ENTROPY-REGULARIZED MEAN-VARIANCE PORTFOLIO
OPTIMIZATION WITH JUMPS

CHRISTIAN BENDER! AND NGUYEN TRAN THUAN®?

ABSTRACT. Motivated by the trade-off between exploitation and exploration in reinforcement
learning, we study a continuous-time entropy-regularized mean-variance portfolio selection prob-
lem in the presence of jumps. We propose an exploratory SDE for the wealth process associated
with multiple risky assets which exhibit Lévy jumps. In contrast to the existing literature, we
study the limiting behavior of the natural discrete-time formulation of the wealth process associ-
ated with a randomized control in order to derive the continuous-time dynamics. We then show
that an optimal distributional control of the continuous-time entropy-regularized exploratory
mean-variance problem is still Gaussian despite being in jump models. Moreover, the respective

optimal wealth process solves a linear SDE whose representation is explicitly obtained.
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1. INTRODUCTION

1.1. The problem. The mean-variance (MV) portfolio optimization problem pioneered by
Markowitz [27] is one of the most popular criteria in the portfolio selection theory due to
its simple and natural formulation in dealing with the two important aspects of investment,
namely, risk and return. In the MV model, investors aim to minimize the variance, which quan-
tifies the risk, of the terminal wealth of their portfolios while targeting a prespecified expected
value of the terminal wealth. This criterion therefore effectively reflects a trade-off between
the risk and expected return in an intuitive way. After Markowitz’s foundational works, the
MYV approach has attracted considerable attention with numerous extensions and applications.
For example, among other works in the continuous-time setting when the financial market is
driven by a multidimensional Brownian motion, Zhou and Li [38] investigate the MV problem
in terms of stochastic linear-quadratic (LQ) optimization using an embedding method. After
that, Li et al. [24] introduce the Lagrange multiplier method to transform the MV problem to
an unconstrained stochastic LQ control problem so that standard techniques are applicable. As
the literature on the MV criterion is vast, we refer the reader to [37] for a review on this topic.
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The classical model-based MV problem, where model assumptions are predescribed, has been
fairly well investigated and quite completely solved in various settings with analytical solutions.
To apply these results in practice, one usually needs to estimate model parameters based on
historical data of the underlying asset prices accumulated during trading. Nevertheless, it is
widely acknowledged that it is difficult to estimate those parameters with an applicable accuracy,
and furthermore, classical optimal MV strategies frequently exhibit high sensitivity to those
parameters which then might become practically sub-optimal due to estimation error.

In recent years, reinforcement learning (RL) methods, which have increasingly attracted more
attention in quantitative finance, become a promising approach to overcome those practical dif-
ficulties. By and large, RL algorithms iteratively execute randomized controls for some period
(or, episode) and apply the data which has been collected over the previous periods to update
the unknown model parameters and the randomized control, see, e.g., [20, 21, 33] for RL al-
gorithms in a continuous-time stochastic control setting. The randomization of the controls
reflects the trade-off between exploration (learning the unknown investment environment) and
exploitation (optimizing adaptively to the updated model parameters). Thus, RL algorithms
can produce (nearly) optimal solutions without the need of statistically estimating the model
parameters beforehand. The reader is referred to [16] for an overview to recent developments
and applications of RL in finance.

The iterative construction of the randomized controls in the algorithms mentioned above
relies on an entropy-regularized formulation of the stochastic control problem. Here, the entropy
regularization rewards exploration and leads to the optimality of distribution-valued (or, relaxed)
controls. Recently, Wang and Zhou [34] introduced such an entropy-regularized exploratory SDE
framework for the MV problem in a Black—Scholes environment. To be more precise and for
easier explanation, let us introduce some notations. Let T > 0 be a fixed finite time horizon
and W = (Wi)ejo,r) a standard 1-dimensional Brownian motion. The exploratory SDE for
the wealth process X" = (X[ )ic[o,r] under an admissible control © = (m¢);c(o,r), Which is a
distribution-valued stochastic process and where m; is the probability density function of the
exploration law at time t, is heuristically derived and has the following form

dX] = pubdt + \/pi? + o2 adW,. (1.1)

Here, the drift b € R and volatility a > 0 are unknown constants, p; := fR um(u)du represents
the mean and o} := [ u*m(u)du — pf the variance of the distribution of exploration at time ¢.
We refer to [34, 35] for the motivation and derivation of (1.1). To encourage and quantify the
exploration process, Wang and Zhou [34] incorporate a differential entropy term to the objective
function and the classical MV problem then becomes an entropy-reqularized exploratory MV
problem. The authors then prove that the optimal feedback distributional control is Gaussian
with time-decaying variance. Moreover, via a simulation study it is also illustrated in [34] that
the RL approach for solving the MV problem significantly improves some other methods such as
the traditional maximum likelihood estimate (MLE) and the deep deterministic policy gradient
(DDPG). The approach as in [34, 35] has been extended in various contexts, see, e.g., [10, 14, 36].

It is, however, widely acknowledged that models with jumps are more appropriate to describe
the fluctuation of asset prices, see, e.g., [1, 8]. Following this direction, many researchers have
extensively studied the classical MV problem and its variants in several jump models, see,
e.g., [19, 25, 28] and the references therein. Then a question naturally arises: How would the
continuous-time entropy-regularized exploratory MV problem and its solutions be like if the asset
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prices exhibit jumps? To address this question, one first needs to describe the exploratory SDE
with jumps for the respective wealth process.

In contrast to the models built upon the Brownian framework by Wang and Zhou [34] and
by Wang et al. [35], where the exploratory SDE for the wealth/controlled process can be
heuristically inferred from knowing its first two conditional moments only, models with jumps
are quite involved as, in general, one has to test against various other functions rather than the
linear and quadratic functions to detect the distributional behavior of jumps. In fact, these test
functions essentially depend on the jump activities of the underlying asset price process. Hence,
the derivation for the exploratory SDE based on first two moments in [34, 35] is seemingly not
applicable for jump models, at least in a straightforward way. To deal with this problem, we
exploit the linear dependence on controls of the wealth process and propose a different argument
to derive the exploratory SDE.

1.2. Our contributions and discussions. Let D € N and assume that the log-price process
of D risky assets is a weak solution of an SDE driven by a D-dimensional Lévy process L.
Here L includes, but not necessarily simultaneously, a Brownian motion W and an independent
pure-jump Lévy process J, both are D-dimensional. Except the square integrability, there are

no additional assumptions imposed on the Lévy measure.

1.2.1. Continuous-time exploratory SDE with Lévy jumps. To derive an exploratory SDE for
the wealth process, we begin with a discrete-time dynamic of the wealth under an exploration
procedure, see Section 3.2.1. In [34, 35], the authors first average out realizations of distributional
controls on each discrete-time sub-interval using a law of large numbers, and then combine them
all together to infer the dynamic on entire [0,7]. Here, unlike the argument in [34, 35], we first
explicitly model randomized controls on discrete-time partitions of [0,7] and identify a family
of discrete-time integrators which incorporate the additional “exploration noise”. To do that,
we need to handle the additional randomness caused by exploration differently for the Brownian
and for the jump component which can be roughly described as follows:

e For the Brownian part, thanks to the linear structure with respect to the control, one
can (partially) separate the original randomness caused by the asset prices and the
randomness caused by exploration in an appropriate way, see Section 3.2.3.

e For the jump component, we employ a suitable D?-dimensional random measure to
simultaneously capture both sources of randomness, see Section 3.2.4.

Then, by refining the discrete time points, we show in Theorem 3.5 below that the stochastic
integrators of our discrete-time scheme converge in distribution to a multidimensional Lévy
process. This limit theorem gives rise to a natural continuous-time formulation of the exploratory
control problem with entropy regularization. Note that randomized controls on discrete-time
grids have recently been considered in [11, 33] for diffusion models. However, [33, Theorem
2.2] investigates the limiting behavior of the cost of such controls and [11, Lemma 4] describes
the convergence of the optimal control density, while we apply this discretization to infer the
structure of the continuous-time “exploration noise”.

We also remark that the heuristic passage to the limit in the existing literature [34, 35] only
yields information about the conditional mean and covariance of the continuous-time controlled
system. It, thus, allows for many different SDE representations, even in the case of no jumps,
as discussed below. In contrast, our derivation identifies a specific SDE formulation, which we
consider a natural choice for modeling exploration in the continuous-time framework. Indeed,
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as discussed in Section 4.5 below, our formulation of the exploratory SDE, which is derived
from discrete-time randomized controls, is closely related to the sample state process, which is
a key object for the design of learning algorithms in the recent continuous-time RL literature
[20, 21]. Tt can even be interpreted as a mathematically rigorous reformulation of this sample
state process which avoids the use of an independent identically distributed sampling mechanism
indexed by continuous time.

1.2.2. Problem formulation in multidimensional setting. We consider D risky assets with jumps
and derive the continuous-time dynamics of the wealth process with exploration, see SDE (3.7)
and Remark 3.6 for further discussion.

Let us compare our exploratory SDE with other works in the case of no jumps. Since we
use a different argument, our exploratory SDE unsurprisingly takes a different form from (1.1)
in [34]. If D = 1, then the dynamic of wealth under a distributional control 7 in our setting
particularly becomes

dXZr = ,U,tbdt + utath + O'tCLth, (12)

where W is a 1-dimensional Brownian motion independent of W. We notice that X7 in (1.1)
and in (1.2) have the same distribution. However, differently from (1.1), in our SDE (1.2)
the exploration randomness represented by W is separated from the noise W caused by asset
prices. One also remarks that the SDE in form of (1.2) has been recently considered in [10, 36].
Nevertheless, when D > 1, the authors in [10, 36] use an additional 1-dimensional Brownian
motion to model the exploration (i.e. W is 1-dimensional), while, according to our analysis, it
suggests to use a D2-dimensional Brownian motion (i.e. W is D?-dimensional).

1.2.3. Optimal distributional control and wealth process. Following [34], we first use the La-
grange multiplier method to transform the exploratory MV problem to an entropy-regularized
quadratic-loss control problem and then apply the dynamic programing principle to find its
solutions.

We show in Theorem 4.10 that, despite the presence of jumps, among admissible distributional
controls which are not necessarily in the feedback form, an optimal Gaussian control in feedback
form can be obtained. As a feature of our approach, the respective optimal wealth process
satisfies a linear SDE (see (4.23)) which allows us to find its expression in a closed-form (see
(4.27) and [5]). As a consequence, the Lagrange multiplier is also explicitly obtained (see (4.28)
and [5]). Moreover, the value function has a quadratic form with respect to the wealth variable
whose coefficients are solutions to a system of partial integro-differential equations (PIDEs).
In the special case of no jumps and D = 1 and with constant coeflicients, our value function
coincides, of course, with that in [34], see Example 4.16.

1.3. Structure of the article. In Section 2, we introduce the notation and recall the classical
MV problem. The derivation of the continuous-time exploratory SDE with Lévy jumps is
presented in Section 3. In Section 4, we study the entropy-regularized exploratory MV problem,
investigate its closed-form solutions, and discuss the Lagrange multipliers. Section 5 is devoted
to present the proof of weak convergence of the discrete-time integrators (Theorem 3.5).

2. PRELIMINARIES

2.1. Notations. Let D € N := {1,2,...}. For a,b € R, we use the usual notations a A b :=

min{a, b} and a V b := max{a,b}. For a < b, let ff = f( Notation log indicates the natural

a,b]”
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logarithm. Sub-indexing a symbol by a label means the place where that symbol appears. We
also use the conventions inf ) := co and ),y = f@ = 0.

