,κ
i by

An,κ
i :=

{∫
(tni−1,t

n
i ]×{|z|>κ}

N(ds, dz) ≤ 1

}
, i = 1, . . . , n− 1,

An,κ
n :=

{∫
(tnn−1,T ]×{|z|>κ}

N(ds, dz) = 0

}
.

Then tni−1 < τni ≤ tni on An,κ
i and τnn = T on An,κ

n . Now, for ω ∈ ∩ni=1A
n,κ
i , we define the function

λ = λω,n,κ : [0, T ] → [0, T ] which piecewise linearly interpolates the points (0, 0), (τn1 , t
n
1 ), . . .,

(τnn−1, t
n
n−1), (τ

n
n , T ). Namely,

λ(t) = tni−1 + (tni − tni−1)
t− τni−1

τni − τni−1

, t ∈ (τni−1, τ
n
i ], i = 1, . . . , n.

Then, λ is a strictly increasing and continuous function with λ(0) = 0, λ(T ) = T . It is clear
that, for all t ∈ (τni−1, τ

n
i ], i = 1, . . . , n,

|λ(t)− t| ≤ max{tni−1 − τni−1, τ
n
i − tni−1}+ (tni − tni−1)

t− τni−1

τni − τni−1

≤ 2|Πn|.

Hence, on ∩ni=1A
n,κ
i and for such a choice of λ as above, it follows from the definition of d̃mT and

the triangle inequality that

d̃mT (X n,κ,X n,κ
ρn ) ≤ sup

t∈[0,T ]
|λ(t)− t|+ sup

t∈[0,T ]
|X n,κ

t −X n,κ
ρn(λ(t))

|

≤ 2|Πn|+ sup
t∈[0,T ]

|X n,κ
C,t −X

n,κ
C,ρn(λ(t))

|+ sup
t∈[0,T ]

|X n,κ
J,t −X

n,κ
J,ρn(λ(t))

|

= 2|Πn|+ max
1≤i≤n

sup
t∈(tni−1,t

n
i ]
|X n,κ

C,t −X
n,κ
C,ρn(λ(t))

|+ max
1≤i≤n

sup
t∈[τni−1,τ

n
i )
|X n,κ

J,t −X
n,κ
J,ρn(λ(t))

|.

Notice that tni−1 ∈ [τni−1, τ
n
i ), λ(t) ∈ [tni−1, t

n
i ) for t ∈ [τni−1, τ

n
i ), and on the event ∩ni=1A

n,κ
i , X n,κ

J
is constant on [τni−1, τ

n
i ) as it does not have jumps on (τni−1, τ

n
i ), it thus implies that

X n,κ
J,t = X n,κ

J,tni−1
= X n,κ

J,ρn(λ(t))
, t ∈ [τni−1, τ

n
i ).

Moreover, for i = 1, . . . , n and t ∈ (tni−1, t
n
i ], we observe that

for t ∈ (tni−1, τ
n
i ) : tni−1 < λ(t) < tni ,

for t ∈ [τni , t
n
i ] : tni ≤ λ(t) ≤ λ(tni )

{
< λ(τni+1) = tni+1 if i ≤ n− 1

= tni if i = n,

which implies ρn(λ(t)) ∈ {tni−1, t
n
i } for t ∈ (tni−1, t

n
i ]. Summarizing those arguments, on ∩ni=1A

n,κ
i

we have

d̃mT (X n,κ,X n,κ
ρn ) ≤ 2|Πn|+ 2 max

1≤i≤n
sup

t∈(tni−1,t
n
i ]
|X n,κ

C,t −X
n,κ
C,tni−1

|

≤ 2

[
|Πn|+ max

1≤i≤n
sup

t∈(tni−1,t
n
i ]
|X n,κ

D,t −X
n,κ
D,tni−1

|+ max
1≤i≤n

sup
t∈(tni−1,t

n
i ]
|X n,κ

ν,t −X
n,κ
ν,tni−1

|

+ max
1≤i≤n

sup
t∈(tni−1,t

n
i ]
|X n,κ

B,t −X
n,κ
B,tni−1

|
]

≤ 2

[
|Πn|+ ∥f0∥Bb(U;Rm)|Πn|+ ∥fp+1∥Bb(V;Rm) max

1≤i≤n

∫ tni

tni−1

∫
κ<|z|≤R

|z|νs(dz)ds

+

p∑
l=1

max
1≤i≤n

sup
t∈(tni−1,t

n
i ]

∣∣∣∣ ∫ t

tni−1

fl(s, ξ
n
i )dB

(l)
s

∣∣∣∣]. (7.7)
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For any ε > 0,

P({d̃mT (X n,κ,X n,κ
ρn ) > ε}) ≤ P

( n⋃
i=1

(An,κ
i )c

)
+ P

(
{d̃mT (X n,κ,X n,κ

ρn ) > ε} ∩
n⋂

i=1

An,κ
i

)
. (7.8)

For the first term on the right-hand side, letting xi :=
∫ tni
tni−1

∫
|z|>κ νs(dz)ds and using the in-

equality ex − 1− x ≤ 1
2e

Kx2 for x ∈ [0,K], we obtain

P
( n⋃

i=1

(An,κ
i )c

)
≤

n∑
i=1

(1− P(An,κ
i )) =

n−1∑
i=1

(1− e−xi − xie
−xi) + 1− e−xn

≤ 1

2
emax1≤i≤n−1 xi

n−1∑
i=1

e−xix2i + xn ≤
1

2
emax1≤i≤n−1 xi max

1≤i≤n−1
xi

n−1∑
i=1

xi + xn.

Since
∫ T
0

∫
|z|>κ νs(dz)ds <∞ which ensures the uniform continuity of [0, T ] ∋ t 7→

∫ t
0

∫
|z|>κ νs(dz)ds,

we deduce that max1≤i≤n xi → 0 as n→∞. Hence,

P
( n⋃

i=1

(An,κ
i )c

)
→ 0 as n→∞. (7.9)

For the second term, since max1≤i≤n

∫ tni
tni−1

∫
κ<|z|≤R |z|νs(dz)ds→ 0 as n→∞ due to the uniform

continuity, we deduce from (7.7) that, when n is sufficiently large,

P
(
{d̃mT (X n,κ,X n,κ

ρn ) > ε} ∩
n⋂

i=1

An,κ
i

)
≤ P

({ p∑
l=1

max
1≤i≤n

sup
t∈(tni−1,t

n
i ]

∣∣∣∣ ∫ t

tni−1

fl(s, ξ
n
i )dB

(l)
s

∣∣∣∣ > ε

4

})
.

Applying the Burkholder–Davis–Gundy inequality with the exponent 4 yields

P
(
{d̃mT (X n,κ,X n,κ

ρn ) > ε} ∩
n⋂

i=1

An,κ
i

)

≤
p∑

l=1

n∑
i=1

P
({

sup
t∈(tni−1,t

n
i ]

∣∣∣∣ ∫ t

tni−1

fl(s, ξ
n
i )dB

(l)
s

∣∣∣∣ > ε

4p

})

≤ c
256p4

ε4

p∑
l=1

n∑
i=1

E
[∣∣∣∣ ∫ tni

tni−1

|fl(s, ξni )|2ds
∣∣∣∣2]

≤ c
256p5

ε4
max
1≤l≤p

∥fl∥4Bb(U;Rm)

n∑
i=1

(tni − tni−1)
2

≤ c
256p5T

ε4
max
1≤l≤p

∥fl∥4Bb(U;Rm)|Πn|
n→∞−−−→ 0, (7.10)

where c > 0 is a constant independent of ε, n, p, T . Combining (7.9) and (7.10) with (7.8), and
then plugging them together with (7.6) into (7.5) we arrive at

lim sup
n→∞

P({d̃mT (X n,X n
ρn) > 3ε}) ≤ 4ε−2∥fp+1∥2Bb(V;Rm)

∫ T

0

∫
0<|z|≤κ

|z|2νs(dz)ds.

