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Abstract

This document contains supplementary materials for the main article [1]. All notations used here
are in accordance with that in [1].

1 Integrability for solutions of SDEs with jumps

Although the following fact can be easily extended to a multidimensional setting, however, we formulate
it in the one-dimensional case for the sake of simplicity.

Lemma 1.1. Let § = (§)¢ejo, 1) be cadlag and adapted with H§|\§2([O ) = Elsupg<icr €2 < co. Assume
that dZy = ¢ydt + dKy, where K = (Ky)iepo,) s a cadlag Ly(P)-martingale satisfying d (K, K), = n7dt,

where n and ¢ are progressively measurable with supg, 17 + fOT ¢2dt < C a.s. for some (non-random,)
constant C' > 0. Then, for a Lipschitz function o: R — R, the SDE

t
X =& +/ 0(Xy-)dZ,, Xo=& =xz0€R, (1.1)
0
has a unique cadlag strong solution X = (Xi)icpo,1) satisfying Elsupo<,<r X2 < C" < oo for some

constant C" = C'([|¢|ls,((0,7), T, 0, C) > 0.

Proof. Due to [4, Theorem V.3.7], the SDE (1.1) has a unique cadlag and adapted solution X. For n > 1
we define 7, := inf{t > 0: |X;| > n} AT. Then 7, is a stopping time with [Xa,,)—| < n for t € [0,T].
It is known that, see, e.g., [4, Theorem I1.5.12], a.s.,

t t
L(oum ()0 (X )AE, + / Lo.m,) ()0 (X )udu
0

]

tATy
Xinr, = Einr, +/ o(Xy_)dZ, = &inr, +/
0 0
so that the triangle inequality, It0’s isometry, and Holder’s inequality yield

1 t t
3B < Bl 4 E| [ Lo @oCtu ] 42| [ Lo )oudu
0 0

t
< €lZ, o + CE[/O 1(o,rn](U)U(Xu)2dU]

IN

t
€12, 0,01, + 20T (0)% + 2C|a|%ipE[ / n(o,fn]m)Xﬁdu}

t
o+ 5E[/ ]l(oﬁn](u)XZdu}
0

lo(@)=o(y)|

. Since
ool - S

for o := ||£H§2([07T]) +2CT0o(0)?, B :=2C|o}};,, and |o|Lip == sup,,

Lo (w)Xo_ <n® wel0,T],
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it implies that
E[X2,, ] <3a+38Tn, Vtel0,T).

Moreover, as X has cadlag paths, we get for all ¢ € [0, 7] that

1 t t t
SE[X?,,] < ot BE [ [ tom (u)Xﬁdu} <o+ pE [ / Xﬁmdu} —a+p [ I Jdu
0 0 0
Applying Gronwall’s lemma yields E[X?, . ] < 3ae3 T for all ¢t € [0,T], n > 1. Since (7,)n>1 is eventually

constant T a.s., sending n — oo and using Fatou’s lemma we obtain

E[X7] < lminfE[X7,, | < 3ae®T, Vte[0,T).

n— oo

As a consequence, fo 0(X;—)dK; is an Ly(P)-martingale. Therefore, applying Doob’s maximal inequality
for the martingale part we get

T T T
IE[ sup Xf} < 1l€lI5, 0,77y +41E[/ a(Xt_)2nt2dt] +JEU J(Xt_)th/ ¢§dt} < o0,
0<t<T 0 0 0

which completes the proof. O

2 Explicit expression for the optimal wealth and Lagrange mul-
tiplier

We give in this part a closed-form representation of the optimal wealth X* and the respective Lagrange
multiplier @ when the condition “AZ # 1 on [0,T]” in [1, Proposition 4.12] fails to hold. Let us impose
the assumptions of [1, Theorem 4.10]. For Z given in that theorem, we write