2.1.1. Vector spaces and matrices. Let ||-|| be the usual Euclidean norm and (e4)%_; the natural
basis in RP. For r > 0, we set Bp(r) := {z € RP : ||z|| < r} and BS(r) := RP\Bp(r).
All vectors are written in the column form. For a vector 2 we use the notation z(") or [](?)

to denote its i-th component. For a matrix A,

o A9 or [A)(9) is the element in the i-th row and j-th column of A;

e if Ais a D x D matrix, then tr[A], det(A), A~! denote the trace, determinant and
inverse of A respectively. Let diag(A) := diag(A®D, ... APD)) denote the diagonal
matrix with diagonal entries A, ADD).

e the usual Euclidean/Frobenius norm of A is also denoted by || 4], i.e. ||A]| := y/tr[ATA].

Notation I'p means the D x D identity matrix. We also use the following classes of matrices:

e RP*D" denotes the family of all real matrices with size D x D';
o SP (resp. S?, SE ) is the family of all symmetric (resp. positive semidefinite, positive
definite) A € RP*P. For A € S?, denote by Az € SE the unique square root of A, i.e.
A2Az = A It A€ SP_, then we let A™2 = (A2)~L,
e Op consists of all orthonormal O € RP*P ie. OTO = Ip.
For A € RP*P' | denote by vec(A) the vectorization of A defined as an element of RPP" by
stacking the columns of A on top of one another, i.e.

vec(A) = (ALY AP AQ2) A D2) o ALD) A (DD)YT

For (column) vectors x1,...,x, with possibly different sizes, vec(z1,...,x,) means the vector
obtained by stacking z; on top of x;41, 1 < i < n — 1. To shorten notation at some places we
also use the Kronecker product @: RP x RP" — RPD" defined by

D)

z @y = vec(zWy, ..., aPly).

One notices that the operator ® is bilinear and ||z ® y|| = ||z||||y]|-

2.1.2. Function spaces. For a function f: RP — R, we use the following notations:

o [flloe = sup,cpn |f(@);

e Of and 0?f denote usual partial derivatives of f with respect to scalar components;

e Vf and V2f denote the gradient and the Hessian of f respectively, and ||V f|%, :=
S 10afl%, IV2fII% = So0w—1 103 4 fI1%, where partial derivatives daf = O, f
and Og’d,f = 8§(d>x(d,)f;

e When f has several (multivariate) components, we use V, f and Vf,y f to indicate the
gradient and Hessian of f with respect to component y. If x is a scalar component and
y is a multivariate component, then we write V?,;y = (8§y<1), . ,6§y<D>)T.

e supp(f) stands for the support of f, i.e. the closure of {x € R : f(z) # 0}.

For k = 1,2,..., denote by C*(RP) the family of all k£ times continuously differentiable functions
on RP. CF(RP) consists of all bounded f € C*(RP) with bounded derivatives (up to the k-
th order) and C{°(RP) := Ng>1CFRP). CH(RP) denotes the family of all f € C*(RP) with
compact support. We let f € CY2([0,T] x RP) if f is (resp. twice) continuously differentiable
with respect to t € [0,T] (resp. to y € R”) and its partial derivatives are jointly continuous.
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2.2. Stochastic basis. Let us fix a time horizon T' € (0, 00). Assume that (2, F,P; (F¢)epo,17)
satisfies the usual conditions, which means that (2, F,P) is a compete probability space, the
filtration (F)iepo,7) is right-continuous and Fy contains all P-null sets. This allows us to assume
that every (F)icpo,r-adapted local martingale has cadlag (right-continuous with finite left lim-
its) paths. For a random variable £, the expectation, variance, and conditional expectation given
a sub-o-algebra G C F, if it exists under P, is respectively denoted by E[¢], V[¢], and E[¢|G].
We also use L,(P) := L,(Q, F,P).

For a cadlag process X = (Xi)ico,r), we denote AX; := Xy — Xy for t € [0,T], where

Xo— = Xo and X;_ := limy~ 4 X for t € (0,7]. For a time index set I C [0,00) and for
processes X = (X¢)er, Y = (Yi)ter, we write X = Y to indicate that Xy = Y; for all ¢ € I
a.s., and the same meaning applied when the relation “="” is replaced by some other standard

relations such as “<”, “>” etc.
We refer to [30] for unexplained notions such as semimartingales, (optional) quadratic covari-
ation [X,Y] and conditional quadratic covariation (X,Y’) of semimartingales X, Y.

2.3. Multidimensional Lévy process. An RP-valued process L = (Lt)iejo,r) 1s called a Lévy
process if it has independent and stationary increments, has caglag paths with Ly = 0 a.s.
The distributional property of L is characterized by the Lévy—Khintchine formula (see, e.g., [2,
Theorem 1.2.14]), for t € [0,T] and u € RP,

E[eiuTLt] _ e—tm(u)

where the characteristic exponent k is given, for u € RP, by

ul Au

k(u) = —iu'b + 5

T .
- /750(61“ F-1- luTZﬂ{”ZHSl})I/(dZ).

The characteristic triplet (b, A,v) associated with the canonical truncation function h(z) :=
21{||z)<1y is deterministic and consists of the drift coefficient b € RP, the Gaussian covariance
matriz A € S, and the Lévy measure v, i.e. a measure on B(RP\{0}) with fZ#O(HzHQ/\l)V(dz) <
o0o. We call L a Gaussian Lévy process if v =0, and call L a purely non-Gaussian Lévy process
if A=0.

2.4. Classical continuous-time MYV portfolio selection. Assume that the price process
of a risk-less asset SO = (S§°))te[0,T] and D risky assets S = (St);c(0,7) are governed by the
following SDEs

ds® = rs@at, SO =1,
asi? = sidRry?, (V= s’ >0, d=1,...,D.

where the interest rate r > 0 is given and the (stochastic) log-price process R is described
by (2.1) and (2.2) below. In the context of stock price modeling, it is natural to assume the

condition AR@ > —1 on the jump sizes, which ensures that the stock prices S(%)

stay strictly
positive. This condition is, however, not required to obtain the main results, and so we do not
impose it.

An investment strategy in D risky assets is expressed by a predictable RP-valued process
H where Ht(d) is the discounted dollar amount invested in the d-th risky asset at time t—, i.e

instantly before time ¢. The resulting discounted wealth process X# = (X )telo,) associated
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with H can be written as

D
dx/1 =S HYAR? — rdt) = H] v, (2.1)
d=1
where X({I = xg9 € R is the given initial wealth. From now we will work with the driving process
Y and the discounted wealth X7 as in (2.1).
Assume that the log-price of D underlying (discounted) risky assets is represented by a cadlag
and adapted process Y = (Y});¢[o,7) Which is Markovian whose infinitesimal generator is given,
for sufficiently smooth f, by

(v 1)) = W)V ) + 5trlAW) VI + [

: (£ +7w)2) = F) = V) )2 v(d2).
270

(2.2)
Here v is a square integrable Lévy measure and the coefficients b: R? — RP, A € SP, and
v: RP — RP*D gatisfy standard assumptions which will be specified later in Section 3.1.
The classical Markowitz MV portfolio selection problem, parameterized by 2 € R, is then
formulated as
ming V[XH]
(2.3)
subject to X* given in (2.1) and E[XH] = 2,

where the minimum is taken over admissible H which will be specified in our setting later. To
deal with the constraint E[X#] = 2 in (2.3), we follow [38, 34] to consider the objective function
parameterized by w € R,
VIXT] - 2w(E[XT] - 2),
which is equal to
E[(X7 —w)?] = (2 —w)*.
Then, to solve (2.3), we consider the following unconstrained quadratic-loss minimization prob-
lem parameterized by w,
ming E[(XH — w)?
HE[(Xf —w)? 0
subject to X given in (2.1).

Once (2.4) is solved with a minimizer H*(w), which depends on w, we let @ be the value such
that the constraint IE[X? (w)} = Z is satisfied. Then such an H*(w) solves the original problem

(2.3), and b is called the Lagrange multiplier'.

3. ExXPLORATORY SDE wiTH LEVY JUMPS

3.1. Setting. Let us fix D € N and set F := RP\{0}. Let ¢p be a probability density of
& ~ N(0,Ip) where N (0, Ip) is the D-dimensional Gaussian distribution with zero mean and
covariance Ip.

For b, A,y and v appearing in (2.2) we assume throughout this article the following:

Assumption 3.1. The Lévy measure v and coefficients b: R? — RP, a,~v: RP — RPXD |
A:=aa' € Sf_) satisfy:

(a) (Square integrability) v is square integrable on E, i.e. [, [le[?v(de) < oo;

IThe Lagrange multiplier actually is 2w, but we use w to slightly simplify the presentation.
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(b) (Growth condition) [|b(z)|| + |la(x)| + |v(z)]| < C1(1 + ||=||) for all z € RP;

(¢) (Lipschitz condition) [|b(z) — b(y) + lla(z) — a(y)]| + lv(z) =) < Callz —yl| for all
z,y € RP;

(d) (Non-degeneration) X(y) := A(y) +v(y) [, ee v(de)y(y)T € S2, for all y € RP.

3.2. Continuous-time dynamic of the wealth process with exploration: A heuristic
approach. Let W = (Wt)te[o,T} be a D-dimensional standard Brownian motion, and J =
(Jt)te[o m < Ly (P) a purely non-Gaussian Lévy process which is independent of W and has the
following Lévy—It6 decomposition (see, e.g., [2, Theorem 2.4.26])

Jt—//eNdsde

Here N is the compensated Poisson random measure of J associated with Lévy measure v. Since
b,a,~ in Assumption 3.1 are sufficiently regular, it is known that the following SDE has a unique
(strong) solution in Ly(P) (see, e.g., [22, Theorem 3.1]),

dY; = b(Y;_)dt + a(Y;_)dW; +y(Yio)dJ;, Yy =y € RP,
which admits Ly provided in (2.2) as the Markov generator.
Let {II,, },>1 be a sequence of partitions of [0, 7], where IT,, = {0 =t <t} < ... <t} :=T}.

Denote At} :=t —t? | and assume that |II,| := max;<;<, At} — 0 as n — oo. To shorten the

presentation at some places, for a process (F;)ic[o,7], We also use the notations
P, ;= Pt? and Ay ;P :=PFP,; — Ppi_1.
With the convention sup () := 0, we define
of :=sup{i >1:¢ <t}, te][0,T].

For each n, we obtain a process Y, which approximates Y along the partition II,,, given by
Yo+ Z ( i DAL 4 a(Viio1) AW+ y(Ym,l)AM-J), t e [0,T].