Letting κ ↓ 0 and exploiting (7.1) we eventually obtain

lim sup
n→∞

P({d̃mT (X n,X n
ρn) > 3ε}) = 0,

which then verifies (7.3). □
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7.3. Proof of assertion (7.4). For the proof of (7.4), we apply a limit theorem of Jacod and
Shiryaev, which is briefly reviewed in [2]. It relies on verifying the convergence of the modified
semimartingale characteristics of X n

ρn to the modified semimartingale characteristics of the limit
process X . Here, “modified” is understood in the sense of [14, Definition II.2.16].

Let us fix a truncation function h : Rm → Rm, see [14, Definition II.2.3], i.e. h is bounded
and h(z) = z in a neighborhood of 0. It is convenient for us to assume furthermore that

h(k) ∈ C2
b (Rm) for any k = 1, . . . ,m.

The following lemma states the semimartingale characteristics of X with respect to the trun-
cation function h, compare [14, Definition II.2.6]. Its proof follows routine arguments and can
be found in [2].

Lemma 7.1. X is an m-dimensional semimartingale whose characteristics (bX , CX , νX ) with
respect to the truncation function h is given by

bXt =

∫ t

0

[ ∫
[0,1]d

f0(s, u)du+

∫
{|z|>R}×[0,1]d

h(fp+2(s, z, u))νs(dz)du

+

∫
{0<|z|≤R}×[0,1]d

[h(fp+1(s, z, u)|z|)− fp+1(s, z, u)|z|]νs(dz)du
]
ds,

CX
t =

( p∑
l=1

∫ t

0

∫
[0,1]d

(f
(k)
l f

(k′)
l )(s, u)duds

)
k,k′
∈ Rm×m, 0 ≤ t ≤ T,

νX ((s, t]×A) =

∫ t

s

∫
{0<|z|≤R}×[0,1]d

1A(fp+1(r, z, u)|z|)νr(dz)dudr

+

∫ t

s

∫
{|z|>R}×[0,1]d

1A(fp+2(r, z, u))νr(dz)dudr

for 0 ≤ s < t ≤ T , A ∈ B(Rm
0 ).

Remark 7.2. By a standard approximation argument, the measure νX in Lemma 7.1 satisfies∫ T

0

∫
Rm
0

g(y)νX (ds, dy)

=

∫ T

0

∫
Rq
0×[0,1]d

[g(fp+1(s, z, u)|z|)1{0<|z|≤R} + g(fp+2(s, z, u))1{|z|>R}]νs(dz)duds

for any measurable g : Rm
0 → R which is non-negative or g1[0,T ] is ν

X -integrable. In particular,
for g(y) = 1{|y|≥κ} with some κ > 0 we get∫ T

0

∫
|y|≥κ

νX (ds, dy)

=

∫ T

0

∫
Rq
0×[0,1]d

[1{|fp+1(s,z,u)||z|≥κ}1{0<|z|≤R} + 1{|fp+2(s,z,u)|≥κ}1{|z|>R}]νs(dz)duds

≤
∥fp+1∥2Bb(V;Rm)

κ2

∫ T

0

∫
0<|z|≤R

|z|2νs(dz)ds+
∥fp+2∥Bb(V;Rm)

κ

∫ T

0

∫
|z|>R

νs(dz)ds (7.11)

<∞,

where the finiteness can be derived from (7.1) and the inequalities

1{|fp+1(s,z,u)||z|≥κ} ≤ κ−2∥fp+1∥2Bb(V;Rm)|z|
2 and 1{|fp+2(s,z,u)|≥κ} ≤ κ−1∥fp+2∥Bb(V;Rm).

We now turn to X n
ρn , whose modified semimartingale characteristics will be computed in

relation to a new filtration, which we construct next. To this end, we set

σn(t) := sup{i : tni ≤ t} ∈ {0, 1, . . . , n}, t ∈ [0,∞).
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Denote ∆n
i X n := X n

tni
−X n

tni−1
. Then

X n
ρn(t)

=

σn(t)∑
i=1

∆n
i X n, t ∈ [0, T ].

For n ≥ 1, we define the discrete-time filtration (Gni )ni=0 by

Gn0 := {∅,Ω}, Gni := σ{∆n
jX n, j ≤ i}, i = 1, . . . , n.

Then {∆n
i X n,Gni : 1 ≤ i ≤ n, n ≥ 1} is an adapted triangular array. Since ∆n

i X n is independent
of Gni−1, we get for any bounded measurable g and t ∈ [0,∞) that, a.s.,

σn(t)∑
i=1

E[g(∆n
i X n)|Gni−1] =

σn(t)∑
i=1

E[g(∆n
i X n)].

Remark 7.3. (1) By [14, Ch.II, §3b], the modified semimartingale characteristics of X n
ρn

with respect to the filtration Gσn = (Gnσn(t)
)t≥0 is the triplet (drift part, modified diffusion

part, jump part) which is respectively described by

σn∑
i=1

E[h(∆n
i X n)],

( σn∑
i=1

(
E[(h(k)h(k

′))(∆n
i X n)]− E[h(k)(∆n

i X n)]E[h(k
′)(∆n

i X n)]
))

k,k′=1,...,m

,

σn∑
i=1

E[g(∆n
i X n)],

where g runs through a sufficiently large class of test functions vanishing around zero.

(2) A key difference between Gσn and FΠn is that information about the random variable

ξΠn
tni

, which is sampled for the randomization on the interval (tni−1, t
n
i ], is only revealed

at time tni in the filtration Gσn , whereas it is already known at time tni−1 in the filtration

FΠn .

The following proposition plays the key role for deriving the convergence of the semimartingale
characteristics.

Proposition 7.4. For any g ∈ C2
b (Rm), one has

n∑
i=1

∣∣∣∣E[g(∆n
i X n)]− g(0)−

∫ tni

tni−1

Ψf (g)(s)ds

∣∣∣∣ n→∞−−−→ 0, (7.12)

where the function Ψf (g) : [0, T ]→ R is defined by

Ψf (g)(s) :=

∫
[0,1]d

(
∇g(0)Tf0(s, u) +

1

2

m∑
k,k′=1

∂2
k,k′g(0)

p∑
l=1

(f
(k)
l f

(k′)
l )(s, u)

)
du

+

∫
{0<|z|≤R}×[0,1]d

[
g(fp+1(s, z, u)|z|)− g(0)− |z|∇g(0)Tfp+1(s, z, u)

]
νs(dz)du

+

∫
{|z|>R}×[0,1]d

[
g(fp+2(s, z, u))− g(0)

]
νs(dz)du. (7.13)

Consequently, for any t ∈ [0,∞),

σn(t)∑
i=1

E[g(∆n
i X n)]

n→∞−−−→ g(0) +

∫ t∧T

0
Ψf (g)(s)ds.



CONTINUOUS TIME REINFORCEMENT LEARNING: A RANDOM MEASURE APPROACH 23

Proof. Step 1. It is obvious that Ψf (g) is measurable by Fubini’s theorem, and moreover, there
exists a constant cT,m > 0 such that∫ T

0
|Ψf (g)(s)|ds ≤ cT,m

(
∥f0∥Bb(U;Rm)|∇g(0)|+

m∑
k,k′=1

|∂2
k,k′g(0)|

p∑
l=1

∥f (k)
l f

(k′)
l ∥Bb(U)

+ ∥fp+1∥2Bb(V;Rm)∥∇
2g∥Bb(Rm;Rm×m)

∫ T

0

∫
{0<|z|≤R}×[0,1]d

|z|2νs(dz)duds

+ 2∥g∥Bb(Rm)

∫ T

0

∫
{|z|>R}×[0,1]d

νs(dz)duds

)
<∞,

Next, for n ≥ 1, i = 1, . . . , n, we define the càdlàg and FΠn-adapted process Fn,i = (Fn,i
t )t∈[tni−1,t

n
i ]

null at tni−1 by setting, for t ∈ (tni−1, t
n
i ],

Fn,i
t :=

∫ t

tni−1

f0(s, ξ
n
i )ds+

p∑
l=1

∫ t

tni−1

fl(s, ξ
n
i )dB

(l)
s

+

∫ t

tni−1

∫
0<|z|≤R

fp+1(s, z, ξ
n
i )|z|Ñ(ds, dz) +

∫ t

tni−1

∫
|z|>R

fp+2(s, z, ξ
n
i )N(ds, dz).

