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Abstract

This document contains supplementary materials for the main article [1]. All notations used here
are in accordance with that in [1].

1 Integrability for solutions of SDEs with jumps

Although the following fact can be easily extended to a multidimensional setting, however, we formulate
it in the one-dimensional case for the sake of simplicity.

Lemma 1.1. Let ξ = (ξt)t∈[0,T ] be càdlàg and adapted with ∥ξ∥2S2([0,T ]) := E[sup0≤t≤T ξ2t ] < ∞. Assume

that dZt = ϕtdt+ dKt, where K = (Kt)t∈[0,T ] is a càdlàg L2(P)-martingale satisfying d ⟨K,K⟩t = η2t dt,

where η and ϕ are progressively measurable with sup0<t<T η2t +
∫ T

0
ϕ2
tdt ≤ C a.s. for some (non-random)

constant C > 0. Then, for a Lipschitz function σ : R → R, the SDE

Xt = ξt +

∫ t

0

σ(Xu−)dZu, X0 = ξ0 = x0 ∈ R, (1.1)

has a unique càdlàg strong solution X = (Xt)t∈[0,T ] satisfying E[sup0≤t≤T X2
t ] ≤ C ′ < ∞ for some

constant C ′ = C ′(∥ξ∥S2([0,T ]), T, σ, C) > 0.

Proof. Due to [4, Theorem V.3.7], the SDE (1.1) has a unique càdlàg and adapted solution X. For n ≥ 1
we define τn := inf{t > 0 : |Xt| ≥ n} ∧ T . Then τn is a stopping time with |X(t∧τn)−| ≤ n for t ∈ [0, T ].
It is known that, see, e.g., [4, Theorem II.5.12], a.s.,

Xt∧τn = ξt∧τn +

∫ t∧τn

0

σ(Xu−)dZu = ξt∧τn +

∫ t

0

1(0,τn](u)σ(Xu−)dKu +

∫ t

0

1(0,τn](u)σ(Xu−)ϕudu

so that the triangle inequality, Itô’s isometry, and Hölder’s inequality yield

1

3
E[X2

t∧τn ] ≤ E[ξ2t∧τn ] + E
[ ∫ t

0

1(0,τn](u)σ(Xu−)
2η2udu

]
+ E

[∣∣∣∣ ∫ t

0

1(0,τn](u)σ(Xu−)ϕudu

∣∣∣∣2]
≤ ∥ξ∥2S2([0,T ]) + CE

[ ∫ t

0

1(0,τn](u)σ(Xu−)
2du

]
≤ ∥ξ∥2S2([0,T ]) + 2CTσ(0)2 + 2C|σ|2LipE

[ ∫ t

0

1(0,τn](u)X
2
u−du

]
= α+ βE

[ ∫ t

0

1(0,τn](u)X
2
u−du

]
for α := ∥ξ∥2S2([0,T ]) + 2CTσ(0)2, β := 2C|σ|2Lip, and |σ|Lip := supx ̸=y

|σ(x)−σ(y)|
|x−y| . Since

1(0,τn](u)X
2
u− ≤ n2, u ∈ [0, T ],

*Department of Mathematics, Saarland University, Germany. Email: bender@math.uni-saarland.de
�Department of Mathematics, Saarland University, Germany. Email: nguyen@math.uni-saarland.de
�Department of Mathematics, Vinh University, Vinh, Nghe An, Viet Nam. Email: thuan.tr.nguyen@gmail.com

1



it implies that

E[X2
t∧τn ] ≤ 3α+ 3βTn2, ∀t ∈ [0, T ].

Moreover, as X has càdlàg paths, we get for all t ∈ [0, T ] that

1

3
E[X2

t∧τn ] ≤ α+ βE
[ ∫ t

0

1(0,τn](u)X
2
udu

]
≤ α+ βE

[ ∫ t

0

X2
u∧τndu

]
= α+ β

∫ t

0

E[X2
u∧τn ]du.