3.2.1. Ezploration procedure. Our main idea is as follows: For ¢ = 1,...,n, we draw the control
at time ¢7* | from some distribution, which is chosen with the accumulative information available
at time ¢7' ;. Once the distribution is fixed, the realization is independent of the rest. In addition,
since any distribution on R” can be represented as F'(¢) for some measurable F': RP? — R” and
& ~N(0,1Ip), determining a distribution boils down to find such an F'.
Let us specify this idea.
(i) Let 2 := {&,,i}n>1,1<i<n be a collection of ii.d. random vectors in RP with common
distribution MV (0, Ip) and probability density ¢ p. Assume that = is independent of (W, J).
Family = represents a new source of randomness caused from the exploration along with the

randomness generated by (W, J). To capture the information flow, we define the filtration
Flln = (F,)1, as follows

Fni=0{(Ws,Js) : 0< s <17}V Gni, where Gpii=0{&;:Jj<i},Gno:={0,Q}

(i) H: II, x Q x RP — RP is admissible in the following sense (here H,, ;1 stands for Htfb_il)l
(a) For each i = 1,...,n, the map (w,u) = Hp;i—1(w;u) is Fpi—1 @ B(RP)-measurable;

(b) One has E[ [zp [[Hn,i—1(u)||*¢p(u)du] < oo



ENTROPY-REGULARIZED PORTFOLIO OPTIMIZATION WITH JUMPS 9

(c) As proposed in [34], the exploration cost can be represented in terms of differential
entropy which is assumed to be finite to encourage the exploration. Following this
idea, we in addition assume that for each ¢ = 1,...,n and w € Q, Hy;—1(w;() has
a probability density pi{ i—1(w;+), where ¢ ~ N(0,Ip) is independent of F, ;_;, such
that [pp pﬁ{ i—1(u) log pi{ ;_1(u)du is an integrable random variable. Then the expected

accumulative differential entropy

E|l - Z(t? —t"q) pg,i—l(u) logpg,i—l(u)du
RD

i=1
is finite.
(iii) The controlled wealth X = (X} )telo,r] associated with H along time points of II,, is

X=X+ Hyioa(6n) " AY", i=1,...,n, X§ =az0€R

Proposition 3.2. Forn > 1,1 < i < n, there exist (uniquely up to a P-null set) a random vector
Nﬁifl and a random matrix 195,2;1 € S£+, both are Fy, ;—1-measurable and square integrable, and

a square integrable random vector 77511- with

B[y | Fri1] =0 and Bl | Faia] =Ip  as, (3.1)

such that
Hyi1(6ni) = pilicy + 90l as. (3:2)
Proof. See Appendix A. O

We decompose the process X with the initial wealth X({I =x9 €Ras

t
X =20+ Hpio1(6) T0(Vnio1) At}

i=1
oy oy
+2Hn,i—1(£n,i)—r ( n,t— I)An 1W+ Zan 1 fn z) ( n,i— 1)An,iJ
i=1 i=1
=: 20 + L(33) + L (33) + 133 (3-3)

3.2.2. The drift part I(33). According to the decomposition (3.2), we express, a.s.,

ot
I(SB) = Z(Hgifl) b( n,i— 1 Atn + Z n,i— 177nz (Yn,i—l)At;’L
i=1
o D
= Z(Mf,ifl)—r ni— 1) At + Z Z Z 1952 1 Yo 1) [nié(d)At?} :
i=1 d=1i=1 Lk=1
For the discrete-time integrator in the second term, we have the following law of large numbers

ai’
Znﬁ;(d)At? L2—®> 0 asn— o
i=1

foralld =1,...,D. Indeed, due to the orthogonality and E[|ng;(d)|2] = 1 it holds that

o 2
IE[ DA ] Z|At”\2 < t max At} = 0.
1=1

=1
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3.2.3. The Brownian part Il (3 3). By the same arguments as for the drift part, we decompose

II(S.:%) as
i’
H,(k,d) H,(d /
15 5 :Z(Mi{i—OTa(Ym—l)Anﬂ'W“’ Z Z Zﬂnz( 1 ( n,i—1) [Un,i( )An,iw(d) :
i=1 dd'=1,..,D i=1 Lk=1

Define the interpolated process W" = (W}"),c[o,7] and the RD? valued process M"™ = (M{")yc(0,1]
by

oy
=1
ot
Mtn,(d7d) — Z nﬁ;(d)An,iW(d/)7 d,d=1,...,D,
i=1
My — (Mt"’(l’l), N ,Mt"’(l’D), Mtn,(2,1)’ L Mf’(z’D), o 7]\@n,(D,l)7 o Mtn’(D’D))Ta

so that A, ;W™ = A, ;W and M* = Zl 1 nn ; @ Ay ;W. Then we get

Osay =Y () a(Voi ) A0 W™+ Y Z nio10(Yoi1)] G Ay a4,
i=1 dd'=1,..D i=1

Here W™, M™ can be respectively regarded as a discrete-time integrator of the first and the

second term in the decomposition of I3 3).

3.2.4. The jump part Il (3 5). For the jump part in (3.3), a first try is to rewrite

i - :/ [Hm_ uT'y Yoio e}]l n mi(s)my,(ds,de, du),
(3.3) (OﬂxExRD; i—1(w) Y(Yni-1)e| Lun | gmy(s)mn( )
for the random measure
n
my (dt, de, du) := D S(en, A, 6,0 (dE de, du), (3.4)
i=1

on B([0,T] x E x RP). Here, § denotes the Dirac measure. So, we move the Gaussian random
variables &, ; for the control randomization from the integrand to the random measure m,,, that
acts as a new integrator. It is, however, intuitively clear that the limit random measure (in a
weak sense) should be

m(dt, de, du) = > 6(r, A Jr e (dt, de, du), (3.5)
J
where (7;)jen are the jump times of J and (§;);en is a sequence of independent standard Gaus-
sians (independent of J), i.e., in the limit we would like to create independent Gaussian jumps
at each jump time of L as additional source of noise. If the original Lévy process has infinite
activity, this random measure does not induce a Lévy process, because the squared Gaussian
jumps Ej;Tj <t 532- do not converge. As a way out, we re-scale the additional Gaussian jumps
depending on the jump sizes of the original Lévy process.
To this end, let us fix a ¢ € C?(R”) which satisfies

[Vlloo + [V2lloc < 00, 9 >0 and ¢(z) =0 z=0.

A prototype example in our context is that, for a given constant ¢ > 0,

o) = V[alP+ & — .
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Define the random measure mj, on B([0,T] x E x RP) by setting

mY (dt, de, du) Z(s(tn A, (B i T)en) (dE, de, du).

Then the third term II]3 3 is finally expressed as

n

-
ey :/ [Hm (u > Yo e]]l n (8 Hn% ds,de, du).
(3.3) (O’ﬂxExRDZ i1\ 5o Y(Yn,i-1)e| Lir | gmy(s)my ( )

i=1
Note that the random measure mY is characterized by the induced martingale L™% = (L} ’w)te[o,T}
with L™ = 0 and
i

Y ::/ e,u ds, de, du Ay i, Y(Ap i) §m AmL"w
AR DR COLL TR IR R Z

As explained above, the “damping factor” (A, ;J) in front of &, ; in the third coordinate of

mY is introduced to ensure that L™¥ can converge to a Lévy process in the infinite activity case.

The smoothness condition for 1 is merely convenient for applying It6’s formula later on.

3.2.5. Distributional limit of discrete-time integrators. Set D := D?+3D. We collect all discrete-
time integrators of the Brownian and the jump parts to obtain the triangular array of D-
dimensional random vectors Z" = (Z{');c[o,7] With

Z" = vec(W"™, M"™, L™Y).

Our purpose is to investigate the distributional limit of (Z™),>1. To this end, we introduce the
Borel measure V% defined on R2P by setting

d
V%(de,du) = ]1{||e||>0}§0D <¢EL6)> ﬁu(de), e, u € RP.

Then, by a change of variables, one has

f(e,u)yf(de,du) = /ExRD fle,v(e)u)v(de)pp(u)du

R2D

provided that f > 0 or [z.p \f(e,u)|1/%(de,du) < oo. In particular, choosing f(e,u) = ||e||? +

lu||? we find that Vle is a square integrable Lévy measure on R?P\{0} with V%({O} x RP) =0
as

Lo CelP + [P esdu) = [ (el + wte?ulPwide)op(udu
R2D\{0} ExRDP
2 2 2 2
= [ lelPutde) + [ wiervide) [ TulPentudu< 1+ DIT6IE) [ flelPride) < o0

We need the following condition to obtain the desired weak convergence.

Assumption 3.3. {ﬁn’i_l(ﬁm) (@fz_ )flffm;_l(fn’i)}lgign,nzl is uniformly integrable.

Remark 3.4. Let us briefly comment on Assumption 3.3.

(1) By the construction of nfi in the proof of Proposition 3.2, one has, a.s.,
ﬁn ifl(gn z) (an 1) lﬁn,ifl(gn z)
1 ~ 1 ~
= tr[(an 1) 2Hyi-1(6n, Z)((@nz 1) 2Hyi-1(&n, Z))T]

Y

i.e., Assumption 3.3 is equivalent to the uniform integrability of {||17£{2-||2}1§i§n,n21.
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(2) Assume, for all n, that H: IT, x Q x RP? — R has the form
Hyic1(wsu) =mp i1 (w) +vpici(wu, i=1,...,n, (3.6)

where m,, ;1 and v, ;1 are respectively RP-valued and SE _-valued random variables,
both are F,, ;—i-measurable and square integrable with log(det(vy ;1)) € Li(P). Then
H is linear with respect to the exploration variable and is admissible in the sense given
in Section 3.2.1. Moreover, in the notation of Proposition 3.2, one has ,unH’ifl =My ;_1,
19571-71 = Vpi—1, and 175{1- = &p i, which obviously implies that Assumption 3.3 holds.

(3) We will see in Theorem 4.10 below that the time discretization of the optimal control
process for the associated continuous-time control problem has the form (3.6).

Under the setting of Section 3.2.1, we have the following result whose proof is postponed to

Section 5.

Theorem 3.5. Assume that W is a D?>-dimensional standard Brownian motion independent of
W, and that LY is a square integrable martingale null at 0 which is a 2D-dimensional purely
non-Gaussian Lévy process with Lévy measure uzp. Assume that processes W, W, LY are defined
on the same probability space. Then, LY is independent of (W, W), and under Assumption 3.5,
the sequence (2™),>1 converges weakly to vec(W, W, L¥) as n — oo in the Skorokhod topology
on the space of cadlag functions f: [0,T] — RD?+3D,

RP*P_yalued process. Then

By rearranging components of W, we may consider W as an
Theorem 3.5 suggests that the exploratory SDE in the continuous-time setting for the controlled

wealth process X with an admissible H is as follows

Ax{T = ()Y To(Yi)dt + () Ta(Y,- )W, + tr[(©fT)2a(Y,- )dW]]

T

+/ Ht<u) 'y(Yt,)eN}f(dt, de,du), X =zyeR, (3.7)
EXRD ¥(e)

where ]Vg’ is the compensated Poisson random measure of LY and the underlying process Y is

given by

dY; = b(Y;_)dt + a(Y;_)dW; + 7(}/;)/ eNY(dt,de,du), Yo =1yo € R,
ExRD

One notices that such a Y also admits Ly in (2.2) as the generator.

Remark 3.6. Let us briefly comment on SDE (3.7). For the Brownian component, the noise
caused by exploration, i.e. W, is completely separated from the original noise, i.e. W. While
for the jump part, both noises are simultaneously captured by the Poisson random measure
generated by a D2-dimensional Lévy process. Interestingly, for the optimal control H obtained
in (4.22), it turns out that one can completely separate these two sources of randomness due to
the linearity with respect to the exploration variable.

Remark 3.7. If the control enters in the drift part only, then the reasoning in Section 3.2.2
shows that there is no extra exploration noise in the continuous-time formulation. This is the

case, e.g., in [13] where the authors add jumps as uncontrolled Lévy noise.