Let s ∈ (0, T ] be now fixed. Then, for any n ≥ 1, there exists uniquely 1 ≤ i(s, n) ≤ n such that

s ∈ (tni(s,n)−1, t
n
i(s,n)] and lim

n→∞
tni(s,n)−1 = lim

n→∞
tni(s,n) = s.

We claim that

Fn,i(s,n)
s

L1(P)−−−→ 0 as n→∞.

It is straightforward to check when n→∞ that, in the representation of F
n,i(s,n)
s , the Lebesgue

integral part tends to 0 in L2(P) as f0 is bounded, the martingale part converges to 0 in L2(P)
by applying Itô’s isometry and using the boundedness of fl, l = 1, . . . , p+1. For the “large jump
part”, since νr(dz)dr is the predictable compensator of N(dr, dz), together with (7.1), we get

E
[∣∣∣∣ ∫ s

tn
i(s,n)−1

∫
|z|>R

fp+2(r, z, ξ
n
i(s,n))N(dr, dz)

∣∣∣∣]
≤ ∥fp+2∥Bb(V;Rm)E

[ ∫ s

tn
i(s,n)−1

∫
|z|>R

N(dr, dz)

]
= ∥fp+2∥Bb(V;Rm)

∫ s

tn
i(s,n)−1

∫
|z|>R

νr(dz)dr
n→∞−−−→ 0,

which verifies the claim. Since E[N({s}×Rq
0)] = ν({s}×Rq

0) = 0, it holds that F
n,i(s,n)
s = F

n,i(s,n)
s−

a.s., and hence,

F
n,i(s,n)
s−

L1(P)−−−→ 0 as n→∞. (7.14)

Step 2. Using Itô’s formula for Fn,i and g ∈ C2
b (Rm) (see, e.g., [20, Theorem 2.5]) we get,

a.s.,

g(∆n
i X n) = g

(
Fn,i
tni

)
= g(0) +

∫ tni

tni−1

∇g(Fn,i
s− )Tf0(s, ξ

n
i )ds

+

p∑
l=1

∫ tni

tni−1

∇g(Fn,i
s− )Tfl(s, ξ

n
i )dB

(l)
s +

1

2

m∑
k,k′=1

p∑
l=1

∫ tni

tni−1

∂2
k,k′g(F

n,i
s− )(f

(k)
l f

(k′)
l )(s, ξni )ds



24 CHRISTIAN BENDER AND NGUYEN TRAN THUAN

+

∫ tni

tni−1

∫
0<|z|≤R

[
g
(
Fn,i
s− + fp+1(s, z, ξ

n
i )|z|

)
− g(Fn,i

s− )
]
Ñ(ds, dz)

+

∫ tni

tni−1

∫
0<|z|≤R

[
g
(
Fn,i
s− + fp+1(s, z, ξ

n
i )|z|

)
− g(Fn,i

s− )− |z|∇g(Fn,i
s− )Tfp+1(s, z, ξ

n
i )
]
νs(dz)ds

+

∫ tni

tni−1

∫
|z|>R

[
g
(
Fn,i
s− + fp+2(s, z, ξ

n
i )
)
− g(Fn,i

s− )
]
N(ds, dz).

Since ∇g and fl are bounded for any l = 1, . . . , p+1, the integrals with respect to the Brownian
motions and the compensated random measure are square integrable martingales which vanish
after taking the expectation E. Let us now investigate the remaining parts.
• The “drift part”: Using Fubini’s theorem and the Cauchy–Schwarz inequality yields

n∑
i=1

∣∣∣∣E[ ∫ tni

tni−1

∇g(Fn,i
s− )Tf0(s, ξ

n
i )ds

]
−
∫ tni

tni−1

∫
[0,1]d

∇g(0)Tf0(s, u)duds
∣∣∣∣

=
n∑

i=1

∣∣∣∣E[ ∫ tni

tni−1

∇g(Fn,i
s− )Tf0(s, ξ

n
i )ds−

∫ tni

tni−1

∇g(0)Tf0(s, ξni )ds
]∣∣∣∣

≤ ∥f0∥Bb(U;Rm)

n∑
i=1

∫ tni

tni−1

E[|∇g(Fn,i
s− )−∇g(0)|]ds

= ∥f0∥Bb(U;Rm)

∫ T

0
E
[ n∑

i=1

|∇g(Fn,i
s− )−∇g(0)|1(tni−1,t

n
i ]
(s)

]
ds

= ∥f0∥Bb(U;Rm)

∫ T

0
E
[∣∣∇g(Fn,i(s,n)

s−
)
−∇g(0)

∣∣]ds
n→∞−−−→ 0,

where we apply the dominated convergence theorem using (7.14) together with the continuity
and boundedness of ∇g. Analogously, for k, k′ = 1, . . . ,m and l = 1, . . . , p,
n∑

i=1

∣∣∣∣E[ ∫ tni

tni−1

∂2
k,k′g(F

n,i
s− )(f

(k)
l f

(k′)
l )(s, ξni )ds

]
−
∫ tni

tni−1

∫
[0,1]d

∂2
k,k′g(0)(f

(k)
l f

(k′)
l )(s, u)duds

∣∣∣∣ n→∞−−−→ 0.

• The “small jump part”: For i(n, s) introduced in Step 1 one has
n∑

i=1

∣∣∣∣E[ ∫ tni

tni−1

∫
0<|z|≤R

[
g
(
Fn,i
s− + fp+1(s, z, ξ

n
i )|z|

)
− g(Fn,i

s− )− |z|∇g(Fn,i
s− )Tfp+1(s, z, ξ

n
i )
]
νs(dz)ds

]
−
∫ tni

tni−1

∫
{0<|z|≤R}×[0,1]d

[
g(fp+1(s, z, u)|z|)− g(0)− |z|∇g(0)Tfp+1(s, z, u)

]
νs(dz)duds

∣∣∣∣
≤

∫ T

0

∫
0<|z|≤R

E
[ n∑

i=1

∣∣∣g(Fn,i
s− + fp+1(s, z, ξ

n
i )|z|

)
− g(Fn,i

s− )− |z|∇g(Fn,i
s− )Tfp+1(s, z, ξ

n
i )

− g(fp+1(s, z, ξ
n
i )|z|) + g(0) + |z|∇g(0)Tfp+1(s, z, ξ

n
i )
∣∣∣1(tni−1,t

n
i ]
(s)

]
νs(dz)ds

=

∫ T

0

∫
0<|z|≤R

E
[∣∣∣g(Fn,i(s,n)

s− + fp+1(s, z, ξ
n
i(s,n))|z|

)
− g

(
F

n,i(s,n)
s−

)
− |z|∇g

(
F

n,i(s,n)
s−

)T
fp+1(s, z, ξ

n
i(s,n))

− g(fp+1(s, z, ξ
n
i(s,n))|z|) + g(0) + |z|∇g(0)Tfp+1(s, z, ξ

n
i(s,n))

∣∣∣]νs(dz)ds
=:

∫ T

0

∫
0<|z|≤R

E[GS
n(s, z)]νs(dz)ds.

Using Taylor’s expansion we obtain a constant cm > 0 depending only on m such that

GS
n(s, z) ≤ cm∥∇2g∥Bb(Rm;Rm×m)∥fp+1∥2Bb(V;Rm)|z|

2.
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Hence, it is easy to check using (7.14) and dominated convergence that E[GS
n(s, z)] → 0 as

n→∞ for any s, z. Due to (7.1), dominated convergence also yields∫ T

0

∫
0<|z|≤R

E[GS
n(s, z)]νs(dz)ds

n→∞−−−→ 0.

