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Abstract

This document contains supplementary materials for the main article [1]. All notations
used here are in accordance with that in [1].

1 SDEs driven by orthogonal martingale measures

1.1 Martingale measures and integration

We briefly recall the notion of martingale measure initiated by Walsh [8]. We consider here the
finite time interval [0, T ] but note that the discussion below can be readily extended for [0,∞).
Let (E, dE) be a complete and separable metric space equipped with its Borel σ-field B(E). A
mapping M : Ω× [0, T ]× B(E) → R is called an (F,P)-martingale measure on [0, T ]× B(E) if:

1. For A ∈ B(E), (M(t, A))t∈[0,T ] is an L2(P)-martingale adapted with F and M(0, A) = 0;

2. For t ∈ [0, T ] and disjoint A,B ∈ B(E), one has M(t, A ∪B) = M(t, A) +M(t, B) a.s.;

3. There exists a non-decreasing sequence (En)n∈N ⊆ B(E) with ∪n∈NEn = E such that

(a) For any n ∈ N, supA∈B(En) ∥M(T,A)∥L2(P) < ∞;

(b) For any n ∈ N, one has ∥M(T,Ak)∥L2(P) → 0 for all decreasing sequence (Ak)k∈N ⊆
B(En) with ∩k∈NAk = ∅.

An (F,P)-martingale measure M is said to be continuous if [0, T ] ∋ t 7→ M(t, A) is continuous
for all A ∈ B(E). Note that, due to the usual conditions, we always choose the càdlàg version
of the martingale M(·, A) for any A ∈ B(E).

An (F,P)-martingale measure M is orthogonal if M(·, A)M(·, B) is an (F,P)-martingale for
any disjoint A,B ∈ B(E). It is indicated by Walsh [8] (see also [5, Theorem I-4]) that if an
(F,P)-martingale measureM is orthogonal, then there is a random positive finite measure µM on
B([0, T ]×E), which is F-predictable (i.e. (µM ((0, t]×A))t∈[0,T ] is F-predictable for all A ∈ B(E)),
such that

µM ((0, t]×A) = ⟨M(·, A)⟩t P-a.s., ∀(t, A) ∈ [0, T ]× B(E).

The measure µM is then called the intensity measure ofM . Moreover, for t ∈ [0, T ], A,B ∈ B(E),

⟨M(·, A),M(·, B)⟩t = ⟨M(·, A ∩B)⟩t = µM ((0, t]× (A ∩B)) P-a.s.

The stochastic integrals driven by an orthogonal martingale measure M can be constructed via
the Itô’s approach (see [5, 8]) as follows. Let L2(F, µM ) be the collection of all F-predictable H
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(i.e., H is PF ⊗ B(E)/B(R)-measurable) with E
[ ∫ T

0

∫
E H(t, x)2µM (dt,dx)

]
< ∞. For a simple

function H(ω, t, x) =
∑n

i=1 hi−1(ω)1(ti−1,ti](t)1Ai(x) where Ai ∈ B(E), 0 ≤ t0 < t1 < · · · < tn ≤
T , hi−1 is bounded and Fti−1-measurable, n ∈ N, we define

H • M(t, A) :=

n∑
i=1

hi−1[M(ti ∧ t, A ∩Ai)−M(ti−1 ∧ t, A ∩Ai)], (t, A) ∈ [0, T ]× B(E).

Then, it is clear that H • M is an (F,P)-martingale measure and satisfies the isometry

E[|H • M(t, A)|2] = E
[ ∫ T

0

∫
A
H(t, x)2µM (dt,dx)

]
. (1.1)

As the family of simple functions is dense in L2(F, µM ), one can extend H • M for H ∈ L2(F, µM )
as usual to obtain a martingale measure which is also orthogonal with intensity µH • M (dt,dx) =
H(t, x)2µM (dt,dx), see [5, Theorem I-6]. Moreover, (1.1) then also holds for H ∈ L2(F, µM ). In
the sequel, we apply the integral notation∫

(0,t]×E
H(s, x)M(ds, dx) := H • M(t, E), t ∈ [0, T ].

Assume that the intensity µM of an orthogonal martingale measure M satisfies µM ({t} ×
E) = 0 for all t ∈ [0, T ] a.s. Then, by a localization argument, one can extend the stochastic
integrals driven by M for H ∈ L2

loc(F, µM ), where L2
loc(F, µM ) consists of all F-predictable H

with
∫ T
0

∫
E H(t, x)2µM (dt,dx) < ∞ a.s. (see, e.g., [6, Chapter 13] for the case of continuous

M). Namely, we let (τn)n be the localizing sequence given by τ0 := 0 and τn := inf
{
t > τn−1 :∫ t

0

∫
E H(s, x)2µM (ds, dx) > n

}
∧ T , which are non-decreasing F-stopping times and eventually

constant T a.s., and define∫
(0,T ]×E

H(t, x)M(dt,dx) := lim
n→∞

∫
(0,T ]×E

H(t, x)1(0,τn](t)M(dt,dx),

where the limit is taken in probability. One notes that the limit does not depend on the choice
of the localizing sequence (τn)n.

Lemma 1.1. Let M be an orthogonal (F,P)-martingale measure with intensity µM . Then, for
any F-stopping times σ, τ : Ω → [0, T ] with σ ≤ τ , A ∈ B(E), and any bounded Fσ-measurable
h : Ω → R, one has, a.s.,∫

(0,T ]×E
h1(σ,τ ](s)1A(e)M(ds, de) = h[M(τ,A)−M(σ,A)].