Applying Gronwall’s lemma yields E[X2
t∧τn ] ≤ 3αe3βT for all t ∈ [0, T ], n ≥ 1. Since (τn)n≥1 is eventually

constant T a.s., sending n → ∞ and using Fatou’s lemma we obtain

E[X2
t ] ≤ lim inf

n→∞
E[X2

t∧τn ] ≤ 3αe3βT , ∀t ∈ [0, T ].

As a consequence,
∫ ·
0
σ(Xt−)dKt is an L2(P)-martingale. Therefore, applying Doob’s maximal inequality

for the martingale part we get

E
[

sup
0≤t≤T

X2
t

]
≤ ∥ξ∥2S2([0,T ]) + 4E

[ ∫ T

0

σ(Xt−)
2η2t dt

]
+ E

[ ∫ T

0

σ(Xt−)
2dt

∫ T

0

ϕ2
tdt

]
< ∞,

which completes the proof.

2 Explicit expression for the optimal wealth and Lagrange mul-
tiplier

We give in this part a closed-form representation of the optimal wealth X∗ and the respective Lagrange
multiplier ŵ when the condition “∆Z ̸= 1 on [0, T ]” in [1, Proposition 4.12] fails to hold. Let us impose
the assumptions of [1, Theorem 4.10]. For Z given in that theorem, we write

−(X∗
s− − ŵ)dZs = (X∗

s− − ŵ)d(−Zs)

and follow [4, Exercise V.27] to define the sequence of stopping times {τn}n≥1 by setting

τ0 := 0, τn := inf{τn−1 < s ≤ T : 1−∆Zs = 0}, n ≥ 1.

Note that τn is non-decreasing and tends to ∞ a.s. as n → ∞. Then the solution X∗ of [1, Eq. (4.23)] is

X∗
r = ŵ +

∞∑
n=1

X∗,n−1
r 1[τn−1,τn)∩[0,T ](r), r ∈ [0, T ], (2.1)

where we conventionally set [∞,∞) := ∅. In (2.1), X∗,n−1 = (X∗,n−1
r )r∈[0,T ] is given by

X∗,n−1
r :=

[
(x0 − ŵ)1{n=1} +

√
λ

2

(
∆Mτn−1

+

∫ r

τn−1

dMs

Un−1
s−

+

∫ r

τn−1

d[M,Z]s

Un−1
s−

)]
Un−1
r 1[τn−1,τn)∩[0,T ](r).

The process Un−1 = (Un−1
r )r∈[0,T ] is defined by

Un−1
r :=


1 if r ≤ τn−1

e
−Zr+Zτn−1

− 1
2

∫ r
τn−1

d[Z,Z]cs ∏
τn−1<s≤r

(1−∆Zs)e
∆Zs if r > τn−1

= E(−Z + Zτn−1)r,

where E(−Z +Zτn−1) = (E(−Z +Zτn−1)r)r∈[0,T ] denotes the Doléans–Dade exponential of −Z +Zτn−1 ,
see [4, Section II.8], and where Zτn−1 is the process Z stopped at τn−1, i.e. Z

τn−1

t := Zt∧τn−1 .
We now calculate the Lagrange multiplier ŵ using the constraint E[X∗

T ] = ẑ. One first has

dE(−Z + Zτn−1)s = E(−Z + Zτn−1)s−d(−Zs + Zτn−1
s ), E(−Z + Zτn−1)0 = 1,
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and the conditional quadratic variation1 of −Z + Zτn−1 , which is computed by

⟨−Z + Zτn−1 ,−Z + Zτn−1⟩

=

〈∫ ·

0

1(τn−1,T ](s)(M
T
αS

−1
α )(s, Ys−)dYs,

∫ ·

0

1(τn−1,T ](s)(M
T
αS

−1
α )(s, Ys−)dYs

〉
=

∫ ·

0

1(τn−1,T ](s)(M
T
αS

−1
α ΣS−1

α Mα)(s, Ys−)ds,

has uniformly bounded integrand over (n, s) ∈ N×(0, T ) a.s. by [1, Eq. (4.20)]. Then applying Lemma 1.1
yields supn≥1 E[|Un−1