• The “large jump part”: Since νs(dz)ds is the predictable compensator of N(ds, dz), using
Fubini’s theorem, again, for interchanging integrals we get

n∑
i=1

∣∣∣∣E[ ∫ tni

tni−1

∫
|z|>R

[
g
(
Fn,i
s− + fp+2(s, z, ξ

n
i )
)
− g(Fn,i

s− )
]
N(ds, dz)

]
−
∫ tni

tni−1

∫
{|z|>R}×[0,1]d

[
g(fp+2(s, z, u))− g(0)

]
νs(dz)duds

]∣∣∣∣
=

n∑
i=1

∣∣∣∣E[ ∫ tni

tni−1

∫
|z|>R

[
g
(
Fn,i
s− + fp+2(s, z, ξ

n
i )
)
− g(Fn,i

s− )
]
νs(dz)ds

]
− E

[ ∫ tni

tni−1

∫
|z|>R

[
g(fp+2(s, z, ξ

n
i ))− g(0)

]
νs(dz)ds

]∣∣∣∣
≤

∫ T

0

∫
|z|>R

E
[∣∣∣g(Fn,i(s,n)

s− + fp+2(s, z, ξ
n
i(s,n))

)
− g

(
F

n,i(s,n)
s−

)
− g(fp+2(s, z, ξ

n
i(s,n))) + g(0)

∣∣∣]νs(dz)ds
=:

∫ T

0

∫
|z|>R

E[GL
n(s, z)]νs(dz)ds.

It is clear that GL
n is uniformly bounded by 4∥g∥Bb(Rm). Moreover, using the Lipschitzian of g,

the boundedness of fp+2 and (7.14) and (7.1), we may apply the dominated convergence theorem
to obtain ∫ T

0

∫
|z|>R

E[GL
n(s, z)]νs(dz)ds

n→∞−−−→ 0.

Combining the arguments above yields (7.12). The consequence follows from
∫ t
ρn(t)
|Ψf (g)(s)|ds→

0 as n→∞. □

We apply Proposition 7.4 in the next three lemmas, to prove convergence of the drift part,
the modified diffusion part, and the jump part of the semimartingale characteristics as afore-
mentioned in Remark 7.3(1).

Lemma 7.5. For bX in Lemma 7.1 and any t ∈ [0,∞),

I(7.15) := sup
0≤s≤t

∣∣∣∣ σn(s)∑
i=1

E[h(∆n
i X n)]− bXs∧T

∣∣∣∣ n→∞−−−→ 0. (7.15)

Proof. It is sufficient to verify the convergence for any k-th coordinate, k = 1, . . . ,m and t ∈
[0, T ]. Observe that

b
X ,(k)
t =

∫ t

0
Ψf (h

(k))(s)ds

for Ψf (h
(k)) associated with h(k) introduced in Proposition 7.4. Then we get

sup
0≤s≤t

∣∣∣∣ σn(s)∑
i=1

E[h(k)(∆n
i X n)]− bX ,(k)

s

∣∣∣∣
≤ sup

0≤s≤t

∣∣∣∣ σn(s)∑
i=1

E[h(k)(∆n
i X n)]−

σn(s)∑
i=1

∫ tni

tni−1

Ψf (h
(k))(r)dr

∣∣∣∣+ sup
0≤s≤t

∣∣∣∣ ∫ s

ρn(s)
Ψf (h

(k))(r)dr

∣∣∣∣
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≤
n∑

i=1

∣∣∣∣E[h(k)(∆n
i X n)]−

∫ tni

tni−1

Ψf (h
(k))(r)dr

∣∣∣∣+ max
1≤i≤n

∫ tni

tni−1

|Ψf (h
(k))(r)|dr.

The first term on the right-hand side above converges to 0 by applying Proposition 7.4 for

h(k) ∈ C2
b (Rm). For the second term, since t 7→

∫ t
0 |Ψf (h

(k))(r)|dr is uniformly continuous on
[0, T ] and max1≤i≤n |tni − tni−1| → 0, it implies that

max
1≤i≤n

∫ tni

tni−1

|Ψf (h
(k))(r)|dr n→∞−−−→ 0.

Therefore, I(7.15) → 0 as n→∞. □

Lemma 7.6. For CX given in Lemma 7.1, for any t ∈ [0,∞) and k, k′ = 1, . . . ,m, one has

I(7.16) :=

σn(t)∑
i=1

E[h(k)(∆n
i X n)]E[h(k

′)(∆n
i X n)]

n→∞−−−→ 0, (7.16)

I(7.17) :=

σn(t)∑
i=1

E[(h(k)h(k
′))(∆n

i X n)]
n→∞−−−→ C

X ,(k,k′)
t∧T +

∫ t∧T

0

∫
Rm
0

(h(k)h(k
′))(y)νX (ds, dy). (7.17)

Proof. It suffices to show the convergences for t ∈ [0, T ]. For I(7.16), we first express

I(7.16) =

σn(t)∑
i=1

(
E[h(k)(∆n

i X n)]−
∫ tni

tni−1

Ψf (h
(k))(s)ds

)
E[h(k

′)(∆n
i X n)]

+

σn(t)∑
i=1

(
E[h(k

′)(∆n
i X n)]−

∫ tni

tni−1

Ψf (h
(k′))(s)ds

)∫ tni

tni−1

Ψf (h
(k))(s)ds

+

σn(t)∑
i=1

(∫ tni

tni−1

Ψf (h
(k))(s)ds

)(∫ tni

tni−1

Ψf (h
(k′))(s)ds

)
.

Hence, the triangle inequality yields

|I(7.16)| ≤ ∥h(k
′)∥Bb(Rm)

n∑
i=1

∣∣∣∣E[h(k)(∆n
i X n)]−

∫ tni

tni−1

Ψf (h
(k))(s)ds

∣∣∣∣
+

(∫ T

0
|Ψf (h

(k))(s)|ds
) n∑

i=1

∣∣∣∣E[h(k′)(∆n
i X n)]−

∫ tni

tni−1

Ψf (h
(k′))(s)ds

∣∣∣∣
+

(∫ T

0
|Ψf (h

(k))(s)|ds
)

max
1≤i≤n

∫ tni

tni−1

|Ψf (h
(k′))(s)|ds.

Applying Proposition 7.4 for h(k), h(k
′) ∈ C2

b (Rm), we obtain that the sums
∑n

i=1 in the first two

terms on the right-hand side converge to 0 as n→∞. Since max1≤i≤n

∫ tni
tni−1
|Ψf (h

(k′))(s)|ds→ 0,

we derive I(7.16) → 0 as desired.

For I(7.17), since h(k)h(k
′) ∈ C2

b (Rm) and h(k)h(k
′)(z) = z(k)z(k

′) around 0, the function

Ψf (h
(k)h(k

′)) given in (7.13) can be explicitly written as

Ψf (h
(k)h(k

′))(s) =

p∑
l=1

∫
[0,1]d

(f
(k)
l f

(k′)
l )(s, u)du

+

∫
{0<|z|≤R}×[0,1]d

(h(k)h(k
′))(fp+1(s, z, u)|z|)νs(dz)du

+

∫
{|z|>R}×[0,1]d

(h(k)h(k
′))(fp+2(s, z, u))νs(dz)du
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so that ∫ t

0
Ψf (h

(k)h(k
′))(s)ds = C

X ,(k,k′)
t +

∫ t

0

∫
Rm
0

(h(k)h(k
′))(y)νX (ds, dy)

where we apply Remark 7.2 for the νX -integrable function h(k)h(k
′)
1[0,T ]. Hence, (7.17) follows

directly from the consequence in Proposition 7.4. □

To investigate the jump part of the limiting process, we recall from [14, p.395] the family
C2(Rm) of bounded and continuous functions g : Rm → R with g(0) = 0 around 0.

Lemma 7.7. For νX in Lemma 7.1 and for any g ∈ C2(Rm), t ∈ [0,∞), one has

Ig(7.18) :=

∣∣∣∣ σn(t)∑
i=1

E[g(∆n
i X n)]−

∫ t∧T

0

∫
Rm
0

g(y)νX (ds, dy)

∣∣∣∣ n→∞−−−→ 0. (7.18)

Proof. We only need to prove for t ∈ [0, T ].