Proof. It suffices to prove the assertion when τ = T . We note that the stochastic integral above
is defined in L2(P) as the integrand is F-predictable and bounded which obviously belongs to
L2(F, µM ). Let (σn)n∈N be a decreasing sequence of F-stopping times taking finitely many values
in [0, T ] such that σn → σ when n → ∞. Assume σn(Ω) = {sn1 , . . . , snkn} ⊂ [0, T ] with snj−1 < snj .

Since h1(σn,T ]1A → h1(σ,T ]1A in L2(F, µM ), we only need to show the assertion for σn in place
of σ. Indeed, one has, a.s.,∫

(0,T ]×E
h1(σn,T ](s)1A(e)M(ds, de) =

kn∑
j=1

∫
(0,T ]×E

h1{σn=snj }1(snj ,T ](s)1A(e)M(ds, de)

=

kn∑
j=1

h1{σn=snj }[M(T,A)−M(snj , A)]

= h[M(T,A)−M(σn, A)]

where we note that h1{σn=snj } is Fsnj
-measurable and bounded.
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Lemma 1.2. Let M be an orthogonal (F,P)-martingale measure with intensity µM (ds, de) =
µs(de)ds for some transition kernel {(ω, s,A) 7→ µs(ω,A), (ω, s) ∈ Ω × [0, T ], A ∈ B(E)}. For
an F-stopping time τ : Ω → [0, T ], we define Fτ = (Fτ

t )t∈[0,T ] with Fτ
t := F(τ+t)∧T and

Mτ (t, A) := M((τ + t) ∧ T,A)−M(τ,A), (t, A) ∈ [0, T ]× B(E).

Then, Mτ is an orthogonal (Fτ ,P)-martingale measure with (Fτ -predictable) intensity µMτ (ds, de) =
1(0, T−τ ](s)µτ+s(de)ds. Moreover, for g : Ω×[0, T ]×E → R with {(ω, s, e) 7→ 1(τ(ω), T ](s)g(ω, s, e)} ∈
L2
loc(F, µM ), one has {(ω, s, e) 7→ 1(0, T−τ(ω)](s)g(ω, τ(ω) + s, e)} ∈ L2

loc(Fτ , µMτ ) and, a.s.,∫
(0,T ]×E

g(s, e)1(τ, T ](s)M(ds, de) =

∫
(0,T ]×E

g(τ + s, e)1(0, T−τ ](s)Mτ (ds, de), (1.2)

where the stochastic integrals in the left-hand side and the right-hand side are constructed in
relation to F and Fτ , respectively.

Proof. It is clear that Fτ satisfies the usual conditions. According to the optional stopping
theorem, one can readily show that Mτ is an orthogonal (Fτ ,P)-martingale measure with (Fτ -
predictable) intensity

µMτ ((0, t]×A) =
〈
Mτ (·, A)

〉
t
=

〈
M(·, A)

〉
(τ+t)∧T −

〈
M(·, A)

〉
τ

=

∫
(0,T ]×A

1(τ, (τ+t)∧T ](s)µM (ds, de) =

∫
(0,t]×A

1(0, T−τ ](s)µτ+s(de)ds

where the last equality is due to ((τ + t) ∧ T )− τ = (T − τ) ∧ t. In other words,

µMτ (ds, de) = 1(0, T−τ ](s)µτ+s(de)ds.

For the “Moreover” part, we note that 1(0,T−τ ]gτ is Fτ -predictable, where gτ (ω, s, e) := g(ω, τ(ω)+
s, e). It readily follows from a change of variables that∫ T

0

∫
E
1(τ, T ](s)|g(s, e)|2µs(de)ds =

∫ T

0

∫
E
1(0, T−τ ](s)|g(τ + s, e)|2µτ+s(de)ds,

which yields 1(0, T−τ ]gτ ∈ L2
loc(Fτ , µMτ ). For (1.2), let us first consider g(ω, s, e) = ha(ω)1(a,b](s)1A(e)

for any 0 ≤ a < b ≤ T , A ∈ B(E), and any bounded and Fa-measurable ha. Then, Lemma 1.1
implies that, a.s.,

LHS(1.2) =

∫
(0,T ]×E

ha1(τ∨a, τ∨b](s)1A(e)M(ds, de) = ha[M(τ ∨ b, A)−M(τ ∨ a,A)].

Remark that (a− τ) ∨ 0 is an Fτ -stopping time and ha is Fτ
(a−τ)∨0-measurable as for any Borel

set B and any r ∈ [0, T ],

{ha ∈ B} ∩ {(a− τ) ∨ 0 ≤ r} = ({ha ∈ B} ∩ {a ≤ τ})︸ ︷︷ ︸
∈Fa∧τ⊆Fτ

r

∪ ({ha ∈ B} ∩ {τ < a ≤ (τ + r) ∧ T})︸ ︷︷ ︸
∈Fτ

r

.

Since (a− τ, b− τ ] ∩ (0, T − τ ] = ((a− τ) ∨ 0, (b− τ) ∨ 0], Lemma 1.1 implies that, a.s.,

RHS(1.2) =

∫
(0,T ]×E

ha1((a−τ)∨0, (b−τ)∨0](s)1A(e)Mτ (ds, de)

= ha[Mτ ((b− τ) ∨ 0, A)−Mτ ((a− τ) ∨ 0, A)]

= ha[M(τ + (b− τ) ∨ 0, A)−M(τ + (a− τ) ∨ 0, A)]

= ha[M(τ ∨ b, A)−M(τ ∨ a,A)] = LHS(1.2).