T |2] = supn≥1 E[|E(−Z + Zτn−1)T |2] < ∞. In particular, for n = 1 we can define

d(2.2) := E[E(−Z)T1[0,τ1)∩[0,T ](T )] = E[E(−Z)T1{τ1=∞}] ∈ R. (2.2)

Moreover, using Lemma 1.1 again we assert that X∗ is a square integrable process which together with
(2.1) and (2.2) then imply that

d(2.3) := E
[ ∞∑
n=1

(
∆Mτn−1 +

∫ T

τn−1

dMs

Un−1
s−

+

∫ T

τn−1

d[M,Z]s

Un−1
s−

)
Un−1
T 1[τn−1,τn)∩[0,T ](T )

]
(2.3)

finitely exists. Now we let r = T and take the expectation both sides of (2.1) to get

ẑ = ŵ + d(2.2)(x0 − ŵ) +

√
λ

2
d(2.3),

If d(2.2) ̸= 1, then the Lagrange multiplier ŵ is calculated by

ŵ =
ẑ −

√
λ
2 d(2.3) − d(2.2)x0

1− d(2.2)
.

3 Some auxiliary results for Lévy processes

All Lévy processes below are considered with the canonical truncation function h(x) = x1{∥x∥≤1}.

Lemma 3.1. L is a D-dimensional Lévy process if and only if uTL is a 1-dimensional Lévy process for all
u ∈ RD. Moreover, L has characteristic (b, A, ν) if and only if uTL has characteristic (bu, u

TAu, ν ◦{y 7→
uTy}−1) where bu := uTb−

∫
uTy ̸=0

uTy(1{∥y∥≤1} − 1{|uTy|≤1})ν(dy) for all u ∈ RD.

Proof. It is obvious that L has càdlàg paths a.s. if and only if uTL has càdlàg paths a.s. for all u ∈ RD.
We now verify the equivalence regarding distributional properties. Let FL

t := σ{Ls : s ≤ t}. Assume
that L is a D-dimensional Lévy process with characteristic (b, A, ν). Then it follows from [3, Theorem
3.1] that, for any s ≤ t and x ∈ R, a.s.,

E
[
eixu

T(Lt−Ls)
∣∣FL

s

]
= e−(t−s)κ(xu).

By a change of variables we have

κu(x) := κ(xu) = −ixuTb+
x2uTAu

2
−
∫
y ̸=0

(eixu
Ty − 1− ixuTy1{∥y∥≤1})ν(dy)

= −ixuTb+
x2uTAu

2
−
∫
uTy ̸=0

(eixu
Ty − 1− ixuTy1{∥y∥≤1})ν(dy)

= −ix

(
uTb−

∫
uTy ̸=0

uTy(1{∥y∥≤1} − 1{|uTy|≤1})ν(dy)

)
+

x2uTAu

2
−

∫
z ̸=0

(eixz − 1− ixz1{|z|≤1})ν ◦ {y 7→ uTy}−1(dz).

Hence, applying [3, Theorem 3.1] once more shows that uTL is a Lévy process with the characteristic
exponent κu. The converse implication is straightforward by choosing x = 1.

1See, e.g., [4, Chapter III, p.124].
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Lemma 3.2. Let D,D′ ∈ N. Assume that W is a D-dimensional Gaussian Lévy process and L is a
D′-dimensional purely non-Gaussian Lévy process, both defined on the same probability space. Then W
and L are independent.

Proof. Step 1. We prove that, for any u ∈ RD, v ∈ RD′
, two processes uTW and vTL are independent.