Step 1. Recall ∆n
i X n from (7.2). We show that for any κ > 0,

n∑
i=1

P({|∆n
i X n| ≥ κ}) ≤ 9

κ2

(
pT max

1≤l≤p
∥fl∥2Bb(U;Rm) + ∥fp+1∥2Bb(V;Rm)

∫ T

0

∫
0<|z|≤R

|z|2νs(dz)ds
)

+
3T

κ
∥f0∥Bb(U;Rm) +

3

κ
∥fp+2∥Bb(V;Rm)

∫ T

0

∫
|z|>R

νs(dz)ds. (7.19)

Indeed, by the triangle inequality we get
n∑

i=1

P({|∆n
i X n| ≥ κ})

≤
n∑

i=1

P
({∣∣∣∣ ∫ tni

tni−1

f0(s, ξ
n
i )ds

∣∣∣∣ ≥ κ

3

})

+
n∑

i=1

P
({∣∣∣∣ p∑

l=1

∫ tni

tni−1

fl(s, ξ
n
i )dB

(l)
s +

∫ tni

tni−1

∫
0<|z|≤R

fp+1(s, z, ξ
n
i )|z|Ñ(ds, dz)

∣∣∣∣ ≥ κ

3

})

+
n∑

i=1

P
({∣∣∣∣ ∫ tni

tni−1

∫
|z|>R

fp+2(s, z, ξ
n
i )N(ds, dz)

∣∣∣∣ ≥ κ

3

})
=: I(7.20) + II(7.20) + III(7.20). (7.20)

For the first term, Markov’s inequality yields

I(7.20) ≤
3

κ

n∑
i=1

E
[∣∣∣∣ ∫ tni

tni−1

f0(s, ξ
n
i )ds

∣∣∣∣] ≤ 3T

κ
∥f0∥Bb(U;Rm).

For the second term, applying the Markov’s inequality and Itô’s isometry we get

II(7.20) ≤
9

κ2

n∑
i=1

E
[∣∣∣∣ p∑

l=1

∫ tni

tni−1

fl(s, ξ
n
i )dB

(l)
s +

∫ tni

tni−1

∫
0<|z|≤R

fp+1(s, z, ξ
n
i )|z|Ñ(ds, dz)

∣∣∣∣2]

=
9

κ2

n∑
i=1

E
[ p∑

l=1

∫ tni

tni−1

|fl(s, ξni )|2ds+
∫ tni

tni−1

∫
0<|z|≤R

|fp+1(s, z, ξ
n
i )|2|z|2νs(dz)ds

]

≤ 9

κ2

(
pT max

1≤l≤p
∥fl∥2Bb(U;Rm) + ∥fp+1∥2Bb(V;Rm)

∫ T

0

∫
0<|z|≤R

|z|2νs(dz)ds
)
.

For the third term, using Markov’s inequality we obtain

III(7.20) ≤
3

κ

n∑
i=1

E
[∣∣∣∣ ∫ tni

tni−1

∫
|z|>R

fp+2(s, z, ξ
n
i )N(ds, dz)

∣∣∣∣]
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≤ 3

κ
∥fp+2∥Bb(V;Rm)

n∑
i=1

E
[ ∫ tni

tni−1

∫
|z|>R

N(ds, dz)

]

=
3

κ
∥fp+2∥Bb(V;Rm)

∫ T

0

∫
|z|>R

νs(dz)ds.

Hence, combining those four estimates yields (7.19).

Step 2. Since g ∈ C2(Rm), there is an rg > 0 such that g = 0 on the open ball Bm(rg).
Then, we use Remark 7.2 to obtain that∫ T

0

∫
|y|≥rg

|g(y)|νX (ds, dy) ≤ ∥g∥Bb(Rm)

∫ T

0

∫
|y|≥rg

νX (ds, dy) <∞.

Hence, the integral on the right-hand side of (7.18) finitely exists.
We now only prove (7.18) in the case 0 ≤ R <∞ as the case R =∞ is analogous. Let ε > 0

and θ > rg ∨R2. Since g is continuous and bounded, there exists a continuous function gθ with
compact support such that

∥gθ∥Bb(Rm) ≤ ∥g∥Bb(Rm) and gθ = g on Bm(θ).

Moreover, by convolution approximation, we can find a gε,θ ∈ C2(Rm) ∩ C2
c (Rm) such that

gε,θ = gθ = 0 on Bm(rg/2), and ∥gε,θ − gθ∥Bb(Rm) ≤ ε.

It follows from the linearity and the triangle inequality that

Ig(7.18) ≤ Ig−gθ
(7.18) + I

gθ−gε,θ
(7.18) + I

gε,θ
(7.18). (7.21)

Since gε,θ ∈ C2
c (Rm) takes value 0 in a neighborhood of 0, Remark 7.2 implies∫ t

0
Ψf (gε,θ)(s)ds =

∫ t

0

∫
Rq
0×[0,1]d

[g(fp+1(s, z, u)|z|)1{0<|z|≤R} + g(fp+2(s, z, u))1{0<|z|≤R}]νs(dz)duds

=

∫ t

0

∫
Rm
0

g(y)νX (ds, dy)

so that the consequence in Proposition 7.4 verifies

I
gε,θ
(7.18)

n→∞−−−→ 0.

For Ig−gθ
(7.18), one has

Ig−gθ
(7.18) ≤

n∑
i=1

E[|(g − gθ)(∆
n
i X n)|] +

∫ T

0

∫
Rm
0

|g(y)− gθ(y)|νX (ds, dy)

≤ ∥g − gθ∥Bb(Rm)

( n∑
i=1

P({|∆n
i X n| ≥ θ}) +

∫ T

0

∫
|y|≥θ

νX (ds, dy)

)
.

We let κ = θ in (7.19) to find that
∑n

i=1 P({|∆n
i X n| ≥ θ}) → 0 uniformly in n as θ → ∞.

Moreover, it follows from (7.11) that
∫ T
0

∫
|y|≥θ ν

X (ds, dy)→ 0 as θ →∞ which thus yields

Ig−gθ
(7.18) → 0 uniformly in n as θ →∞.

For I
gθ−gε,θ
(7.18) , one has

I
gθ−gε,θ
(7.18) ≤

n∑
i=1

E[|(gθ − gε,θ)(∆
n
i X n)|] +

∫ T

0

∫
Rm
0

|gθ(y)− gε,θ(y)|νX (ds, dy)

≤ ∥gθ − gε,θ∥Bb(Rm)

( n∑
i=1

P({|∆n
i X n| ≥ rg/2}) +

∫ T

0

∫
|y|≥rg/2

νX (ds, dy)

)

≤ ε

( n∑
i=1

P({|∆n
i X n| ≥ rg/2}) +

∫ T

0

∫
|y|≥rg/2

νX (ds, dy)

)
.
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Choosing κ = rg/2 in (7.19) and using (7.11) we obtain

I
gθ−gε,θ
(7.18) → 0 uniformly over n as ε→ 0.

Since θ can be chosen arbitrarily large and ε > 0 arbitrarily small, we derive from (7.21) the
desired conclusion. □

We can now finalize the proof of assertion (7.4). Combining Lemmas 7.5 to 7.7 with Lemma 7.1,
together with applying [14, Theorem VII.2.29] (see also [2] for a recap of this result), we get that

(
∑σn(t)

i=1 ∆n
i X n)t∈[0,∞) → (Xt∧T )t∈[0,∞) as n→∞ weakly in the Skorokhod topology on the space

D∞(Rm) of càdlàg functions F : [0,∞) → Rm (see [3, 14] for D∞(Rm)). Since X has no fixed

time of discontinuity, we use [3, Theorem 16.7] to infer that X n
ρn = (

∑σn(t)
i=1 ∆n

i X n)t∈[0,T ]
DT−−→

(Xt)t∈[0,T ] as n→∞. □

8. Proofs of Proposition 4.3 and Proposition 5.4

8.1. Proof of Proposition 4.3. As the grid-sampling SDE (4.1) is an SDE driven by a Brow-
nian motion and a Poisson random measure, the existence and uniqueness of strong solution to
(4.1) can be achieved by a routine argument combined with the interlacing technique to handle
the large jump part. We refer, for example, to [13, Theorem IV.9.1] for SDEs driven by a finite
dimensional Brownian motion and homogeneous Poisson random measure, and to [4, Section
4.2] for the infinite dimensional case.