By the linearity, (1.2) holds for all linear combinations of such functions g. Due to the denseness
we obtain (1.2) for g ∈ L2(F, µM ), and finally, by a localizing argument we infer that (1.2) holds
for g ∈ L2

loc(F, µM ).
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1.2 SDEs driven by orthogonal martingale measures

Let {M (1), . . . ,M (ℓ)} be a collection of (càdlàg) (F,P)-martingale measures on [0, T ] × B(E).
Assume that each M (j) is an orthogonal martingale measure with (random) intensity measure
µ(j) which satisfies

µ(j)(ω,ds, de) = µ(j)
s (ω,de)ds P-a.s. ω ∈ Ω

for some transition kernel {(ω, s,A) 7→ µ
(j)
s (ω,A), (ω, s) ∈ Ω× [0, T ], A ∈ B(E)}, j = 1, . . . , ℓ.

Let β : Ω× [0, T ]×Rm → Rm be PF⊗B(Rm)/B(Rm)-measurable, α : Ω× [0, T ]×Rm×E →
Rm×ℓ be PF ⊗ B(Rm) ⊗ B(E)/B(Rm×ℓ)-measurable and consider the following m-dimensional
SDE

Yt = η +

∫ t

0
β(s, Ys−)ds+

∫
(0,t]×E

α(s, Ys−, e)M(ds, de), t ∈ [0, T ], (1.3)

for some F0-measurable Rm-valued random variable η, and for M := (M (1), . . . ,M (ℓ))T.

Definition 1.3. A process Y : Ω× [0, T ] → Rm is a strong solution to the SDE (1.3) with initial
condition η if:

(i) Y0 = η a.s.;

(ii) Y = (Yt)t∈[0,T ] is a càdlàg and F-adapted process;

(iii)
∫ T
0 |β(s, Ys−)|ds+

∑m
i=1

∑ℓ
j=1

∫
(0,T ]×E |α(i,j)(s, Ys−, e)|2 µ(j)

s (de)ds < ∞ a.s.;

(iv) The SDE (1.3) is satisfied for all t ∈ [0, T ] a.s.

Proposition 1.4. Assume that there exist constants Kβ,Kα ≥ 0 not depending on (ω, s, y1, y2)
such that, for P-a.s. ω ∈ Ω and for all s ∈ [0, T ], y1, y2 ∈ Rm,

|β(ω, s, y1)− β(ω, s, y2)| ≤ Kβ|y1 − y2|,

4ℓ
m∑
i=1

ℓ∑
j=1

∫
E
|α(i,j)(ω, s, y1, e)− α(i,j)(ω, s, y2, e)|2 µ(j)

s (ω,de) ≤ K2
α|y1 − y2|2,

(1.4)

and that

K2
0 := E

[
T

∫ T

0
|β(s, 0)|2ds+ 4ℓ

m∑
i=1

ℓ∑
j=1

∫ T

0

∫
E
|α(i,j)(s, 0, e)|2 µ(j)

s (de)ds

]
< ∞. (1.5)

Then, for any F0-measurable initial condition η, the SDE (1.3) has a unique (up to an indis-
tinguishability) strong solution Y .

Proof. Existence. Let us fix an F0-measurable η.
Case 1: η ∈ L2(P). We use the usual Picard iterations. Let Y 0 = (Y 0

t )t∈[0,T ] with Y 0
t := η

for all t ∈ [0, T ], and inductively define the sequence of process (Y n)n∈N via

Y n
t := η +

∫ t

0
β(s, Y n−1

s− )ds+

∫
(0,t]×E

α(s, Y n−1
s− , e)M(ds, de), t ∈ [0, T ].

To show that Y n is well-defined, we consider

Θt :=

∫ t

0
β(s, 0)ds+

∫
(0,t]×E

α(s, 0, e)M(ds, de), t ∈ [0, T ].
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Combining Doob’s maximal inequality, the inequality (x1 + · · · + xℓ)
2 ≤ ℓ(x21 + · · · + x2ℓ ), Itô’s

isometry with using (1.5) we infer that Θ is an adapted and Rm-valued càdlàg process with

E
[

sup
0≤t≤T

|Θt|2
]
≤ 2E

[
T

∫ T

0
|β(s, 0)|2ds+ 4ℓ

m∑
i=1

ℓ∑
j=1

∫ T

0

∫
E
|α(i,j)(s, 0, e)|2 µ(j)

s (de)ds

]
= 2K2

0 .

It then follows from the square integrability of η and Fubini’s theorem that

E
[

sup
0≤t≤T

|Y 1
t − Y 0

t |2
]
≤ 2E

[
sup

0≤t≤T
|Y 1

t − Y 0
t −Θt|2

]
+ 2E

[
sup

0≤t≤T
|Θt|2

]
≤ 4T 2K2

β E[|η|2] + 4TK2
α E[|η|2] + 4K2

0

≤ K2
(1i)(1 + E[|η|2]) (1i)

for

K2
(1i) := 4max{K2

0 , T
2K2

β + TK2
α}.