Remark 3.8. We briefly explain the relation of the jump part in (3.7) to the notion of a relazed
Poisson measure, which has been introduced in the context of relaxed controls by [23]. We will
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restrict our discussion to the finite activity case (as assumed in [23]), in which we do not need
to re-scale the Gaussian jumps and we can formally set ¢ = 1. Then,

Nz)(dt, de,du) = m(dt,de, du) — v(de)ep(u)dudt

for the random measure m defined in (3.5). Hence, m is a relaxed Poisson measure for the
relaxed control ¢p(u)dudt in the sense of [23, p. 190]. The approximation m,, which we
consider in (3.4), arises from the modeling of control randomization in RL. Numerically it can
be interpreted as a Monte Carlo approximation of the relaxed control ¢p(u)dudt on the time
grid t3,...,t;. This Monte Carlo approximation is conceptually different to the numerical
approximation considered by Kushner in [23]. Roughly speaking, Kushner’s approach would
approximate the relaxed control by replacing the multivariate Gaussian distribution by a discrete
distribution supported on N points aq,...,ay and successively calling these N points over a
refined time grid.

4. ENTROPY-REGULARIZED EXPLORATORY MV PROBLEM WITH LEVY JUMPS

We work on a fixed complete probability space (2, F,P) carrying the triplet (W, W, LY)
aforementioned in Theorem 3.5. Let Nip denote the associated Poisson random measure of LY
with the compensation NY = Nz’ - A ® l/}{), where A; is the 1-dimensional Lebesgue measure.
For 0 <t < s < T, we denote F! = o{W,, — Wy, W, — Wt,L}? — L}f it <r < s} augmented by
all P-null sets. Set Fy := FP.

S

For € ~ N(0,Ip) we define the family of deterministic admissible functions as

a={r

Admissible controls in the discrete-time setting are adapted to the continuous-time setting as

F:RP - RP Borel, / | F(u)||?¢p(u)du < oo, F(€) has a probability density pF}.
RD

follows.

Definition 4.1 (Admissible control). For (t,y) € [0,T) x RP, denote by A(t,y) the family of
all admissible controls H for which the following conditions hold:
(H1) (Admissibility) H: [t,T] x © x RP — RP satisfies that
(a) H is P([t, T]) ® B(RP)-measurable, where P([t, T]) is the predictable o-algebra on
[t,T] x Q;
(b) Hs(:) := Hs(w;-) € A for all (s,w) € [t,T] x .
(H2) (Integrability) It holds that

P( / T/R H)]Pen(u)du < oo) -1, (4.1)

and that processes p! = (ufl)sep 1y, OF = (0 et 1) defined on [¢,T] x Q by

s

pli= | Hywep(w)du, Hy(u):=Hy(u) - pl', OF:= | Hy(u)H(u) op(u)du,

RD ° RD

satisfy that

| [ ' (Tt +alagnes+ [ T ePutae)ep(wan )as)

xRD
T

/ () TH(Y) ds
t

+E[ 2} < 00, (4.2)




14 CHRISTIAN BENDER AND NGUYEN TRAN THUAN

where Y9 = (YY) (177 is a (unique) strong solution to the following SDE on [t, T
AvHY = (YY) ds + a(YSY)dW, + ’y(Y;t’_y)/ eNY(ds,de,du), Y}Y =y. (4.3)
ExRDP

(H3) (Finite accumulative differential entropy) There is a kernel p: [t,T] x Q@ x RP — R
such that p! (w;-) is a probability density function of Hy(w; () for any (s,w) € [t,T] x £,
where ¢ ~ N(0,Ip) is independent of 7, and that (s,w) — [5p p (u)logpH (v)du is
(F&)set,r-predictable with

|

For a given control H € A(t,y) and = € R, the dynamic of the controlled wealth process

/ p (u) log pX! (u)du
]RD

ds] < 00. (4.4)

XteyiH — xbeyill )selt, 7], Which is assumed to has cadlag paths, is described by the exploratory
SDE on [t,T] as

AXLmH = () To(Y ) ds + (uf) Ta(Y22)dW, + te[(OF)2a(Y)aw]]
T
+/ Hs(u) V(Y Y)e NY (ds,de, du),  X}™¥H =g (4.5)
EXRP ¥(e)
where Y'Y solves the SDE (4.3).

Remark 4.2. (1) Processes 7 and © are predictable by (H1) and Fubini’s theorem.

(2) As a consequence of [6, Theorem X.1.1], there exists a ¢p > 0 such that HA% — B2 | <
cpllA— BH% for any A, B € SP. HenceSP 3 A — Az is (Holder) continuous which then
ensures that (01 )% is also a predictable Sf—valued process.

(3) Due to (4.2), Xt®¥%H in (4.5) is a square integrable process satisfying

E[ sup \Xz’x’y;H\Q] < 00. (4.6)

t<s<T
4.1. Problem formulation. We are now in a position to formulate the entropy-regularized
exploratory MV problem. Remark that, due to the time inconsistency of the MV problem, we
just examine solutions among precommitted strategies which are optimal at ¢ = 0 only.
Let us fix a Z € R which represents the targeted expected terminal wealth. For an initial
wealth 29 € R and yo € R”, we consider the problem

: E(XMMMH—EP&MMH +A/ / b dud
Htel(lél’yo) |: T T ps gps( ) udas

subject to X%*0%0H given in (4.5) and E{ OIO’yO’H} = 3.

(4.7)

Here the exploration weight A > 0, which is fixed from now on, describes the trade-off between
exploitation and exploration and it is also known as the temperature parameter in the RL
literature.

We follow [34] to apply the Lagrange multiplier method to solve (4.7) (see Section 2.4 for a
similar argument in the setting without exploration). In the first step, we examine the following
entropy-regularized quadratic-loss minimization problem, parameterized by @ € R,

min E[(X%xo’yo;H—w —i—)\/ / pH (u) log p* (u)duds

HEA(0.y0) (4.8)

subject to X%%0¥0iHl given in (4.5
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We solve (4.8) to obtain a solution H* := H*(w) depending on w. This task is presented
in Section 4.2. In the next step, we find the Lagrange multiplier @ by using the constraint

E[XH"] = 2. Then H*() is a solution to problem (4.7) where 1 is the obtained Lagrange
multiplier. The latter task is done in Section 4.3.

4.2. The entropy-regularized quadratic-loss optimization problem. Let us fix w € R.
Problem (4.8) is an unconstrained control problem and we will find its solutions via the dynamic
programing approach. Define the function V (-]&0) associated with a control H € A(t,y) and
x € R by setting

: 2 r
VH (@t z, ylw) :=E [(Xélx’y’H — 1[)) + )\/t /RD pH (u) log pH (u)duds]| .

We consider the following system of problems which particularly yields to (4.8) when (¢, x,y) =
(07 Zo, 1/0) :

Problem 4.3. For given (t,z,y) € [0,T) x R x RP | find an H* € A(t,y) such that

V*(t, 2, yld) =V (t,2,y)0) = min V(¢ 2,yw0) (4.9)
HeA(ty)

subject to the state equation (4.5).

Definition 4.4. For a given initial triple (¢,z,y), any H* € A(t,y) satisfying (4.9) is called
an optimal control, the corresponding controlled state process Xb*¥* = Xt&UH" ig called
an optimal state/wealth process, and V*(-|w) satisfying the terminal condition V*(T, z,y|w) =

2

(x — )= is called the value function.

4.2.1. Entropy-regularized Hamilton—Jacobi—Bellman (HJB) equation. As we use the dynamic
programming approach to solve Problem 4.3, it is useful to consider the associated HJB equation.
Let us first introduce some notations. For F' € A, we define m’ € RP and 6% ¢ Sf by

mt = [ Pluep(udu

of = /RD (F(u) — mI)(F(u) — mF)ngJD(u)du = - F(u)F(u)Tng(u)du - mF(mF)T,

and the differential entropy of F' is denoted by
Ent(F) := —/ p" (u) log p* (u)du.
RD

Using the classical Bellman’s principle of optimality and a standard verification argument (see
the proof of Theorem 4.10 below) we find that the HIB type formula in our setting is stated in
form of a (possibly degenerate) second-order PIDE as follows:

1
0= d(t,z,y) +b(y) " V,u(t,z,y) + Etr[A(y)Vf/yv(t, z,y)]

+ i { G02.0tt. ) ()T Al + ()01

+ (m")T (A@W)VE,o(t,2,) + Ouv(t, 7, y)b(y) )

+ <v(t, z+ Fu)"™y@)e,y+v(y)e) — v(t, z,y)
ExRD

— 0,0t 2, y) F () y(y)e = Vyo(t,2,1) T2 (y)e ) v(de)pp(u)du
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— )\Ent(F)}, (t,z,y) €[0,T) x R x RP, (4.10)

with the terminal condition v(T, z,y) = (x — )? for (z,y) € R x RP.

Remark 4.5. By [9, Theorem 8.6.5], one has Ent(F) = —oo if det(§¥") = 0. Hence, it suffices to
consider the above minimization over F € A with det(§") > 0, i.e. over F € A with 6" € SP_ .

Remark 4.6. In the case of no jumps, i.e. v =0, (4.10) simplifies to

1
0= drv(t,z,y) +b(y) Vyu(t, 2, y) + Str[A@W) Vi, u(t, 2, )]

+ min {;ngv(t,x,y) (mTA(y)m + tr[A(y)G])

meRP fesP

+ mT (A(y)Viyv(t, Z, y) + 8xv(t7 x, y)b(y)>

- max Ent(F)}, (t,z,y) € [0,T) x R x RP.
FeA; mF=m and 0F =0
By the entropy-maximizing property of the Gaussian distribution, the maximum over F' is
achieved at the linear function F'(u) = m + 92w and the HJB-equation becomes a second-order
PDE for the unknown value function v. This PDE can the be solved by a quadratic ansatz as
done e.g. in [34] for the case D = 1 and constant coefficients. In the presence of jumps, this
“separation argument” (solving first for F' given its first two moments) a priori does not work
anymore, because F' explicitly enters the integral term of the HJB-PIDE (4.10). As we will
show in the next section, (4.10) can nonetheless be solved by a quadratic ansatz, and, then, the
separation step can be performed a posteriori, leading to the Gaussianity of the optimal control

law.

4.2.2. Quadratic ansatz. We first introduce the following function classes in relation to the
coefficient v and Lévy measure v.

Definition 4.7. For a Borel function g: [0,7] x RP — R we let g € T(0) (resp. g € Y(1), g €
Y (2)) if there exists a (jointly) continuous function Tgo) (resp. Tgl), T§2)): [0,T] x RP — [0, 00)
such that

/E 9ty +v@e)] [lelPv(de) < TO (1),
resp. / 9ty + 7)) — 9(t, )| ellv(de) < YD (t,y),
E

resp. /E ‘g(t, y+7(y)e) — g(t,y) — Vyg(t, y)Tv(y)e‘V(de) <TP(t,y),

for all (t,y) € [0,7] x RP, where we additionally assume that V,g exists and measurable for
g € T(2). Then Ték) is called an Y-dominating function of g € Y (k).

Remark 4.8. A standard calculation shows that g € T(0) N (1) N Y(2) if [, [le]|*v(de) < oo
and one of the following holds:

(a) g is twice continuously differentiable with respect to y with

sup  (lg(t.y)| + IVyg(t, )l + I V2,9t v)]) < oo
(t,y)E[O,T}XRD

(b) sup( )0, 11xrp [9(t y)| < 00, Vyg is jointly continuous on [0, T x RP, and v(E) < oo.
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For a € T(0)NY (1), & > 0 on [0, T|xRP, and V,« exists, we define the functions M, : [0, 7] x
RP — RP and 8,: [0,T] x RP — SP. as

Ma(t,y) == alt,y)b(y) + A(y)Vya(t,y) +v(y) /E(a(t, y+7(ye) —alt,y))ev(de), (4.11)

Salt,y) = alt,y)A(y) +(y) (/E alt,y + 'V(y)e)eeTV(de)>v(y)T- (4.12)

In particular, if o = 1 on [0,7] x R” then M, = b and 8§, = ¥. One also remarks that the
mapping 8, is well-defined. Indeed, for any (¢,3) € [0,T] x R” and u € RP\{0}, one has
uT8u(t,y)u > 0 because of & > 0 and the non-degenerate condition (see Section 3.1). As a
consequence, the inverse 87 !(¢,y) exists and also belongs to SE . which can be easily derived
from the spectral decomposition of 8, (¢, y).