We now deal with the random measures MΠ
B(l) and MΠ

J . By the definition of MΠ
B(l) , for any

A ∈ B([0, 1]d) one has MΠ
B(l)(0, A) = 0, and for t ∈ (0, T ], we can write

MΠ
B(l)(t, A) =

∫ t

0
1A

( n∑
i=1

1(ti−1,ti](s)ξ
Π
ti

)
dB(l)

s .

Then, due to [19, Proposition II-1], MΠ
B(l) is an orthogonal (FΠ,P)-martingale measure on [0, T ]×

B([0, 1]d) with intensity µΠ
B(l)(ds, dx) = δ∑n

i=1 1(ti−1,ti]
(s)ξΠti

(dx)ds. It is clear that µΠ
B(l) = MΠ

D .

By the definition of MΠ
J , for any FΠ-predictable Y ≥ 0 and for (Y • MΠ

J ) = ((Y • MΠ
J )t)t∈[0,T ]

defined by (Y • MΠ
J )t :=

∫
(0,t]×Rq

0×[0,1]d Ys(z, u)M
Π
J (ds, dz, du) one has, a.s.,

(Y • MΠ
J )T =

n∑
i=1

∑
s∈(ti−1,ti]

1{∆Ls ̸=0}Ys(∆Ls, ξ
Π
ti ) =

n∑
i=1

∫
(0,T ]×Rq

0

1(ti−1,ti](s)Ys(z, ξ
Π
ti )N(ds, dz).

As νs(dz)ds is the (FΠ,P)-predictable compensator of N(ds, dz) (see [14, Proposition II.1.21]),
we get

E[(Y • MΠ
J )T ] = E

[ n∑
i=1

∫
(0,T ]×Rq

0

1(ti−1,ti](s)Ys(z, ξ
Π
ti )νs(dz)ds

]

= E
[ n∑

i=1

∫
(0,T ]×Rq

0×[0,1]d
Ys(z, u)1(ti−1,ti](s)δξΠti

(du)νs(dz)ds

]
= E

[ ∫
(0,T ]×Rq

0×[0,1]d
Ys(z, u)µ

Π
J (ds, dz,du)

]
= E[(Y • µΠ

J )T ].

We note that (Y • µΠ
J ) is FΠ-predictable as the pointwise limit of the continuous and FΠ-adapted

processes (Y n • µΠ
J ) as n → ∞ where Y n := (Y ∧ n)1{|z|>1/n}. Hence, µΠ

J is an FΠ-predictable
random measure in the sense of [14, Definition II.1.6(a)]. By [14, Theorem II.1.8(i)], we conclude
that µΠ

J is the (FΠ,P)-predictable compensator of MΠ
J .

To show that the strong solution to the grid-sampling SDE (4.1) also solves the SDE (4.3),
we need the following lemma whose standard proof via approximation is provided in [2].
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Lemma 8.1. (1) For any F ⊗ B([0, T ])⊗ B([0, 1]d)/B(R)-measurable random field Y : Ω×
[0, T ]× [0, 1]d → R satisfying

∫ T
0 |Ys(ξ

Π
s )|ds <∞ a.s, one has∫

(0,T ]×[0,1]d
Ys(u)M

Π
D(ds, du) =

∫ T

0
Ys(ξ

Π
s )ds P-a.s.

(2) If a PFΠ ⊗ B([0, 1]d)/B(R)-measurable random field Y : Ω× [0, T ]× [0, 1]d → R satisfies∫ T
0 |Ys(ξ

Π
s )|2ds <∞ a.s., then for any l = 1, . . . , p one has∫

(0,T ]×[0,1]d
Ys(u)M

Π
B(l)(ds, du) =

∫ T

0
Ys(ξ

Π
s )dB

(l)
s P-a.s.

(3) Suppose that Y : Ω×[0, T ]×Rq
0×[0, 1]d → R is PFΠ⊗B(Rq

0)⊗B([0, 1]d)/B(R)-measurable.
If

∫
(0,T ]×Rq

0
|Ys(z, ξΠs )|N(ds, dz) <∞ a.s., then∫

(0,T ]×Rq
0×[0,1]d

Ys(z, u)M
Π
J (ds, dz, du) =

∫
(0,T ]×Rq

0

Ys(z, ξ
Π
s )N(ds, dz) P-a.s.

Moreover, if
∫ T
0

∫
Rq
0
|Ys(z, ξΠs )|2 νs(dz)ds <∞ a.s., then∫

(0,T ]×Rq
0×[0,1]d

Ys(z, u)M̃
Π
J (ds, dz, du) =

∫
(0,T ]×Rq

0

Ys(z, ξ
Π
s )Ñ(ds, dz) P-a.s.

8.2. Proof of Proposition 5.4. For the well-posedness, we aim to combine Proposition A.3
with the interlacing technique used in the proof of [13, Theorem IV.9.1]. To do that, following
the notation of Proposition A.3, we take E = Rq × [0, 1]d, which is equipped with the Euclidean
norm, and let ℓ = p+ 1. For t ∈ [0, T ] and A ∈ B(Rq × [0, 1]d), we define

M(j)(t, A) :=

{∫
(0,t]×{u∈[0,1]d : (0,u)∈A}MB(j)(ds, du) if j = 1, . . . , p,∫
(0,t]×A 1{0<|z|≤r}|z|M̃J(ds, dz, du) if j = p+ 1.

It is easy to check thatM(j) is an orthogonal (F,P)- martingale measures on [0, T ]×B(Rq×[0, 1]d)
with the (deterministic) intensity

µ(j)(ds, dz, du) := µ(j)
s (dz, du)ds :=

{
δ0(dz)duds if j = 1, . . . , p,

1{0<|z|≤r}|z|2νs(dz)duds if j = p+ 1.

For the Rm-valued function b̂h and Rm×(p+1)-valued function âh defined by

b̂h(s, x) :=

∫
[0,1]d

bh(s, x, u)du,

â
(i,j)
h (s, x, z, u) :=

{
1{z=0}a

(i,j)
h (s, x, u) if 1 ≤ i ≤ m, 1 ≤ j ≤ p,

1{0<|z|≤r}|z|−1γ
(i)
h (s, x, z, u) if 1 ≤ i ≤ m, j = p+ 1,

and forM = (M(1), . . . ,M(p+1))T, the SDE (5.1) can be re-written (we omit the superscript h
of Xh) as

Xt = x0 +

∫ t

0
b̂h(s,Xs−)ds+

∫
(0,t]×Rq×[0,1]d

âh(s,Xs−, z, u)M(ds, dz, du)

+

∫
(0,t]×{|z|>r}×[0,1]d

γh(s,Xs−, z, u)MJ(ds, dz, du). (8.1)

It follows from the condition (2.2) that

E
[ ∫

(0,T ]×{|z|>r}×[0,1]d
MJ(ds, dz,du)

]
=

∫
(0,T ]×{|z|>r}×[0,1]d

νs(dz)duds <∞,

there exists a sequence of F-stopping times 0 < τ1 < · · · with values on [0, T ] capturing the
jump times of the Poisson point process [0, T ] ∋ t 7→ MJ((0, t] × {|z| > r} × [0, 1]d), where we
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set τ0 := 0 and τj := T if there is no jumps on (τj−1, T ]. Then, the large jump part in (8.1) is
re-written as∫

(0,t]×{|z|>r}×[0,1]d
γh(s,Xs−, z, u)MJ(ds, dz, du) =

∑
τj≤t

γh(τj , Xτj−,∆Lr
τj ), t ∈ [0, T ] P-a.s.,

where

Lr
t :=

∫
(0,t]×{|z|>r}×[0,1]d

(z, u)TMJ(ds, dz,du), t ∈ [0, T ].