We deduce by induction using the same arguments as above that Y n is well-defined and square
integrable for all n ∈ N. For any n ≥ 1 and t ∈ [0, T ],

1

2
E
[

sup
0≤s≤t

|Y n+1
s − Y n

s |2
]
≤ E

[
sup
0≤s≤t

∣∣∣∣ ∫ s

0
[β(r, Y n

r−)− β(r, Y n−1
r− )]dr

∣∣∣∣2]
+ E

[
sup
0≤s≤t

∣∣∣∣ ∫
(0,s]×E

[α(r, Y n
r−, e)− α(r, Y n−1

r− , e)]M(dr, de)

∣∣∣∣2]
≤ tE

[ ∫ t

0
|β(s, Y n

s )− β(s, Y n−1
s )|2ds

]
+ 4ℓ

m∑
i=1

ℓ∑
j=1

E
[ ∫ t

0

∫
E
|α(i,j)(s, Y n

s , e)− α(i,j)(s, Y n−1
s , e)|2 µ(j)

s (de)ds

]

≤ (tK2
β +K2

α)E
[ ∫ t

0
|Y n

s − Y n−1
s |2ds

]
, (1.6)

where we use Doob’s maximal inequality and Itô’s isometry in the second inequality and use
Fubini’s theorem, together with (1.4), in the third inequality. Then, for

K2
(2i) := 2(TK2

β +K2
α), (2i)

and for any t ∈ [0, T ], n ≥ 1, one has

E
[

sup
0≤s≤t

|Y n+1
s − Y n

s |2
]
≤ K2

(2i)

∫ t

0
E
[

sup
0≤r≤s

|Y n
r − Y n−1

r |2
]
ds.

Iterating the estimate above, we get for any n ∈ N,

E
[

sup
0≤s≤T

|Y n+1
s − Y n

s |2
]
≤ K2n

(2i)

Tn

n!
E
[

sup
0≤r≤T

|Y 1
r − Y 0

r |2
]
. (1.7)

Combining Markov’s inequality with (1.7) yields

∞∑
n=0

P
({

sup
0≤s≤T

|Y n+1
s − Y n

s | ≥ 1

2n

})
≤ E

[
sup

0≤r≤T
|Y 1

r − Y 0
r |2

] ∞∑
n=0

(
4TK2

(2i)

)n
n!

< ∞.
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By the Borel–Cantelli lemma, there is an event Ω0 with probability one such that for any ω ∈ Ω0,
there exists nω ∈ N such that sup0≤s≤T |Y n+1

s (ω)−Y n
s (ω)| < 2−n for all n ≥ nω. We then deduce

that Y n(ω) converges uniformly on [0, T ] for ω ∈ Ω0. For all t ∈ [0, T ], define

Yt(ω) :=

{
limn→∞ Y n

t (ω) if ω ∈ Ω0

0 if ω /∈ Ω0.

By the uniform convergence and the completeness of the underlying filtration, Y has càdlàg
paths and is adapted. Now, by the triangle inequality, it follows from (1.7) that∥∥∥∥ sup

0≤s≤T
|Ys − Y 0

s |
∥∥∥∥
L2(P)

=

∥∥∥∥ lim
n→∞

sup
0≤s≤T

|Y n
s − Y 0

s |
∥∥∥∥
L2(P)

≤
∞∑
j=0

Kj
(2i)

√
T j

j!

∥∥∥∥ sup
0≤r≤T

|Y 1
r − Y 0

r |
∥∥∥∥
L2(P)

≤
√
2e

2K2
(2i)

T
K(1i)

√
1 + E[|η|2],

which then yields

E
[

sup
0≤s≤T

|Ys|2
]
≤ 2E[|η|2] + 4e

2K2
(2i)

T
K2

(1i)(1 + E[|η|2]) ≤ K2
(3i)(1 + E[|η|2]), (1.8)

where

K2
(3i) := 2 + 4e

2K2
(2i)

T
K2

(1i). (3i)

By (1.4), (1.5) and (1.8), the following process Z is well-defined in L2(P),

Zt := Y0 +

∫ t

0
β(s, Ys−)ds+

∫
(0,t]×E

α(s, Ys−, e)M(ds, de), t ∈ [0, T ].

We now show that Z = Y . Indeed, proceeding as in (1.6) with Z in place of Y n, we get∥∥∥∥ sup
0≤s≤T

|Zs − Y n+1
s |

∥∥∥∥
L2(P)

≤
√
TK(2i)

∥∥∥∥ sup
0≤s≤T

|Ys − Y n
s |

∥∥∥∥
L2(P)

≤
√
TK(2i)

∞∑
j=n

Kj
(2i)

√
T j

j!

∥∥∥∥ sup
0≤r≤T

|Y 1
r − Y 0

r |
∥∥∥∥
L2(P)

n→∞−−−→ 0,

which completes the proof for the existence when the initial condition is square integrable.

Case 2: η /∈ L2(P). For k ∈ N, following the construction in Case 1, we let Y (k) =
(Yt(k))t∈[0,T ] be the strong solution of (1.3) with initial condition ηk := η1{|η|≤k} ∈ L2(P). It
follows from (1.8) that E

[
sup0≤s≤T |Ys(k)|2

]
< ∞. We prove that

Y (k)1{|η|≤l} = Y (l)1{|η|≤l}, ∀k ≥ l ≥ 1 (1.9)

by showing

E
[

sup
0≤t≤T

|Yt(k)1{|η|≤l} − Yt(l)1{|η|≤l}|2
]
= 0. (1.10)
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Indeed, since 1{|η|≤l} is bounded and F0-measurable, we may move it inside the stochastic
integrals to get, a.s.,

Yt(k)1{|η|≤l} = ηl +

∫ t

0
1{|η|≤l}β(s, Ys−(k))ds+

∫
(0,t]×E

1{|η|≤l}α(s, Ys−(k), e)M(ds, de),

and it in particular holds when k is replaced by l. Noting that

1{|η|≤l}F (x)− 1{|η|≤l}F (y) = F (x1{|η|≤l})− F (y1{|η|≤l}),

we then derive from the same lines as in (1.6) that, for any t ∈ [0, T ],

E
[

sup
0≤s≤t

|Ys(k)1{|η|≤l} − Ys(l)1{|η|≤l}|2
]
≤ K2

(2i)

∫ t

0
E
[

sup
0≤r≤s

|Yr(k)1{|η|≤l} − Yr(l)1{|η|≤l}|2
]
ds

which then yields (1.10) with the aid of Gronwall’s lemma. Note that Y (·) is uniformly Cauchy
in probability as

P
({

sup
0≤t≤T

|Yt(k)− Yt(l)| > ε

})
≤ P({|η| > l}) k,l→∞−−−−→ 0, ∀ε > 0,

which then implies the existence of Y such that Y (k)
k→∞−−−→ Y uniformly on [0, T ] in probability.