~(Xi —@)dZ, = (X7 — 0)d(~Z,)
and follow [4, Exercise V.27] to define the sequence of stopping times {7, },>1 by setting
T0:=0, 7 :i=inf{r,1<s<T:1-AZ;=0}, n>1.
Note that 7, is non-decreasing and tends to co a.s. as n — oo. Then the solution X* of [1, Eq. (4.23)] is
Xy =uw+ Z X:’n_lll[n,_hm)ﬂ[O,T] (r), rel0,T], (2.1)
n=1

where we conventionally set [0o0,00) := 0. In (2.1), X*"~t = (X" 1), (o 1) is given by

. A " dM, " d[M, Z], e
X:’nil = (xo — w)]l{n=1} + \/;(AMTn—l +/ + [ } >:| U’r‘ 1]1[7%71,7-”’)0[07'1"] (T)

n—1 n—1
Tn—1 Us— Tn—1 Us—

The process U™~ = (U* 1), ¢jo,77 is defined by

T

1 if’l"STn_l

n—1,__ _ 1 rr <
U = At [7 _ diz.2; [I (1—-AZ)er% ifr>7,

T ™Tm—1" 2 Jr,
Th—1<s<r

= E(—=Z + Z™),,

where £(=Z + Z71) = (E(=Z + Z™");)refo,1] denotes the Doléans-Dade exponential of —Z + Z7™-1,
see [4, Section I1.8], and where Z™-1 is the process Z stopped at 7,1, i.e. Z;,"" 1= Ziar, _,-
We now calculate the Lagrange multiplier « using the constraint E[X}] = 2. One first has

d&(—Z+Z7 )y =E(—Z+Z™ " )s_d(=Zs + Z]"7"), E(—Z+Z™ ) =1,



and the conditional quadratic variation' of —Z + Z™-1, which is computed by

<_Z + ZTn717_Z + Z7—7171>
([ M OIS 6 VYo [ L ()T Y2 ) )
0 0
_ / L, 7y (5) TSI IE8 1M, ) (5, Yo )ds,
0

has uniformly bounded integrand over (n, s) € Nx(0,7T) a.s. by [1, Eq. (4.20)]. Then applying Lemma 1.1
yields sup,,>1 E[JUE %] = sup,,»1 E[|€(—=Z + Z™-*)7|?] < co. In particular, for n = 1 we can define

de2.2y = EIE(=Z)1r1(0,r)n0,1(T)] = E[E(=2) 11 {7, —c}] € R. (2.2)

Moreover, using Lemma 1.1 again we assert that X* is a square integrable process which together with
(2.1) and (2.2) then imply that

0o T T
dM; d[M,Z]s\, n_
d@3) == E{Z (AMrnl +/ g1 T [Uvn_l])UT pr, s rynio,r) (1) (2.3)
n=1 Tn—1 s— Tn—1 s—

finitely exists. Now we let » = T and take the expectation both sides of (2.1) to get

. R . A
2=+ dpoy(re — W) + \/;d(ZS)a

If d(3.9) # 1, then the Lagrange multiplier w is calculated by

R Z— \/gd(zg) - d(z.z)l’o
w = .

1 —doo

3 Some auxiliary results for Lévy processes
All Lévy processes below are considered with the canonical truncation function h(x) = z1 ), <1}-

Lemma 3.1. L is a D-dimensional Lévy process if and only if u' L is a 1-dimensional Lévy process for all
u € RP. Moreover, L has characteristic (b, A,v) if and only if u' L has characteristic (by,u" Au,vo{y
uTy} =) where b, :=uTb— fuTy;éo uTy(Lgy<iy — Lyjyryi<1y)v(dy) for allu € RP.

Proof. Tt is obvious that L has cadlag paths a.s. if and only if v L has cadlag paths a.s. for all u € RP.
We now verify the equivalence regarding distributional properties. Let Fl := o{Ls : s < t}. Assume
that L is a D-dimensional Lévy process with characteristic (b, A,v). Then it follows from [3, Theorem
3.1] that, for any s <t and z € R, a.s.,

E [eimuT(Lt —Ly)

fSL] _ e—(t—s)m(mu) )