Indeed, it is obvious that uTW is a Gaussian Lévy process, and vTL is a purely non-Gaussian Lévy process
due to Lemma 3.1. Denote by [X,Y ] the quadratic covariation of two càdlàg real semimartingales X, Y
(see, e.g., [4, p.66] or [2, Definition 8.2]). By the bilinearity of quadratic covariation, we get

[uTW, vTL] =

[ D∑
d=1

u(d)W (d),

D′∑
d′=1

v(d
′)L(d′)

]
=

D∑
d=1

D′∑
d′=1

u(d)v(d
′)[W (d), L(d′)].

Since W (d) is continuous and L(d′) is purely non-Gaussian, both are Lévy processes null at 0, it implies
that [W (d), L(d′)] = 0. Hence, [uTW, vTL] = 0. We then apply [2, Theorem 11.43] to get the independence
of uTW and vTL as desired.

Step 2. By choosing a common refinement of partitions, it suffices to prove that (Wt1 , . . . ,Wtn −
Wtn−1

) is independent of (Lt1 , . . . , Ltn − Ltn−1
) for all 0 = t0 < t1 < · · · < tn, n ∈ N. Let {uk}nk=1 ⊂ RD

and {vk}nk=1 ⊂ RD′
arbitrarily. One has

I(3.1) := E
[
ei

∑n
k=1 uT

k(Wtk
−Wtk−1

)+i
∑n

k=1 vT
k(Ltk

−Ltk−1
)
]

= E
[
e
i
∑n

k=1

∑D
d=1 u

(d)
k (W

(d)
tk

−W
(d)
tk−1

)+i
∑n

k=1

∑D′
d′=1

v
(d′)
k (L

(d′)
tk

−L
(d′)
tk−1

)
]
. (3.1)

For d = 1, . . . , D, d′ = 1, . . . , D′ and k = 1, . . . , n we define, for t ∈ [0, 1],

W̌
(d,k)
t := W

(d)
(tk−tk−1)t+tk−1

−W
(d)
tk−1

and Ľ
(d′,k)
t := L

(d′)
(tk−tk−1)t+tk−1

− L
(d′)
tk−1

,

and set W̌t := (W̌
(d,k)
t )1≤d≤D,1≤k≤n ∈ RD×n, Ľt := (Ľ

(d′,k)
t )1≤d′≤D′,1≤k≤n ∈ RD′×n. We now show that

Ľ = (Ľt)t∈[0,1] is an RD′×n-valued purely non-Gaussian Lévy process. For any v ∈ RD′×n and t ∈ [0, 1],
one has

tr[vTĽt] =

n∑
k=1

D′∑
d′=1

v(d
′,k)Ľ

(d′,k)
t =

n∑
k=1

D′∑
d′=1

v(d
′,k)(L

(d′)
(tk−tk−1)t+tk−1

− L
(d′)
tk−1

).

For each k = 1, . . . , n, since [0, 1] ∋ t 7→ L(tk−tk−1)t+tk−1
−Ltk−1

is a D′-dimensional purely non-Gaussian
Lévy process, it follows from Lemma 3.1 that

[0, 1] ∋ t 7→
D′∑

d′=1

v(d
′,k)(L

(d′)
(tk−tk−1)t+tk−1

− L
(d′)
tk−1

)

is also a purely non-Gaussian Lévy process. Since L has independent increments, we infer that (tr[vTĽt])t∈[0,1]

is again a purely non-Gaussian Lévy process. Analogously, (W̌t)t∈[0,1] is an RD×n-valued Gaussian Lévy

process without drift. By vectorization and applying Step 1 we get that (tr[uTW̌t])t∈[0,1] is independent

of (tr[vTĽt])t∈[0,1] for any u ∈ RD×n and v ∈ RD′×n. Therefore, choosing particularly t = 1 yields

I(3.1) = E
[
e
i
∑n

k=1

∑D
d=1 u

(d)
k (W

(d)
tk

−W
(d)
tk−1

)
]
E
[
e
i
∑n

k=1

∑D′
d′=1

v
(d′)
k (L

(d′)
tk

−L
(d′)
tk−1

)
]
,

which implies the desired conclusion.
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