Consequently, Y is adapted and càdlàg, which ensures that∫ T

0
|β(s,Ys−)|ds+

m∑
i=1

ℓ∑
j=1

∫ T

0

∫
E
|α(i,j)(s,Ys−, e)|2 µ(j)

s (de)ds < ∞ P-a.s.

under (1.4), (1.5) and the càdlàg property of Y. Now, letting k → ∞ in (1.9) yields Y1{|η|≤l} =
Y (l)1{|η|≤l} for any l ∈ N. We define

Zt := η +

∫ t

0
β(s,Ys−)ds+

∫
(0,t]×E

α(s,Ys−, e)M(ds, de), t ∈ [0, T ]

so that, a.s,

Zt1{|η|≤l} = ηl +

∫ t

0
1{|η|≤l}β(s,Ys−)ds+

∫
(0,t]×E

1{|η|≤l}α(s,Ys−, e)M(ds, de), t ∈ [0, T ].

Then,

E
[

sup
0≤t≤T

|Zt1{|η|≤l} − Yt(l)1{|η|≤l}|2
]
≤ TK2

(2i)E
[

sup
0≤s≤T

|Ys1{|η|≤l} − Ys(l)1{|η|≤l}|2
]
= 0

which shows that Z1{|η|≤l} = Y (l)1{|η|≤l} = Y1{|η|≤l} for any l ∈ N. Letting l → ∞ we conclude
that Z = Y, and thus, Y solves (1.3).

Uniqueness. Assume that Y and Ỹ solve (1.3) with an initial condition η. Define T0 := 0 and

Tn := T ∧ inf

{
t > Tn−1 :

∫ t

0
|β(s,Ys)|2ds+ 4ℓ

m∑
i=1

ℓ∑
j=1

∫ t

0

∫
E
|α(i,j)(s,Ys, e)|2µ(j)

s (de)ds > n

}

∧ inf

{
t > Tn−1 :

∫ t

0
|β(s, Ỹs)|2ds+ 4ℓ

m∑
i=1

ℓ∑
j=1

∫ t

0

∫
E
|α(i,j)(s, Ỹs, e)|2µ(j)

s (de)ds > n

}
.

Then, (Tn)n is a sequence of non-decreasing stopping times which are eventually constant T a.s.
Note that, for any n ∈ N, one has E

[
sup0≤t≤T |Yt∧Tn − η|2

]
< ∞, as well as for Ỹ. Using the

same arguments as for (1.6), we infer that E
[
sup0≤t≤T |Yt∧Tn − Ỹt∧Tn |2

]
= 0, and consequently,

Y·∧Tn = Ỹ·∧Tn for all n. Letting n → ∞ and using the càdlàg property we derive Y = Ỹ.
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Remark 1.5. The proof of Proposition 1.4 reveals that, if in addition η ∈ L2(P) then the strong
solution of (1.3) satisfies

E
[

sup
0≤t≤T

|Yt|2
]
≤ K(1 + E[|η|2])

for some constant K ≥ 0 depending only on Kα,Kβ,K0, T .

2 Miscellaneous

2.1 Proof of [1, Lemma 6.1]

The assumption
∫
[0,1]d η

(k)
s (u)η

(k′)
s (u)du = 1{k=k′} for P⊗λ[0,T ]-a.e. (ω, s) ∈ Ω×[0, T ] particularly

implies that E
[ ∫ T

0

∫
[0,1]d |η

(k)
s (u)|2duds

]
= T . Hence, for any (k, l), (η(k) • MB(l)) is a square

integrable (F,P)-martingale null at 0. Since MB(l) is a continuous martingale measure (see [5,
Section II(3)]), the process (η(k) • MB(l)) is also continuous as indicated in [5, Propisition I-6(1)].
As MB(l) and MB(l′) are independent for l ̸= l′ by assumption, it is straightforward to prove

that the product (η(k) • MB(l))(η(k
′) • MB(l′)) is also a continuous (F,P)-martingale, which thus

implies that ⟨(η(k) • MB(l)), (η(k
′) • MB(l′))⟩ = 0. We compute the quadratic covariation using [5,

Proposition I-6(2)], a.s.,〈
(η(k) • MB(l)), (η(k

′)
• MB(l′))

〉
t
= 1{l=l′}

∫ t

0

∫
[0,1]d

η(k)s (u)η(k
′)

s (u)duds = 1{(k,l)=(k′,l′)}t.

Thus, the desired conclusion follows from the Lévy characterization for Brownian motion.