Step 1. We first construct a solution to (8.1) on [0, τ1]. Consider the following SDE on [0, T ],

Yt = c0 +

∫ t

0
b̂h(s, Ys−)ds+

∫
(0,t]×Rq×[0,1]d

âh(s, Ys−, z, u)M(ds, dz,du). (8.2)

In Proposition A.3, we let η = x0, β(ω, s, y) := b̂h(s, y), α(ω, s, y, z, u) := âh(s, y, z, u) and
M := M, and note that all assumptions there are fulfilled so that the SDE (8.2) with initial
condition x0 has a strong unique solution which is denoted by Y τ0 = (Y τ0

t )t∈[0,T ]. Define

Xt :=

{
Y τ0
t if t ∈ [0, τ1)

Y τ0
τ1− + γh(τ1, Yτ1−,∆Lr

τ1) if t = τ1.

Then, (Xt)t∈[0,τ1] is a unique strong solution to (8.1) on [0, τ1].

Step 2. Construction of a solution to (8.1) on any [τj−1, τj ], j ≥ 2. Consider the interval
[τ1, τ2]. We now need to shift the entire dynamic of (8.2) by the F-stopping time τ1. Define
the filtration Fτ1 = (Fτ1

t )t∈[0,T ] with Fτ1
t := F(τ1+t)∧T , which satisfies the usual conditions. For

j = 1, . . . , p+ 1 and (t, A) ∈ [0, T ]× B(Rq × [0, 1]d), we set

M(j)
τ1 (t, A) :=M

(j)((τ1 + t) ∧ T,A)−M(j)(τ1, A).

According to Lemma A.2,M(j)
τ1 is an orthogonal (Fτ1 ,P)-martingale measure with (Fτ1-predictable)

intensity µM(j)
τ1

given by

µM(j)
τ1

(ds, dz, du) = 1(0, T−τ1](s)µ
(j)
τ1+s(dz, du)ds.

Consider the following SDE on (Ω,F ,Fτ1 ,P) with initial condition Xτ1 ,

Yt = Xτ1 +

∫ t

0
1(0, T−τ1](s) b̂h(τ1 + s, Ys−)ds

+

∫
(0,t]×Rq×[0,1]d

1(0, T−τ1](s) âh(τ1 + s, Ys−, z, u)Mτ1(ds, dz, du) (8.3)

whereMτ1 = (M(1)
τ1 , . . . ,M

(p+1)
τ1 )T. In Proposition A.3, we let η = Xτ1 , M :=Mτ1 , and

β(ω, s, y) := 1(0, T−τ1(ω)](s) b̂h(τ1(ω) + s, y),

α(ω, s, y, z, u) := 1(0, T−τ1(ω)](s) âh(τ1(ω) + s, y, z, u).

Then, α is PFτ1⊗B(Rm)⊗B(Rq×[0, 1]d)/B(Rm×(p+1))-measurable and β is PFτ1⊗B(Rm)/B(Rm)-
measurable. Moreover, for any (ω, s, y1, y2),

|β(ω, s, y1)− β(ω, s, y2)| = 1(0, T−τ1(ω)](s) |b̂h(τ1(ω) + s, y1)− b̂h(τ1(ω) + s, y2)| ≤ KLip|y1 − y2|,∫
Rq×[0,1]d

|α(i,j)(ω, s, y1, z, u)− α(i,j)(ω, s, y1, z, u)|21(0,T−τ1(ω)](s)µ
(j)
τ1(ω)+s(dz, du)

=

∫
Rq×[0,1]d

|â(i,j)h (τ1(ω) + s, y1, z, u)− â
(i,j)
h (τ1(ω) + s, y1, z, u)|21(0,T−τ1(ω)](s)µ

(j)
τ1(ω)+s(dz, du)

≤ K2
Lip|y1 − y2|2,
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and∫ T

0
1(0,T−τ1(ω)](s) |b̂h(τ1(ω) + s, 0)|2ds =

∫ T−τ1(ω)

0
|b̂h(τ1(ω) + s, 0)|2ds ≤

∫ T

0
|b̂h(s, 0)|2ds,∫ T

0

∫
Rq×[0,1]d

|â(i,j)h (τ1(ω) + s, 0, z, u)|21(0, T−τ1(ω)](s)µ
(j)
τ1(ω)+s(dz, du)ds

≤
∫ T

0

∫
Rq×[0,1]d

|â(i,j)h (s, 0, z, u)|2µ(j)
s (dz, du)ds.

It thus follows from Proposition A.3 that (8.3) admits a unique strong solution Y τ1 = (Y τ1
t )t∈[0,T ]

on (Ω,F ,Fτ1 ,P) with initial condition Xτ1 . Set Ỹ
τ1
t := 1[τ1,T ](t)Y

τ1
t−τ1

. Then, by approximating

τ1 from the right by discrete F-stopping times, we infer that Ỹ τ1
t is Ft-measurable and we derive

from (8.3) and Lemma A.2 that, for t ∈ [τ1, T ],

Ỹ τ1
t = Xτ1 +

∫ t

τ1

b̂h(s, Ỹ
τ1
s−)ds+

∫
(0,t]×Rq×[0,1]d

1(τ1,T ](s) âh(s, Ỹ
τ1
s−, z, u)M(ds, dz, du).

We define

Xt :=

{
Ỹ τ1
t if t ∈ [τ1, τ2)

Ỹ τ1
τ2− + γh(τ2, Ỹ

τ1
τ2−,∆Lr

τ2) if t = τ2.

Then, X solves (8.1) on [τ1, τ2].

Iterating this procedure we obtain a strong solution to (8.1) on all intervals [τj−1, τj ], j ∈ N,
and thus, on the entire [0, T ]. The uniqueness of X on [0, T ] follows from its uniqueness on all
[τj−1, τj ], j ∈ N.

Step 3. For the martingale problem, we first notice that Lhf is finitely defined on [0, T ]×Rm

due to the conditions imposed on the coefficients and the boundedness of the partial derivatives
of f . Note that the continuous martingale part of Xh has the predictable quadratic variation∫ ·

0

m∑
i,j=1

(∫
[0,1]d

A
(i,j)
h (s,Xh

s−, u)du

)
ds

by Proposition I-6(2) in [19], cp. the proof of Lemma 6.1 in [2] for more details. We may, thus,
apply Itô’s formula for Xh and f ∈ C2

c (Rm) to get, a.s.,

f(Xh
t )− f(x0)

=

∫ t

0

m∑
i=1

∂f

∂xi
(Xh

s−)

(∫
[0,1]d

b
(i)
h (s,Xh

s−, u)du

)
ds

+
1

2

∫ t

0

m∑
i,j=1

∂2f

∂xi∂xj
(Xh

s−)

(∫
[0,1]d

A
(i,j)
h (s,Xh

s−, u)du

)
ds

+

∫ t

0

∫
{0<|z|≤r}×[0,1]d

(
f(Xh

s− + γh(s,X
h
s−, z, u))− f(Xh

s−)−
m∑
i=1

∂f

∂xi
(Xh

s−)γ
(i)
h (s,Xh

s−, z, u)

)
νs(dz)duds

+

∫ t

0

∫
{|z|>r}×[0,1]d

(f(Xh
s− + γh(s,X

h
s−, z, u))− f(Xh

s−))νs(dz)duds

+ local martingale terms

=

∫ t

0
(Lhf)(s,Xh

s−)ds+ local martingale terms.