Proposition 4.9 (Quadratic value function). Let o, 8 € CY2([0,T] x RP)NY(2). Assume that
a € Y0)NY(1) and a > 0, and that «, B solve the following system of PIDEs pointwise on
[0,T) x RP,

8ta(t7 y) + EYO‘(ta y) - (Mlsglma)(tv y) =0,

D

0B t.1) + L 5(t,0) ~ 5 1og (gt ) =0 (1.13)

(T, )=1 and B(T,-) =0,
where Ly ¢(t,y) == (Lyo(t,-))(y) for ¢ € {a, B}. Then, for (t,x,y) € [0,T] x R x RP,

VPt 2,y) = alt,y) (@ — @) + Bt y) (4.14)

solves the HJB equation (4.10). Moreover, a minimizer FOP* = FoP*(t,z,y; X;-) € A is

FPM(t, @,y Asu) = mEPH(t, 2, ) + 0P (¢, 53 \) 2, (4.15)
where
A
mP(t, x,y) = —(x — W) (8, Ma)(t,y) and 0P (t,y; ) := 5351(75,?;)- (4.16)

Proof. One first notices that Ly «(t,-) and Ly ((t,-) are well-defined functions for ¢ € [0,7T]. To
simplify the presentation, we omit the argument y of coefficient functions b, A, ~y, and for fixed
(t,y), we formally use the following notations for o (and analogously for j3),

a=alty), ale):=alt,y+y(yle), Lya:=Lya(ty).

Plugging the ansatz (4.14) into the HJB equation (4.10) and rearranging terms we get the
following which holds pointwise on [0,7) x R x R?,

0=(z— d/)z(@ta + Lya) + (O + Ly )

+ FeAngnFne i, {a((mF)TAmF + tr[AHF]) +2(z — w)(m™)T(AV,a + ab)
—i—/E (d(e)eT’yT(GF +mP (mI)ve +2(z — w)(ale) — a)(mF)T’ye)V(de) — /\Ent(F)},
(4.17)

where the minimization is taken over F € A with ¥ € SE . due to Remark 4.5. Remark that
given any m € RP, 6 Sf ., there always exists an F' € A such that mf = m and 0 = 0, for
example, one might take F'(u) = m + 02u. Then the minimum over F € A with 6F € SP, in
(4.17) can be separated into two individual minimization problems, one is over mf € RP and
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the other is over §F ¢ S&_. Specifically, let \11(4

£17) denote the expression inside the minimum
in (4.17), then one has

min vl = min {am'Am +2(z — w)m' (AV,a + ab
s, ¥ i { (o — wymT(AVya + ab)

+ /E (a(e)(mTye)? +2(a — w)(@le) - a)mTve)V(d*f)}

+ min {atr[A9]+ / ale)e™yThyev(de) — A  max Ent(F)}

fesD, B FEA,0F =0
=: min [, m) + min 0). 4.18
o Rb f(4.18)( ) pesD 9(4.18)( ) ( )

57y
It is known that the differential entropy is translation invariant and it is maximized over all
distributions with a given covariance matrix by Gaussian distribution, see, e.g., [9, Theorem

8.6.5]. Hence, 9g(s.18) can be expressed as

g(1.18)(0) = atr[Af] +/ ale)e'yThvev(de) — %log(det(ﬁ)) — )\TD log(2me).

E
Combining (4.17) with (4.18) yields the equation
( — @)X (B + Lya) + (BB + Ly B) + min fry15(m) + min gi 5 (0) = 0. (4.19)
meRDP 0 SEJF

We first consider the minimization problem

min gy 15)(6).

pesD., 9(1.18)( )
By vectorization, SE . can be regarded as an open subset of RPP+D/2 where the openness
(under the Euclidean norm) can be inferred from Sylvester’s criterion, so that g 5) becomes
a function defined on SY, < RP(P+D/2. Gince § — —log(det(d)) is a convex and differ-
entiable function on SE +, it implies that g(4g) is also convex and differentiable. Hence,
solutions of Vg 15) globally minimize g 15) on SE 4. To find its solutions, we represent
6 = (0D .. gD 922 gD2)  gD.DNT ¢ RPIDHD/2 - Then, for 1 < j < i < D,
according to [17, p.311, Eq. (8.12)] one has

Ologdet(d) . 4 . 1)
so that the partial derivatives of g(45) are computed by
89(/1.18)
00(.3) (9)

= a[24 — diag(A)]) + / a(e)[2yeeyT — diag(vee ")) (de) — 2[29_1 — diag(9~ )],
E

Solving Vgs.18)(#) = 0 we get the solution ¢ = 0P (t,y; \) as provided in (4.16). Hence,

0SP* (¢, y; \) is a global minimizer of 9g(1.18) on SP, . We next investigation the problem

min_ f(4.18)(m).

meRP
Solving V f(4.18)(m) = 0 yields the solution m = mP*(t, x,y) which is provided in (4.16). More-

over, since

i =24+ 2 ( [ aloecTuiae) o7 =,
E
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and 8, € SP, as claimed above, we infer that mq’ “(t,z,y) is a global minimizer of f(a18) on

RP. Plugging these minimizers back into (4.19) and noticing that

tr[aAS ! = tr {ID - / d(e)yeeTstaly(de)] =D— / ale)eTyT8 1vev(de)
E E

we eventually arrive at the equation

D
0=(e—a) (8750‘ +Lya— MISJM&) + <8t6 + Ly~ %log ((g(r;a)»

which holds true according to assumption (4.13). As a consequence, the function provided in
(4.15) is an optimal solution of (4.17). O

4.2.3. Verification argument. In the following result, the coefficients K € {b,a,7y, A, ¥} are
conveniently extended to be defined on [0, 7] x R? by setting K (t,y) := K(y). We recall M,
and 8, from (4.11) and (4.12) respectively.

Theorem 4.10. Let «, 8 satisfy the assumptions of Proposition 4.9. Let (t,z,y) € [0,T) x R x
R and recall Y in (4.3). Assume furthermore that {B(t, YY) |7: Q — [t,T] is a stopping time}
is uniformly integrable and that o is bounded on [0,T] x RP and satisfies

T
/ OU10) (s, VP ds + sup [OG8128,Ma)(5, V) S cazg as (420)
t sE(t,

E[/tT tr[(ES;l)(s,YSt’_y)]ds] —HE[/tT ‘ log (det(Sa(s,Y:’_y))) ‘ds] < 00, (4.21)

for some non-random constant c(, 20y > 0. Then a solution for Problem 4.3 is

)T S8— ’) T S8—

_1
HEBY (0) = —(XD™Y — ) (871M) (s, YY) + \/gsa 2(5, Y, se(t,T],uecRP, (4.22)

_1
with HY"Y (u) == —(z—0)(85 M) (¢, y) + \/gsa 2 (t,y)u, and the corresponding optimal wealth
process X5oW* = (Xo™) 7y is a unique cadlag (strong) solution to the SDE on [t,T],

. T ) .
AXLPY* = —(XL5Y* — @) dZbY + \EdMgvy, X[V = g, (4.23)

Here ZbY = (Zﬁ’y)se[tﬂ, MbY = (Mﬁ’y)se[t,T] are cadlag with Ztt’y =0, Mtt’y =0 given by
— t, ,
AZg¥ = (Mg 81 (s, Yi)dvY,

1 T ~
(522 0221 ) 0220 g et

The value function is V*(-|w) = v°P*, where v°P' is provided in (4.14).

_1
dM;’y _ tI‘[(Sa 2a)(57}/8t7_y)dw;r] +/
ExRD

Remark 4.11. The RL algorithms developed in [20, 21] learn the value function and the opti-
mal measure-valued control in parametric classes of functions and probability measures (which
have to be chosen beforehand). The structural results on the optimal value and the optimal
control obtained in Proposition 4.9 and Theorem 4.10 facilitate such a parametrization. Indeed,
Proposition 4.9 shows that the optimal value function is quadratic in the portfolio wealth with
coefficients which can be computed in terms of the functions a and 5. Moreover, the opti-
mal control law is Gaussian with mean —(X"¥* — ©)(85'M,)(-, YY) and covariance matrix
%S;l(-, YY) by Theorem 4.10 (and, hence, mean and covariance matrix do not depend on ).

Under additional structural assumptions on the stock price model, see Example 4.14 below, the
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PIDE for « can be solved in closed form, leading to an explicit parametrization for the optimal
control law.

We also remark that, in general, the mean of the optimal control linearly depends on the
associated portfolio wealth, while its covariance matrix is independent of the portfolio wealth.

Proof of Theorem 4.10. Let us fix (¢, z,y) € [0,T)xRxRP. For the sake of notational simplicity,
in the presentation below we omit the super-scripts (¢, y) and (¢, z,y) in relevant processes such as
Y4 in (4.3), X05UH in (4.5), and MY, 2. Since E[ [, tr[(28,1)(s, Ys_)]ds] < oo by (4.21),
it implies that M is a uniformly square integrable martingale with E[max;<s<7 |M;|?] < oo due
to Doob’s maximal inequality. By assumption (4.20), we apply Lemma B.2 to infer that the
SDE (4.23) has a unique cadlag solution X* with

E[ sup ]X;‘P] < 00. (4.24)
t<s<T

Step 1. Take H € A(t,y) arbitrarily. For v°P* given in (4.14), one has

T
VA (2, ylib) = E[v‘)m(T, XY+ [ [ 9w logp! (w)duds .
t R

Applying Itd’s formula (see, e.g., [22, Theorem 2.5]) for v°P* € C12([0,7] x R'*P) and XV
we obtain, a.s., for t <r < T,

0P (r, X Y,) — v (¢, ) / Pt (s, X1 Y, )ds
/ 0,0 (5, XH v, ) () Th(Y. ds+/ V0P (s, X2 Y, ) Th(Y,)ds
[ 000 o X2 V) ()Tl AW, + trl(©2) (v, )aw])
/ Vo (s, XH Vi ) Ta(Ye )dW,
+g [ (s XY (T Al + er{A(Y. )0l )ds

1
+ /t ((us )TA(Y; )V, Opt(s,Xf_,YsJ+§tr[V§yv°pt(8,Xﬁ,léf)A(st)])dS

.
ot (g xH H(“) Yo_)e, Yar + (Vs )
+/(t,r]><E><]RD [v (S = Y(e) 7( )e el )e

— 0P (s, X1, Ys_)} NY(ds, de, du)

)
- [wm (s,Xf L h, (“) (Ve )e Yoo + v(Ys—)e> (s, X2y, )
(t,r] x ExRP Q]Z)(e)

-
— O,v°PY (s, X1 Ys_)HS< > v(Yso)e — VyuP(s, X2 | YS_)Tfy(YS_)e] V%(de, du)ds.