2.2 Proof of [1, Proposition 6.5]

(1) Recall from [1, Subsection 6.2] that the operators Lh and Lh coincide, if h executes h. Then
applying Itô’s formula, we obtain as in the proof of [1, Proposition 5.4] that

J(t,Xh
t )−

∫ t

0

(
∂J

∂t
(s,Xh

s ) + (LhJ(s, ·))(s,Xh
s )

)
ds

is a local martingale. Inserting the partial differential equation, we observe that

J(t,Xh
t ) + λ

∫ t

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

is a local martingale, and hence a martingale, by the boundedness assumptions on J and on the
entropy. Thus, a.s.,

J(t,Xh
t ) = E

[
J(T,Xh

T ) + λ

∫ T

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

∣∣∣∣Ft

]
− λ

∫ t

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

= E
[
g(Xh

T ) + λ

∫ T

t

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds

∣∣∣∣Ft

]
= J h

t ,

i.e., J is a value function of h.

(2) If J̃ is a value function of h, then (J̃(t,Xh
t ))t≥0 is a modification of J . Hence,

J̃(t,Xh
t ) + λ

∫ t

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds (2.1)
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inherits the martingale property of

J h
t + λ

∫ t

0

∫
R
ḣ(s,Xh

s , y) log ḣ(s,X
h
s , y)dyds.

Conversely, if the process in (2.1) is a martingale, then the last part of the proof of (1) can be
repeated with J̃ in place of J to conclude that J̃ is a value function of h.

2.3 Proof of [1, Lemma 7.1]

Recall the representation of X in [1, Theorem 5.1]. For l = 1, . . . , p, [5, Section II(2)] asserts

that
∫ ·
0

∫
[0,1]d f

(k)
l (s, u)MB(l)(ds, du) is a continuous square integrable martingale with quadratic

variation
∫ ·
0

∫
[0,1]d |f

(k)
l (s, u)|2duds. The boundedness of fp+1, fp+2 and [1, Eq. (7.1)] imply∫ T

0

∫
Rq
0×[0,1]d

[|fp+1(s, z, u)|2|z|21{0<|z|≤R} + |fp+2(s, z, u)|1{|z|>R}]µJ(ds, dz,du) < ∞,

which shows that the process driven by M̃J is a square integrable martingale, and that against
MJ is an a.s. finite variation process. Hence, X is an Rm-valued semimartingale.

According to [5, Proposition I-6], the quadratic covariation matrix of the continuous mar-
tingale part of X is〈

p∑
l=1

∫ ·

0

∫
[0,1]d

f
(k)
l (s, u)MB(l)(ds, du),

p∑
l′=1

∫ ·

0

∫
[0,1]d

f
(k′)
l′ (s, u)MB(l′)(ds, du)

〉

=

p∑
l=1

∫ ·

0

∫
[0,1]d

(f
(k)
l f

(k′)
l )(s, u)duds = CX ,(k,k′).

For the jump part, it follows from [7, Ch.3, Theorem 1] that

∆Xr =

∫
{r}×Rq

0×[0,1]d
[fp+1(s, z, u)|z|1{0<|z|≤R} + fp+2(s, z, u)1{|z|>R}]MJ(ds, dz,du), r ∈ [0, T ] P-a.s.

Let A ∈ B(Rm
0 ) with A ∩ Bm(κ) = ∅ for some κ > 0 where Bm(κ) = {y ∈ Rm : |y| < κ}. Since

fp+1 is bounded, there exists ε > 0 sufficiently small such that{
(r, z, u) : fp+1(r, z, u)|z|1{0<|z|≤R} + fp+2(r, z, u)1{|z|>R} ∈ A

}
=

{
(r, z, u) : fp+1(r, z, u)|z|1{ε<|z|≤R} + fp+2(r, z, u)1{|z|>R} ∈ A

}
.

We define the process (LZ , LU ) depending on ε via

(LZ
t , L

U
t ) :=

∫
(0,t]×{|z|>ε}×[0,1]d

(z, u)MJ(ds, dz, du), t ∈ [0, T ].

Let NX be the random jump measure of X . Then

NX ((s, t]×A) =
∑

s<r≤t

1{∆Xr∈A}

=
∑

s<r≤t

1{
fp+1(r,∆LZ

r ,∆LU
r )|∆LZ

r |1{ε<|∆LZ
r |≤R}+fp+2(r,∆LZ

r ,∆LU
r )1{|∆LZ

r |>R}∈A
}

=

∫ t

s

∫
Rq
0×[0,1]d

1A

(
fp+1(r, z, u)|z|1{ε<|z|≤R} + fp+2(r, z, u)1{|z|>R}

)
MJ(dr, dz,du)

=

∫ t

s

∫
{0<|z|≤R}×[0,1]d

1A(fp+1(r, z, u)|z|)MJ(dr, dz,du)

+

∫ t

s

∫
{|z|>R}×[0,1]d

1A(fp+2(r, z, u))MJ(dr, dz, du).
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As µJ(dr, dz,du) = νr(dz)dudr is the predictable compensator of MJ(dr, dz, du), it implies that

νX ((s, t]×A) =

∫ t

s

∫
{0<|z|≤R}×[0,1]d

1A(fp+1(r, z, u)|z|)νr(dz)dudr

+

∫ t

s

∫
{|z|>R}×[0,1]d

1A(fp+2(r, z, u))νr(dz)dudr.

This result can be extended to A ∈ B(Rm
0 ) by using the approximation sequence (A∩Bm( 1n))n∈N.