By a change of variables we have

2 TA .
ko) == k(zu) = —izu' b+ rue e / (e‘x“Ty — 1 —izu"yl <1y v(dy)
2 y#0
2uT A .
= —izuTh+ S0 / (e — 1 =iz Tyl gy <1y)v(dy)
2 uTy#0 -

= —iz (uTb — / uTy(Lgy<1y — 1{uTy|<1})V<dy)>
uTy#0

22u’ Au . . B
— /7& (e =1 —izzly<iy)vo{y — u'y}~H(dz2).
270

Hence, applying [3, Theorem 3.1] once more shows that u' L is a Lévy process with the characteristic
exponent k,. The converse implication is straightforward by choosing = = 1. O

1See, e.g., [4, Chapter ITI, p.124].



Lemma 3.2. Let D,D’ € N. Assume that W is a D-dimensional Gaussian Lévy process and L is a
D’-dimensional purely non-Gaussian Lévy process, both defined on the same probability space. Then W
and L are independent.

Proof. Step 1. We prove that, for any u € R”, v € RD/, two processes u' W and v' L are independent.
Indeed, it is obvious that u"W is a Gaussian Lévy process, and v' L is a purely non-Gaussian Lévy process
due to Lemma 3.1. Denote by [X,Y] the quadratic covariation of two cadlag real semimartingales X, Y
(see, e.g., [4, p.66] or [2, Definition 8.2]). By the bilinearity of quadratic covariation, we get

D D
[W"W,v L] = {Zu(d)W(d) Z BCyACS >] =33 u @ @@, ),

d’'=1 d=1d'=1

Since W@ is continuous and L(@) is purely non-Gaussian, both are Lévy processes null at 0, it implies
that [W(@ L(4)] = 0. Hence, [u"W,vTL] = 0. We then apply [2, Theorem 11.43] to get the independence
of "W and v"L as desired.

Step 2. By choosing a common refinement of partitions, it suffices to prove that (Wy,,..., Wy, —
Wy, ) is independent of (Ly,,..., Ly, — Ly, ) forall 0 =ty <t; <--- <t,, n€N. Let {ug}p_, CRP
and {v}7_, € RP" arbitrarily. One has

I31)=E {ei Sy k(W =Wy )H i vi (L _Ltkfl)i|

_ E{eiiﬁl SRl W Wl T S0 v,id”(LEZ”Lii"l)] (3.1)
Ford=1,...,D,d =1,...,D" and k =1,...,n we define, for ¢t € [0,1],
ir(dik) . yyr(d) (d) (d'.k) (d") (d")
W =W e, — Wal, and L = L -t yertny ~ Lixles

and set Wt = (Wt(dyk))lgng,lgkgn S RDXR, Zv;t = (Lgd/’k))lgd/SD/71§k§7l € RP'Xn_ We now show that
L = (Lt)tepo,1] is an RP %" _yalued purely non-Gaussian Lévy process. For any v € RP"*" and t € [0, 1],
one has

Z Z (" k)L [ = Z Z (@) Lgfk —tg—1)t+tr—1 ngl’)l)

k=1d'=1 k=1d'=1
For each k = 1,...,n, since [0,1] > ¢+ L, ¢, ,yt4t,_, — Lt,_, is a D’-dimensional purely non-Gaussian
Lévy process, it follows from Lemma 3.1 that
4 ( (d")
d’,k d) d
0,1] 3t Y ol L(tk beytte s — Lie )
d'=1

is also a purely non-Gaussian Lévy process. Since L has independent increments, we infer that (tr[vTLt])te[oyl]

RDxn

is again a purely non-Gaussian Lévy process. Analogously, (Wt)te[o,l] is an -valued Gaussian Lévy

process without drift. By vectorization and applying Step 1 we get that (tr[uTWt])te[OJ] is independent
of (tr[vTLt])te[OJ] for any u € RP*" and v € RP"*". Therefore, choosing particularly ¢ = 1 yields

)

; D (d) (d) (d) (d )7,(d) (d")
I(f%.l) =E|e k=1 2a—1 ¥ (W Wy, ~ 1):| E|: (DI 1Zd/ 1Y (L —Li 1)

which implies the desired conclusion. O
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