(4.25)

v
W(e)
We let z := % and denote by P(s, e, z) the integrand against Vsz(de, du)ds in (4.25). It follows
from the explicit form of v°P* that

P(s,,2) = a(s, Yae +7(Yan)e) (X2 + Hy(2)T1(Yem)e — ) — a(s, Yoo )X — @)’
+B(s, Yo +7(Yao)e) = Bls, Yar) — 2a(s, Yoo )(XIL — ) Hy (=) T(Yao e
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= Vyals, Yoo ) (XL — @)y (Yoo )e = VyB(s, Yoo ) Ty(Yi-)e

— (X~ )% |a(s, Yo +7(Ys-)e) = als,Ys-) = Vyals, Vo) (Vs )e]

+2(XI — @) |als, Yo + (Vs )e) = als, Yoo ) | Ho(2) (Vs e

Yoo )e)(Hi(2) T (Yeo)e)?

Yio)e) = B(s, Vo) = VyB(s, Yo ) (Vs e

+a(s,Yso +7

(
+ B(s, Yoo 4+ (

Let T&O), T&l), T((f) and T/(Bz) respectively be (continuous) Y-dominating functions of a and 8 in
the sense of Definition 4.7. Then, for some constant ¢p > 0 depending only on D, we get, a.s,

T T
// |P(S,e,z)]1/}f(dejdu)d5:/ / |P(s,e,u)lv(de)op(u)duds
t JExXRP t JExRP
T
< [ (- s Yids
t
T
woep [ = al(( [ I Glen(dn) LD s, Ve
t

T T
tep / |w<n>||2r$><s,n>( / ||Hs<u>||2sop<u>du>ds+ / 15, Y, )ds
t RD t

< 00,

where we use the cadlag property of X Y and assumption (4.1) to deduce the finiteness.
Let Q(s, e, z) denote the integrand against sz in (4.25) and define

R(s.e.2) = [20(s, Yoo (X~ @) Hy() + Vyals, Yoo ) (XL )2+ V,8(s. Yo)| 7(Yao)e
—: (s, 2)TA(Ya e
so that
Q(s,e,2) = P(s,e,2) + R(s, e, 2).

Then, there is a constant ¢, > 0 such that, a.s.,

T T
/ / ]R(s,e,z)\QVf(de,du)ds = / / |R(s, e,u)|*v(de)pp(u)duds
t JEXRP t JExXRP

<o [1erwtae)) [ [ 1Rl Pepaas
< 00

On the other hand, by rearranging terms we get a predictable process ¢ and a local martingale
UH null at ¢ such that

T
O XY 0 ) = [ ofids - UF
t

Since v°P' solve the HJB equation (4.17) and any H € A(t,y) is sub-optimal in general, we

arrive at, a.s,
T
XY = 0ty = - [t ot (wduds + UL (4.20
t JRD

To deal with U, we define the localizing sequence (Tn)n>1 as follows

Tp := T A inf {r € (t,T] :/tr </EXRD(\P(s,e,u)] + |R(s,e,u)*)v(de)pp(u)du
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+ Vo (5, XL Yo ) TA(Ye ) Vo (s, X Vi)
100 s XY )P ()T Al AV )8E]) s 2 n .

Since the integrand against ds in the definition of 7, is integrable on [¢t,T] a.s., the integral
ft -)ds is finite and non-decreasing in r a.s., and hence (7,)n>1 is a non—decreasmg sequence
of stopping times converging a.s. to 7' as n — co. We note that the local martingale U on the
right-hand side of (4.26) is an integrable martingale null at ¢ when stopping at 7,,, and hence,
vanishes when taking the expectation. Therefore,

P (0, y) < B [( XEv) o [T o tos! <u>du]
t RD
=E [a(rn, Yo ) (X — )2+ B(rn, Vi) + )\/ n/ pH (u) logpf(u)du] .
t JRDP

By assumption, « is continuous and bounded, 3 is continuous and {3(7y, Y7, ) }n>1 is uniformly
integrable, and the entropy term is also uniform integrable for H € A(t,y), we exploit (4.6) and
use the dominated convergence theorem with keeping in mind that (7,,)n>1 is a.s. eventually
constant T to get

T
VP (1, 2,) < E[UOP%T, XfLvn e [ plogp! <u>du] —VH (1,2, yli).

Since H € A(t,y) is arbitrary, it implies that v°P*(t, z,y) < V*(¢, z, y|D).
Step 2. As suggested by (4.15), H* provided in (4.22) is a candidate for optimal controls. If

*

H* is admissible, then we can apply the arguments in Step 1 for H*, where inequality (4.26)

becomes an equality, to obtain
VPt @ y) = VI (2, y|d).

Hence v°P'(t,z,y) = V*(t,z,ylw). It remains to show that H* is admissible by verifying the
requirements in Definition 4.1. Condition (H1) is obvious from the definition of H*. For (H2),
one has

pl = —(XI - w)(8;'"Ma)(s,Ys) and ©F = As. (s, Yso).

Condition (4.1) is straightforward due to the cadlag property of X*, Y and the continuity of
Ma, 851 on [0,7] x RP. For (4.2), expanding the square and using [,p u¢p(u)du = 0 and
f]RD uu'op(u)du = Ip in the jump part we get

(s )T Ao ) ! +tr[A(Ys—)@f*]+/ |H (w) "y (Yo )elPv(de)pp (u)du
ExRD

= (X — 0 (I8, A8, M5, Vo) + S tre{(AS; ) (s, Yoo )

A
+ (X —)? <M28a17/ eeTu(de)fyTaSalMa> (s,Ys—) + §tr [(’y/ eeTV(de)7T8a1> (S,YS_)]
E E

= (X — @) (T8 087 M) (s, Yoo ) + Str([(9871)(s, Y]

In addition, using Hoélder’s inequality yields

‘/ HOTp(s,Y,_)|ds : < (/tT(X;k - w)2d3> (/tT |(M18a1b)(s,ys_)\2ds),
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Hence (4.2) is satisfied by using (4.20), (4.21) and (4.24). To verify (H3), we might take pf"(-)
to be the continuous density function of the Gaussian distribution V' (u2", ©H") with mean pf”
and covariance matrix ©" and then (4.4) follows from (4.21). O

4.3. Explicit solutions of optimal exploratory SDEs and Lagrange multipliers. As an
advantage of our approach, the optimal exploratory dynamic (4.23) is a linear SDE with jumps
which enables us to find its solutions in a closed-form. As a consequence, we can also explicitly
determine the Lagrange multiplier < using the constraint E[X#"] = 2, where H* is given in
(4.22).

We consider Problem 4.3 and assume the assumptions of Theorem 4.10 for (¢, z,y) = (0, zo, yo),

and omit super-scripts (0, o) and (0, zg, yo) in relevant processes.

Proposition 4.12. Under the assumptions of Theorem /.10, if AZ # 1 on [0,T] then the
optimal wealth process X* = (X[)rejo,r) in (4.23) is given by

X::w+[xo—w+\/§</org(ij\zi+/OT%>}5(—Z)T, rel0,T),  (4.27)

where £(—=Z) = (£(=Z)r)rejo,r) denotes the Doléans—Dade exponential’ of —7, i.e.

E(-Z)=1, E(-Z), =exp ( — 7, — ;/Ord[Z, Z]§> I] @-2az)er?, re(o,1]

0<s<r
Here the quadratic covariation terms are explicitly expressed as follows
dM, Z]s = /
: ks BxrD ¥(€)
d[Z, 7)¢ = (MISLASTIM, ) (s, Ys_ )ds.

1
el [WTSEIMQ(SQ 2 u)T*y} (s,Ys_)e NQL’/)(ds, de, du),

Moreover, if E[€(—Z)r] # 1 then the Lagrange multiplier W (such that E[X}] = 2) is given by
1 A T dm; T a[m, 7]
b= (:-/2E s 2 Ve(—2)r| — 2oB[E(—-2)7] ).
o= rmmen GVl ([ ez [ fme o o] -wmec2)
(4.28)
Proof. For Z given in Theorem 4.10, we write
—(X§- —w)dZs = (Xg_ —w)d(=Z,).

Since AZ # 1 by assumption, it implies that inf{s € (0,7] : 1 — AZ; = 0} = oo a.s. We then
apply [30, Exercise V.27] to obtain the explicit representation for X* as in (4.27).
For the Lagrange multiplier w, we first notice that £(—Z2) satisfies the following SDE on [0, T']

,
-2 =1+ [ &-2).-d-2).
0
Since the conditional quadratic variation® of the integrator —Z is
T
(=7, _Z>T = / (MISjES;lMa)(S,YS_)dS < 0(4.20)T7
0

it follows from condition (4.20) and Lemma B.2 that £(—Z2) is square integrable. Since X* is
also square integrable by (4.24), letting » = T and taking the expectation both sides of (4.27)
we rearrange terms and use the constraint E[X ]| = £ to obtain (4.28). O

2See, e.g., [30, Section I1.8].
3See, e.g., [30, Chapter III, p.124].
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Remark 4.13. (1) If v is absolutely continuous with respect to the D-dimensional Lebesgue
measure Ap, then AZ # 1 on [0, 7). Indeed, by letting J; := fot Jrwrp eNf(ds,de, du) so
that J admits v as its Lévy measure we get

E[#{s € (0,T] : AZs = 1}] = E[#{s € (0,T] : (M8;'7)(s, Ys-)AJs = 1}]

T
= E[/ / ﬂ{(Mgs;H)(s,Ys,)e:l}y(de)ds
0o JE
=0,
where we combine Fubini’s theorem with the fact that hyperplanes have Lebesgue measure
zero to obtain the last equality. Hence, #{s € (0,T] : AZ; =1} =0 a.s.

(2) If the condition “AZ # 1 on [0,7]” in Proposition 4.12 is not satisfied, then we can still
obtain explicit representations of X* and w. However, as these expressions are rather
technical, we refer the interested readers to [5] for more details.

4.4. Illustrative examples. Let us consider some situations in which assumptions of Propo-
sition 4.9 and Theorem 4.10 are validated. For matrices P,Q € SP we write P < Q or Q > P if
Q-Presh.

Example 4.14 (Proportional coefficients). Let b,a,~ in Section 3.1 satisfy b(i),a(i’j),’y(i’j) €
C’bOO(RD) for all ¢,j5 = 1,...,D. Assume that there are constants K > 0 and € > 0 such that,
for all y € RP,

{A(y) =<l (4.29)

(TS )(y) = K.
For example, if there exist U: RP — S£+ with U9 e CEO(RD), i,7=1,...,D, and a constant
§ > 0 such that U(y) = 6Ip for all y € RP and that, for some constant b € R?, 4,5 € RP*P
with b # 0 and det(a) # 0,
b(y) =UWb, aly) =Uya, ~(y)=U)7,

then condition (4.29) holds true with K = b (aa' + ¥ [5 eeTv(de)yT)~'b and e = 622, where
€ > 0 is sufficiently small such that aa' > &Ip.

Now, under (4.29), Assumption 3.1 is obviously satisfied. Moreover, since X(y) = A(y), it
follows from the ellipticity condition A(y) > eIp that X(y) = eIp. Hence, Lemma B.1 gives

1
57'(y) 3 ZIp, Wy eR”.

Consequently, one has sup,cgo [|[ X7 (y)|| < oo.
We first find solution « of the PIDEs (4.13) which does not depend on y. For a(t,-) = «(t),
we get
8a(t,y) = a(t)%(y), Mal(t,y) = a(t)b(y)
so that (M18-'M,)(t,y) = a(t)K. Then the PIDE for a in (4.13) boils down to the following
ordinary differential equation (ODE)

o(t)—at)K =0, tel0,T),
{a(T) =1,

whose solution is given by
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It is easy to check that the assumptions of Proposition 4.9 and Theorem 4.10 are satisfied for

a. Next, plugging this « into the PIDE for § in (4.13) we obtain
A (Am)P )
ap(t,y) + LyB(t,y) — = lo ( =0, tel0,1),
)+ B D) =5 108 G @) o1 (4.30)
B(T, ) =0.