For the predictable finite variation part bX , one has, a.s.,

Yt := Xt −
p∑

l=1

∫ t

0

∫
[0,1]d

fl(s, u)MB(l)(ds, du)−
∫ t

0

∫
Rm
0

(y − h(y))NX (ds, dy)

=

∫ t

0

∫
[0,1]d

f0(s, u)duds+

∫ t

0

∫
{0<|z|≤R}×[0,1]d

fp+1(s, z, u)|z|M̃J(ds, dz,du)

+

∫ t

0

∫
{|z|>R}×[0,1]d

fp+2(s, z, u)MJ(ds, dz, du)

−
∫ t

0

∫
{0<|z|≤R}×[0,1]d

[fp+1(s, z, u)|z| − h(fp+1(s, z, u)|z|)]MJ(ds, dz, du)

−
∫ t

0

∫
{|z|>R}×[0,1]d

[fp+2(s, z, u)− h(fp+2(s, z, u))]MJ(ds, dz, du)

=

∫ t

0

∫
[0,1]d

f0(s, u)duds+

∫ t

0

∫
{|z|>R}×[0,1]d

h(fp+2(s, z, u))νs(dz)duds

−
∫ t

0

∫
{0<|z|≤R}×[0,1]d

[fp+1(s, z, u)|z| − h(fp+1(s, z, u)|z|)]νs(dz)duds

+

∫ t

0

∫
{0<|z|≤R}×[0,1]d

fp+1(s, z, u)|z|M̃J(ds, dz,du)

+

∫ t

0

∫
{|z|>R}×[0,1]d

h(fp+2(s, z, u))M̃J(ds, dz,du)

−
∫ t

0

∫
{0<|z|≤R}×[0,1]d

[fp+1(s, z, u)|z| − h(fp+1(s, z, u)|z|)]M̃J(ds, dz,du),

where in the last equality we use the fact that
∫
FM̃J =

∫
FMJ −

∫
FµJ if F is predictable

and µJ -integrable, see [4, Proposition II.1.28]. By identifying the predictable finite variation
component of Y, we obtain the desired expression of bX .

2.4 Proof of [1, Lemma 8.1]

(1) This is straightforward.

(2) By a localizing procedure, we only need to show the desired relation under integrability

condition E
[ ∫ T

0 |Ys(ξΠs )|2ds
]
< ∞. Then, it is sufficient to prove the relation on (ti−1, ti] for any

FΠ-predictable Y with E
[ ∫ ti

ti−1
|Ys(ξΠti )|

2ds
]
< ∞. Assume Ys(u) =

∑k
j=1 hj−11(rj−1,rj ](s)1Aj (u)

for k ∈ N, ti−1 ≤ r0 < r1 < · · · < rk = ti, Aj ∈ B([0, 1]d), hj−1 is bounded and FΠ
rj−1

-measurable.

Then, by the definition of MΠ
B(l) , one has, a.s.,

∫
(ti−1,ti]×[0,1]d

Ys(u)M
Π
B(l)(ds, du) =

k∑
j=1

hj−1

∫ rj

rj−1

1Aj (ξ
Π
ti )dB

(l)
s =

∫ ti

ti−1

Ys(ξ
Π
ti )dB

(l)
s .
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The conclusion for Y ∈ L2(FΠ,MΠ
D) can be derived from a standard approximation argument

where one notes that the Itô isometry coincides for both integrals driven by MΠ
B(l) and B(l).

(3) By writing Y = max{Y, 0}−max{−Y, 0}, we may assume Y ≥ 0, and then the first rela-
tion follows from the argument in [1, proof of Proposition 4.3]. For the second relation, by a lo-

calizing argument, it suffices to show the desired relation under E
[ ∫ T

0

∫
Rq
0
|Ys(z, ξΠs )|2 νs(dz)ds

]
<

∞. This can be achieved in the usual way by first proving for (−n∨ Y ∧n)1{|z|>1/n} in place of
Y , and then taking the limit in L2(P) when n → ∞ with the aid of Itô’s isometry.

2.5 On the Poisson random measure MJ

Assume the Lévy process L as defined in [1, Proposition 4.3]. Let {Tn
j }n,j≥0 be the of jump

times of L given by

T 0
0 := 0, T 0

j := inf{t > T 0
j−1 : |∆Lt| > 1}, j ≥ 1,

Tn
0 := 0, Tn

j := inf{t > Tn
j−1 : 1/(n+ 1) < |∆Lt| ≤ 1/n}, j ≥ 1, n ≥ 1.

Let {ξnj }n,j≥0 be i.i.d. with uniform distribution on [0, 1]d. Assume that {ξnj }n,j≥0 is independent

of L. We define the Poisson random measure MJ on [0, T ]× Rq
0 × [0, 1]d by

MJ(ω,dt,dz, du) =
∞∑
n=0

∞∑
j=1

δ(Tn
j (ω),∆LTn

j
(ω)(ω),ξ

n
j (ω))

(dt,dz, du).

We note that, in general, there is no semimartingale which possesses MJ as the associated
random jump measure because

∫ T
0

∫
0<|z|2+|u|2≤1(|z|

2+|u|2)µJ(dt,dz,du) might be infinite, except

the case
∫ T
0

∫
Rq
0
νt(dz)dt < ∞ (i.e. L is of finite activities).

2.6 On the independence of (MB(1) , . . . ,MB(p)) and MJ

Assume that (MB(1) , . . . ,MB(p)) and MJ define on the same probability space, then{∫
(0,T ]×[0,1]d

gl(s, u)MB(l)(ds, du)

∣∣∣∣ gl : [0, T ]×[0, 1]d → R measurable and bounded, l = 1, . . . , p

}
is independent of{∫

(0,T ]×Rq
0×[0,1]d

h(s, z, u)MJ(ds, dz, du)

∣∣∣∣h : [0, T ]× Rq
0 × [0, 1]d → [0,∞) measurable

}
.