Since f has compact support, the local martingale terms become a proper bounded martingale.
Hence, the law of Xh solves the said martingale problem above. □
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Appendix A. SDEs driven by orthogonal martingale measures

A.1. Martingale measures and integration. We briefly recall the notion of martingale mea-
sure initiated by Walsh [33]. We consider here the finite time interval [0, T ] but note that the
discussion below can be readily extended for [0,∞). Let (E, dE) be a complete and separable
metric space equipped with its Borel σ-field B(E). A mapping M : Ω × [0, T ] × B(E) → R is
called an (F,P)-martingale measure on [0, T ]× B(E) if:

(1) For A ∈ B(E), (M(t, A))t∈[0,T ] is an L2(P)-martingale adapted with F and M(0, A) = 0;

(2) For t ∈ [0, T ] and disjoint A,B ∈ B(E), one has M(t, A ∪B) = M(t, A) +M(t, B) a.s.;

(3) There exists a non-decreasing sequence (En)n∈N ⊆ B(E) with ∪n∈NEn = E such that

(a) For any n ∈ N, supA∈B(En) ∥M(T,A)∥L2(P) <∞;

(b) For any n ∈ N, one has ∥M(T,Ak)∥L2(P) → 0 for all decreasing sequence (Ak)k∈N ⊆
B(En) with ∩k∈NAk = ∅.

An (F,P)-martingale measure M is said to be continuous if [0, T ] ∋ t 7→ M(t, A) is continuous
for all A ∈ B(E). Note that, due to the usual conditions, we always choose the càdlàg version
of the martingale M(·, A) for any A ∈ B(E).

An (F,P)-martingale measure M is orthogonal if M(·, A)M(·, B) is an (F,P)-martingale for
any disjoint A,B ∈ B(E). It is indicated by Walsh [33] (see also [19, Theorem I-4]) that if
an (F,P)-martingale measure M is orthogonal, then there is a random positive finite measure
µM on B([0, T ] × E), which is F-predictable (i.e. (µM ((0, t] × A))t∈[0,T ] is F-predictable for all
A ∈ B(E)), such that

µM ((0, t]×A) = ⟨M(·, A)⟩t P-a.s., ∀(t, A) ∈ [0, T ]× B(E).

The measure µM is then called the intensity measure ofM . Moreover, for t ∈ [0, T ], A,B ∈ B(E),

⟨M(·, A),M(·, B)⟩t = ⟨M(·, A ∩B)⟩t = µM ((0, t]× (A ∩B)) P-a.s.
The stochastic integrals driven by an orthogonal martingale measure M can be constructed
via the Itô’s approach (see [19, 33]) as follows: We first define the integrals for F-predictable
simple integrands H, and then, extend the integrals for H ∈ L2(F, µM ) by the denseness, where

L2(F, µM ) is the collection of all F-predictable H with E
[ ∫ T

0

∫
E H(t, x)2µM (dt,dx)

]
<∞.

Assume that the intensity µM of M satisfies µM ({t}×E) = 0 for all t ∈ [0, T ] a.s. Then, by a
localization argument, one can extend the stochastic integrals driven by M for H ∈ L2

loc(F, µM ),

where L2
loc(F, µM ) consists of all F-predictable H with

∫ T
0

∫
E H(t, x)2µM (dt,dx) <∞ a.s. (see,

e.g., [21, Chapter 13] for continuous M). We refer to [2] for further details.
The following two lemmas are standard and their proofs can be found in [2].

Lemma A.1. Let M be an orthogonal (F,P)-martingale measure with intensity µM . Then, for
any F-stopping times σ, τ : Ω → [0, T ] with σ ≤ τ , A ∈ B(E), and any bounded Fσ-measurable
h : Ω→ R, one has, a.s.,∫

(0,T ]×E
h1(σ,τ ](s)1A(e)M(ds, de) = h[M(τ,A)−M(σ,A)].

Lemma A.2. Let M be an orthogonal (F,P)-martingale measure with intensity µM (ds, de) =
µs(de)ds for some transition kernel {(ω, s,A) 7→ µs(ω,A), (ω, s) ∈ Ω × [0, T ], A ∈ B(E)}. For
an F-stopping time τ : Ω→ [0, T ], we define Fτ = (Fτ

t )t∈[0,T ] with Fτ
t := F(τ+t)∧T and

Mτ (t, A) := M((τ + t) ∧ T,A)−M(τ,A), (t, A) ∈ [0, T ]× B(E).

Then, Mτ is an orthogonal (Fτ ,P)-martingale measure with (Fτ -predictable) intensity µMτ (ds, de) =
1(0, T−τ ](s)µτ+s(de)ds. Moreover, for g : Ω×[0, T ]×E → R with {(ω, s, e) 7→ 1(τ(ω), T ](s)g(ω, s, e)} ∈
L2
loc(F, µM ), one has {(ω, s, e) 7→ 1(0, T−τ(ω)](s)g(ω, τ(ω) + s, e)} ∈ L2

loc(Fτ , µMτ ) and, a.s.,∫
(0,T ]×E

g(s, e)1(τ, T ](s)M(ds,de) =

∫
(0,T ]×E

g(τ + s, e)1(0, T−τ ](s)Mτ (ds, de),

where the stochastic integrals in the left-hand side and the right-hand side are constructed in
relation to F and Fτ , respectively.
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A.2. SDEs driven by orthogonal martingale measures. Let {M (1), . . . ,M (ℓ)} be a col-

lection of (càdlàg) (F,P)-martingale measures on [0, T ] × B(E). Assume that each M (j) is an

orthogonal martingale measure with (random) intensity measure µ(j) satisfying

µ(j)(ω,ds, de) = µ(j)
s (ω,de)ds P-a.s. ω ∈ Ω

for some transition kernel {(ω, s,A) 7→ µ
(j)
s (ω,A), (ω, s) ∈ Ω× [0, T ], A ∈ B(E)}, j = 1, . . . , ℓ.

Let β : Ω×[0, T ]×Rm → Rm be PF⊗B(Rm)/B(Rm)-measurable, α : Ω×[0, T ]×Rm×E → Rm×ℓ

be PF ⊗ B(Rm)⊗ B(E)/B(Rm×ℓ)-measurable and consider the following m-dimensional SDE

Yt = Y0 +

∫ t

0
β(s, Ys−)ds+

∫
(0,t]×E

α(s, Ys−, e)M(ds, de), t ∈ [0, T ], (A.1)

for some given F0-measurable Rm-valued random variable Y0, and for M := (M (1), . . . ,M (ℓ))T.

Proposition A.3. Assume that there exist constants Kβ,Kα ≥ 0 not depending on (ω, s, y1, y2)
such that, for P-a.s. ω ∈ Ω and for all s ∈ [0, T ], y1, y2 ∈ Rm,

|β(ω, s, y1)− β(ω, s, y2)| ≤ Kβ|y1 − y2|,

4ℓ

m∑
i=1

ℓ∑
j=1

∫
E
|α(i,j)(ω, s, y1, e)− α(i,j)(ω, s, y2, e)|2 µ(j)

s (ω,de) ≤ K2
α|y1 − y2|2,

and that

K2
0 := E

[
T

∫ T

0
|β(s, 0)|2ds+ 4ℓ

m∑
i=1

ℓ∑
j=1

∫ T

0

∫
E
|α(i,j)(s, 0, e)|2 µ(j)

s (de)ds

]
<∞.

Then, for any F0-measurable initial condition Y0, the SDE (A.1) has a unique (up to an indis-
tinguishability) strong solution Y .

Proof. See [2]. □

Remark A.4. The proof of Proposition A.3 reveals that, if in addition Y0 ∈ L2(P) then the
strong solution of (A.1) satisfies

E
[

sup
0≤t≤T

|Yt|2
]
≤ K(1 + E[|Y0|2])

for some constant K ≥ 0 depending only on Kα,Kβ,K0, T .

References

1. Bender, C. andThuan, N.T. (2023). Entropy-regularized mean-variance portfolio optimization with jumps.
arXiv:2312.13409, preprint.

2. Bender, C. and Thuan, N.T. (2024). Supplement to “Continuous time reinforcement learning: A random
measure approach”.

3. Billingsley, P. (1999). Convergence of probability measures, 2nd ed. John Wiley & Sons, Inc.
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