We apply [26, Theorem 1] to conclude that the PIDE (4.30) has a unique classical solution § €
C2(]0, T) x RP). Moreover, 3 and its partial derivatives 9,3, V, 3, ng B are uniformly bounded
on [0,7] x RP. Then 3 also satisfies the assumptions of Proposition 4.9 and Theorem 4.10. The
Feynman—Kac representation for 3 (see, e.g., [3, Theorems 3.4 and 3.5]) is

) =8| [ ss3i0as). o) e o1 xxe

where f(t,y) = —% log(ﬁgg(m)) and Y'Y is given in (4.3). The value function is

V*(t,z,yld) = e T (@ — ) + B(t, y).

The associated exploratory SDE for X* = (X}),¢jo,7) is given by Xo = 2 and

X} = =7~ 0)(Kar + 0TS )0, + 0750 [ e (andeau)

xRD
T

+ \/ge%”—”ff (tr[@—%am_)dw: |+ /E - j(e) (2729) (Y, )e NY (dr, de, du>) ,
(4.31)

whose explicit expression can be derived either from [5] or from (4.27) provided that AZ # 1
on [0, 7).

Regarding the Lagrange multiplier 1, due to the condition (b"X!b)(y) = K in (4.29), we
can simply calculate its value by taking the expectation of X with noting that the martingale
terms in the expression (4.31) of X are square integrable null at 0, and then using Fubini’s
theorem to get

T
E[X] = @0 — K / (E[X?] — )ds,
0
which then gives

E[X}] =0+ (o —w)e X", re[0,T].

r

By the constraint E[X7] = 2, we arrive at
ieKT — X

W = .
eKT — 1

Example 4.15 (Constant coefficients). Let b, a,y be constants on R? with b # 0 and ¥ € S£+,

where a might be degenerate. In this situation we can find solutions «, 8 of the PIDEs (4.13)

which do not depend on y. Namely, by letting «(t,-) = a(t), S(t,-) = B(t) and plugging them

into (4.13) we obtain a system of ODEs for «, 5 which possesses the following solutions on [0, 77,
at) = e (T-DK

2AD
4

(M)D)

K—(T—t)élog(
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where K :=b"27"'h > 0. It is also easy to check that the assumptions of Proposition 4.9 and
Theorem 4.10 are fulfilled for «, 8. Then the value function is explicitly given by

T D
VAt i) = V(1 o) 2= e 0K (@ ) — (T~ 1?2 K — (7~ 1) log <c(12t<)z>>'

The SDE for the optimal wealth X* and the Lagrange multiplier @ are respectively the same

as those in Example 4.14 where one notices here that coefficients b, a,y, ¥ are constant®.
In the following we continue to specialize Example 4.15 to the case of no jumps.

Example 4.16 (Constant coefficients, v = 0 and D = 1). This is the setting considered by
Wang and Zhou [34]. For a > 0, b # 0, letting 0 := a and p := b we get the value function

a

V*(t,zl) = e T (z — )2 — % (’;Q(T —1)? +(I'—t)log (fj;))

which coincides with that in [34, Theorem 3.1]. The associated SDE for the optimal wealth X*
in our setting is

)\ 2
AdX! = —p?(X} — )ds — p(X} — b)dW, + \/;ePQ(T_t)dWS, X = o, (4.32)
whose explicit representation is given, according to Proposition 4.12, by
% o» - A" w32 Lp2(T—s) —pW,—3p?
Xy =w+ |xg—w+ B eP s TRl e TS QW e P TP € [0, T
0

We emphasize that the optimal exploratory SDE (4.32) is different from that in [34, Eq. (27)]
which is formulated in our notation as

S

- - - A -
dX? = —p*(X: — w)ds + \/p2(X* — )2 + §ef’2(T*S)dWs, X = xo. (4.33)

However, solutions X* of (4.32) and X* of (4.33) have the same (finite-dimensional) distribution

because of the uniqueness in law of (4.33).

4.5. Relation to the sample state process. The continuous-time RL algorithms designed in
[20, 21] rely on the sample state process for the actual learning task, which is the solution of an
SDE that models the state dynamics evaluated along a randomized control. In this subsection,
we explain the relation between our exploratory dynamics and the sample state process. To
avoid technicalities and to highlight the key ideas, we focus on the situation in Example 4.16.

The construction of the sample state process in [20, 21] starts with a feedback control 7 (-|t, x)
with values in the space of probability density functions. If the portfolio value is in state X; = z
at time ¢, the portfolio position H; is randomly drawn from the probability density 7(-|¢t, ). The
actual drawing of the portfolio position is performed based on a family (Zt)te[O,T] of independent
random variables in [21], which are uniformly distributed on [0, 1]. This family is supposed to be
independent of the stochastic processes driving the stock price, hence, of the Brownian motion W
in the context of Example 4.16. Denoting by hr(t,z;-) the quantile function of the distribution
with density 7 (-|t,z), the random drawing of the portfolio position can be made explicit by
letting Hy = h,(t, X, Z;), which formally leads to the SDE

AX}™ = ha(t, X}, Z,)(bdt + 0dWy), X" = x. (4.34)

“Uf v({e € E:b"S 'ye = 1}) = 0, then applying the same argument as in Remark 4.13(1) yields AZ # 1 on
[0,T], and hence, (4.27) is usable.
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In the terminology of [21], the solution of this SDE is the sample state process corresponding to
the action process hr(t, X, Z;), which is sampled from the given density 7.0

Given the optimality of Gaussian randomization, which in the context of Example 4.16 has first
been derived in [34], we now specialize to the case that 7(:|t, ) is a Gaussian density with mean
w(t,z) and standard deviation ¥(t,x) := 0(t, x)% Then, hr(t, X, Zy) = p(t, Xy) + 0(t, Xp)&e,
where (&t)icpo,7) 18 an independent family of standard Gaussians constructed from (Z)eo,1]
via & = ®71(Z;) (® denoting the cumulative distribution function of the standard normal
distribution). Thus, (4.34) becomes (suppressing the superscript hy)

dX; = b/J,(t, Xt)dt + bﬁ(t, Xt)ftdt + O'/L(t, Xt)th + Uﬁ(t, Xt){tth, Xo==. (435)

If we write G = (Gt)epo,r) for the filtration generated by W and &, then § becomes an
adapted process, but it is well-known that non-constant families of independent, identically
distributed random variables indexed by continuous time cannot be measurable with respect to
the standard product o-field, see, e.g., [31, Proposition 2.1]. Hence, ¢ fails to be progressively
measurable in the usual sense of stochastic calculus, and so the SDE (4.35) cannot be studied
in the classical SDE framework. To deal with this problem, the authors in [21] refer to the
framework of rich Fubini extensions developed in [31, 32]. Roughly speaking, one can construct
an extension A of the Lebesgue measure on [0,7] beyond the o-field of Lebesgue-measurable
sets and a suitable probability space such that the process £ becomes measurable with respect
to some appropriate Fubini extension of the classical product measure space, see [29, Theorem
2] for a precise statement. Here the notion of a Fubini extension refers to the property that a
suitable reformulation of Fubini’s theorem on iterated integration is still valid, see [31]. Then,
the Lebesgue integrals in (4.35) can be replaced by integrals with respect to the extension A of
the Lebesgue measure (but we will write dt in place of A(dt) below to simplify the notation).
However, with this construction, it is still not clear to us, how to extend the It6 integral to
integrands which only satisfy this weaker measurability property ensured by the rich Fubini
construction. In the following informal discussion, we make the conjecture that It6’s integral
can be properly extended such that the standard results of stochastic calculus are still in force.

Under this conjecture, we may consider

t t
Af = / ¢ds, WE= / £, dW.

0 0

Then, (4.35) can be rewritten as
dX, = bu(t, X)dt + bI(t, X,)dAS + opu(t, X )dW; + o0 (t, X)AWE, Xy = .

By the above conjecture, W¢ is a continuous martingale with

t t

W= [ Eas. weEwy = [ s

0 0

Sun’s exact law of large numbers [31, Theorem 2.6] developed in the framework of rich Fubini

' ' 0, g=1,
/ﬁ@—/ﬂ@@— !
0 0 t, q=2.

Y

extensions now implies

The authors in [21] do not give an explicit construction of the action process, whereas we use the construction
based on the quantile function in this subsection. It is, however, clear from the presentation in [21] that iid
uniform random variables (Z:):c[o,7) independent of W are applied for the control randomization mechanism in
[21].
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Hence A¢ = 0 and, by Lévy’s characterization, W¢ is a Brownian motion independent of W.
Thus, the SDE (4.35) for the sample state process with Gaussian randomization becomes

AdX, = bu(t, X )dt + ou(t, Xo)dW; + od(t, X, )dWE,  Xo = . (4.36)

This is exactly our form of the exploratory SDE (3.7) (with a different notation for the additional
independent Brownian motion), when specialized to the setting of Example 4.16 and applied to
feedback controls with Gaussian randomization.

Let us now look at the special case, when the control randomization is performed according
to the standard Gaussian distribution independent of time and state, i.e., u(t,z) = 0 and
Y(t,z) = 1. Then, the corresponding portfolio wealth process X; = = + O’WE in (4.36) is
independent of W, and, hence, independent of the stock price dynamics. This appears to
be counter-intuitive and illustrates that the SDE for the sample state process may not be able
properly describe the portfolio wealth along a randomized portfolio (with continuous re-sampling
in the randomization mechanism). In order justify the use of this SDE, we discretize the portfolio
process H; = & on a time grid 0 =tg < t; < --- <t, =T via H{' =&, for t € (t;,t;41]. Then,
H™ is G-predictable (since it is adapted and left-continuous), and, hence, its wealth process with
initial endowment x

n—1 n—1

t
Xr=z+ / H(bds + 0dWo) =2 +bY & (L At —t; At)+ 0 & (Wi e — Wisne)
0 j=0 J=0
is well-defined in the framework of the classical stochastic integration theory. It is not difficult to
check that the first sum converges to zero by the law of large numbers (cp. Section 3.2.2) and the
second sum weakly converges to a Brownian motion independent of W by Donsker’s invariance

“wealth process” X; =z + an for the non-predictable portfolio position

principle. Hence, the
process Hy = & suggested by the sample state process in the continuous-time RL literature can
be properly interpreted as the weak limit of the wealth processes of the approximating sequence
of predictable randomized portfolio positions H”. The limit result in this illustrative example
is, of course, the simplest special case of our general result, Theorem 3.5, which motivates our
formulation of the exploratory SDE.

Summarizing, the above discussion suggests that our formulation (3.7) of the exploratory SDE
is one way to give a mathematically rigorous meaning to the SDE which models the sample state
process in the recent RL literature. Moreover, Theorem 3.5 provides a justification for the use of
this SDE formulation as a limit of a natural control randomization mechanism in discrete time.
While the results in this paper are presented for the mean-variance portfolio selection problem, it
is obvious, how to transfer the derivation of our exploratory SDE based on Theorem 3.5 to more
general problems with controlled diffusion and jumps, provided the control enters the diffusion
part linearly. The case of general dependence of the diffusion coefficient on the control requires
more advanced tools from the theory of random measures and is discussed in our follow-up work
[4].