Indeed, it is sufficient to show that

G =

( p∑
l=1

∫ t

0

∫
[0,1]d

gl(s, u)MB(l)(ds, du)

)
t∈[0,T ]

is independent of

H =

(∫
(0,t]×{|z|>κ}×[0,1]d

h(s, z, u)MJ(ds, dz,du)

)
t∈[0,T ]

for all (non-random) measurable and bounded gl, h ≥ 0 and κ > 0. It is clear that H is of finite
variation and G is a continuous martingale (see [5, Section II(3)]), and both are processes with
independent increments. Observe that [G,H]t =

∑
0≤s≤t∆Gs∆Hs = 0 for t ∈ [0, T ] a.s. It then

follows from [3, Theorem 11.43] that G and H are independent.
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3 Weak convergence in the Skorokhod topology

3.1 Skorokhod spaces and weak convergence

Fix T ∈ (0,∞) and let DT (Rm) be the family of all càdlàg functions f : [0, T ] → Rm and ΛT

consists of all strictly increasing and continuous λ : [0, T ] → [0, T ] with λ(0) = 0, λ(T ) = T . We
equip DT (Rm) with the Skorokhod metric

dmT (x, y) := inf
λ∈ΛT

max

{
sup

0≤s<t≤T

∣∣∣∣ log λ(t)− λ(s)

t− s

∣∣∣∣, sup
0≤t≤T

|x(t)− y(λ(t))|
}
.

It is well-known that (DT (Rm), dmT ) is a complete and separable metric space (see [2, Section
14]), however, it is not a topological vector space. It is also convenient to work with the metric
d̃mT , which defines the same topology as dmT does, given by

d̃mT (x, y) := inf
λ∈ΛT

max

{
sup

0≤t≤T
|λ(t)− t|, sup

0≤t≤T
|x(t)− y(λ(t))|

}
.

However, (DT (Rm), d̃mT ) is not complete.
An Rm-valued càdlàg processX = (Xt)t∈[0,T ] can be regarded as an F/B(DT (Rm))-measurable

function X : Ω → DT (Rm) where B(DT (Rm)) is the Borel σ-algebra induced by the Sko-
rokhod metric dmT . A sequence of Rm-valued càdlàg processes (Xn)n∈N, where Xn is defined on
(Ωn,Fn,Pn), is said to be weakly convergent to a càdlàg process X defined on (Ω,F ,P) if

En[f(Xn)]
n→∞−−−→ E[f(X)], ∀f ∈ Cb(DT (Rm)),

where En and E are the expectation under Pn and P, respectively. We then write Xn DT−−→ X.

3.2 A limit theorem of Jacod–Shiryaev for triangular arrays

For the reader’s convenience, we recall (and adapt to our setting) a limit theorem establishing
the weak convergence of triangular arrays which we use to prove the main result in this article.

Let (Ω,F ,P) be a complete probability space and suppose that {Un
i ,Gn

i : i ≥ 0}, n ∈ N, are
adapted sequences of Rd-valued random variables. For each n ∈ N, we consider a change of time
σn : Ω× [0,∞) → [0,∞) with respect to (Gn

i )i≥0, i.e.,

(a) σn(·, 0) = 0;

(b) For any ω, σn(ω, ·) is increasing, right-continuous, with jumps equal to 1;

(c) For any t ≥ 0, σn(·, t) is a (Gn
i )i≥0-stopping time.

Theorem 3.1 ([4], Theorem VIII.2.29). Assume a sequence of d-dimensional semimartingales

(Xn)n∈N where Xn
t =

∑σn(t)
i=1 Un

i , t ≥ 0. Let X be a d-dimensional process with independent
increments and without fixed time of discontinuity, having characteristics (b, C, ν) in relation to

a truncation function h. Set C̃
(k,l)
t := C

(k,l)
t +

∫ t
0

∫
Rd(h

(k)h(l))(y)ν(ds, dy) as in [4, II.5.8]. If
there exists some dense subset D of [0,∞) such that, as n → ∞,

sup
0≤s≤t

∣∣∣∣ σn(s)∑
i=1

E[h(Un
i )|Gn

i−1]− bs

∣∣∣∣ P−→ 0 ∀t ≥ 0,

σn(t)∑
i=1

(
E[(h(k)h(l))(Un

i )|Gn
i−1]− E[h(k)(Un

i )|Gn
i−1]E[h(l)(Un

i )|Gn
i−1]

)
P−→ C̃

(k,l)
t ∀t ∈ D,

σn(t)∑
i=1

E[g(Un
i )|Gn

i−1]
P−→

∫ t

0

∫
Rd

g(y)ν(ds, dy) ∀t ∈ D, g ∈ C1(Rd),
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then Xn converges weakly to X in the Skorokhod topology on the space D∞(Rd) of càdlàg func-
tions F : [0,∞) → Rd. Here, C1(Rd) ⊂ C2(Rd) is a particular class of test functions vanishing
around zero and is introduced in [4, VII.2.7].

References

[1] Bender, C. and Thuan, N.T. (2024). Continuous time reinforcement learning: A random
measure approach. Preprint.

[2] Billingsley, P. (1999). Convergence of probability measures, 2nd ed. John Wiley & Sons,
Inc.

[3] He, S., Wang, J. and Yan, J. (1992). Semimartingale theory and stochastic calculus. Taylor
& Francis.

[4] Jacod, J. and Shiryaev, A. (2003). Limit theorems for stochastic processes, 2nd ed. Springer
Berlin, Heidelberg.
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