Remark 4.17. In our general setting with D stocks, the Gaussian randomization leads to an
action process of the form

u(t, Xt, Yt) + ﬁ(t7 Xt7 Y;f)ft

where the mean p(t, z, y) takes values in RP, 9(t, z,y) is the positive definite root of the positive
definite D x D covariance matrix 6(¢,z,y) and each & is a vector of D independent standard
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Gaussians. Following the same argument as above, we will consider the “processes”
! t !
@) _ / D (@)
0

which additionally drive the SDE for the sample state process. Then, by the Lévy characteri-
zation as above, (W Wé&@d).q =1 ...D d =1,...D)is a (D? 4+ D)-dimensional Brownian
motion. Thus, making the sample state process rigorous by the same reasoning as above, the
diffusion part is driven by a (D? + D)-dimensional Brownian motion as in our formulation (3.7)
of the exploratory SDE.

5. WEAK CONVERGENCE OF DISCRETE-TIME INTEGRATORS

This section provides the proof of Theorem 3.5. Throughout this part, let ¢p denote a positive
constant depending only on D, and its value might vary in each appearance. The time-change

n

o™ is extended constantly over t € [T,00). To cover necessary test functions for the proof of

Theorem 3.5, we use the following function space.

Definition 5.1. For D = D? + 3D, we let g € C%(RP) if the following conditions hold:
(G1): g € C?(RP) with g(0) = 0 and || V?g||ec < o0;

(G2): for 1 <dV d < D? + D, the function 8d 9 takes value 0 in a neighborhood of 0;
(G3): c(as) = maxi<g<p24p [049(0p24p;-)lloc < 00, where Op2y p is the vector 0 in RD*+D,
(G4): ¢(ay == maxp2; pi1<i<p [|049]loc < 00 and dgg(0) = 0 for any D*+ D +1 < d < D.

Proposition 5.2. For any g € C2(RP), one has when n — oo that

n

D

=1

Elg(AniZ™) | Foia] — (£ — £71) / 9(0, e, u)v¥ (de, du)| =2 o, (5.1)
R2D

where Z™ is given in Section 3.2.5.

Proof. With a slight abuse of notation, in the sequel we use symbols 7, £ without any sub-indices
to denote deterministic vectors in RP, whereas 775{1- and &, ; are random vectors introduced in
Section 3.2.1. Recall that

An’izn = Vec(AmWn’ An,iMn7 An,iLn’w) = VeC(Anﬂ‘I/V, nﬁlﬂ [ An,iW7 An’ij, w(An,2J>§n,z)

Step 1. Since g(0) = 0 by (G1) and 939(0) = 0 for D> + D +1 < d < D by (G4), an argument
using Taylor expansion shows

19(0,e,0)| < epl|V2gllc(lel® + [u]?), e,u e RP. (5-2)
Since V% is a square integrable Lévy measure, it ensures that [p.p |g(0,e,u)|u%(de,du) < 0.

Moreover, for any n, 4, since

E[AniZ" %) = EllAnW I + lIna5 ® AniW I + [ Ani |1 + (A, ) [6nill ]

s<t?—t?_1>(D+D2+ / lel?v(de) + DI VyII%, / ueH?u(de)) < 0,
F F

together with the fact that g has at most quadratic growth at infinity as || V?g|lso < 00 by (G1),
it implies that E[|g(A,;Z2")|] < oc.

Step 2. To shorten the notation, for each n, ¢ € RP, we define Gne: R2P 5 R by

gn,{(waj) = 9(w777®w>]>¢(1)§)7 wvj € RD'
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Then, g, ¢ € C?(R?P). Furthermore, for any d,d’ = 1,..., D, the partial derivatives of Gn,¢ are
given, with the convention () := 1 and z := (w,n ®@w,j,¥(4)€) € RP, by

Dagng(w, 5) ZU 0a11p9(2), O wame(w, j) Z N0V kp ariipa(2); (5.3)
k=0 k=0
D
Op+dgne(w,j) = Op24piag(z) + 09 (j Zﬁ Mop2opirg(2), (5.4)
=1

D
2 . 2
8D+d/,D+d9n,£(wJ) :8D2+D+d’,D2+D+dg( +8d' dl/’ Zf )8D2+2D+k9(2)
k=1

D D
. l
+ 0qvp(j Zf [812:)2+D+d/,D2+2D+k9(z) + 0w (j) Z 3 )82D2+2D+l,D2+2D+kg(Z) :
k=1 =1
Hence, there exists a constant ¢ 5y := ¢(D, | VY|lo, [[ V2o, [ V29 lo0s ¢(Gay) > 0 such that
2 ! < 55 2 . .
1;5}3?;1) HaDer ,D+dg777f”00 = C(d-d)(l +1I€M%) (5.5)

We also define the function R, which represents the remainder term in a Taylor expansion of
gn¢, by setting for w, j,n,§, e € RP that

e DOp yagye(w, j).

N

R{(waj;naé; 6) = g”h&-(w?vj +€) _g777§(w7j) -

)
Il

1
Due to condition (G3), Taylor expansion implies for any a € RP *+D ¢ € R2?P that
l9(a, a’) = 9(0,a")| < ep(eqay llall + 1V2gllllall?) < es.6y(llall + llal?) (5.6)
for some constant c; o) := ¢ 6)(D, 1V29|loo, € c(a3)) > 0. Hence,
|RY(w, 5,5 €) — R (w, j;0,&; )]
< lg(w,n@w,j+e, 95 +e)§) — 90,7 + e ¢(j + €e)f)]
+1g(w, 0,5+ e,9(j +e)§) —g(0,7 + €, ¥(j + €)¢)|
+lg(w,n@w, j,¥(5)€) — 9(0,7, (7)) + |g(w, 0,5, %(5)§) — 9(0, 5, ¥(5)¢)]

D
+ 31D Op2 s 1ag(w,n @ w, 1, 0(G)E) = Dpepyagw,0,5,0()E)]
d=1

D
106G Y 1691|002 420 119 (0,1 © 0,3, 9()E) = e 2049w, 0., ¥ ()E) |
k=1

< 2.0 (| (w,n @ w)]| + 1| (w, n @ w)|* + [lwl| + [[w]®) + e llell 1 + €D @ w]  (5.7)
< de.o)(lwll + [wl* + ln @ wll + lln @ wl|*) + ¢i.0) lell (1 + [1€D)]n  wll,

where ¢(5 7y := ¢(D, [Vlso [|[V?glloc) > 0. Moreover, the Taylor remainder R{ is estimated by

sup |R{(w,j;n,& )| < ep max (10p, g pragneloollel? < cig(1+ [EP)lel?,  (5.8)
(w,j)ER2D 1<d,d'<D

where ¢(5 g) = €pC(5.5)-
Step 3. Forn > 1 and 1 < ¢ < n, since 775{@- is Fr,i—1 V 0{&, i }-measurable and (A, ;W,
Ay ;J) is independent of Fy, ;1 V 0{&,}, we get, a.s.,
n,i— 1]

E[Q(An,izn)‘Fn,i—l] = E[E[ (An 1W 77m & An zW An 7,J Ip(An ZJ)gTL z) n,i—1 V U{gn z}}
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= E[Gni(npis &ni) | Fni-l,
where G, ; is a non-random and measurable function defined as
Gni(1,€) = Elg(AniW,n @ ApiW, Ay i, (A i D)E)], 1,6 € RP.
Given 7, & € RP, applying Ito’s formula for gng¢ € C?(R?P) yields, a.s.,
(AW, @ A i W, A i J, 0 (A i J)E) = gne(Win — Wen | Jin — Jin )

D £
= Z/ DagneWs = Wer s Jow = Jyp )JAWS
t”L

+ — / 8d d/gn g(W Wt” Jsf - Jtn )d
dd’ 1

+ / / <gr],§(W5 - Wt?_ﬁ Js— - Jt?_l + 6) — gn,ﬁ(WS — thn_lj JS_ — Jt?_1)>ﬁ(d€,d8)
tr  JE

i
[0 [ ROV =Wy e = gy g eae)ds. (5.9)
JE

For d =1,...,D, we derive from (5.3) that (w,j) — Oqgn¢(w,j) has at most linear growth at
infinity which hence implies that the stochastic integrals with respect to the Brownian motions
are square integrable martingales. Moreover, for w, j,7’ € RP, due to (5.4) and (G4) one has

(906 (w0, 5) = gn.g(w, )| < ep max [9agy.e(w,)oolli = 5’ < epeqan (L + VY oollEDNT = 51

Then, due to the assumption [, [le[|?v(de) < oo, the stochastic integral with respect to the
compensated Poisson random measure N in (5.9) is also a square integrable martingale which
then vanishes after taking the expectation. Hence,

Gn,i(777 5) = GTVLKL(TL é) + Gg,l(nv 5)7

where the integrability condition is satisfied so that Fubini’s theorem enables us to define

Z/ add,gngw Win Js_—Jt;_ll)}ds,
dd’ 1

G,‘;i(n,&) = /tnl /EE[Rf(WS —Wip  Js— — Jt?ﬂ;n,g;e)} v(de)ds.
1—1

To derive (5.1) it suffices to prove that the following three convergences hold:

ZE\G (5 €ni)l] = 0, (5.10)
ZE\G (i ni) = Gip (0, 60.)1] = 0, (5.11)

ZEH (0.6~ @ =) [ gl0.ev@uvidelen(u)du

xRD

} —0. (5.12)

Step 4. We show G(5 10) 0. For 1 <d,d" < D, by (5.3) one has

Z Z )¢ / [8d+de’+ng(W Wi .n@ (Ws =W ),
2 a2 "
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Jue = dip 0 = T )]s,

Let (W,.J) be an independent copy of (W,.J) with the corresponding expectation E. Applying
Fubini’s theorem we get

(510 <* Z ZZE[’UM 77m ’/ ’8d+de’+ng(W Wt" 777nz (W — Wt" )

dd’ 1k,1=0 i=1
]ds]

D D T n
1 H,(1)
=3 Z Z/ E[me (|‘3d+de'+ng(W Win el @ (Ws = Wi ),
i=1

dyd’'=1k,1=0" 0

Tom = Jip 1 0(Tsm = Tz )eni)

JS_ — Jt?_l,lﬂ(ejs— - Jt?_l)én,i)

]l(tn,l ,t?] (8):| ds

T

D D
> Z/o E[G7 1(s)]ds. (5.13)

d,d'=1k,l=0

In order to derive (5.10), we prove for any 1 < d,d < D, 0 < k,l < D that

T
/0 E[GP; 13 (s)]ds = 0 asn — oo
By the dominated convergence theorem, it is sufficient to show that

T
lim E[G(; 15)(s)] =0 foralls€(0,T), and / sup E[G(; 15)(s)]ds < oco. (5.14)
0

n—o00 n>1

Indeed, for each fixed s € (0,7") one has

(P)

o Wy =W ) 20 and vy — T & 220

when n — oo because of the independence, ¢} ; — s, and
Ell1m; @ (Ws = Wep_ )IIP) = Elllna 5 |1 ENWs — W 1] = D*(s — t124),
El[¢(Js- = Jir_ )énil®] < DIVOISEJs— — T IIP] = (s — t?l)DIIV¢|I§o/E lel[*v(de).
Since 8d2+kD7d,+ng is continuous and is equal to 0 in a neighborhood of 0 by (G2), we get
G5.13)(8) 50 asn— 00,

where the convergence in probability can be asserted by showing that any subsequence has a
further subsequence converging a.s. to 0. Moreover, since g has bounded second-order partial
derivatives by (G1) and {H775i||2}1§i§n,n21 is uniformly integrable by Assumption 3.3, it implies
that {G(, 13)( $)}n>1 is also uniformly integrable. Hence, the dominated convergence theorem is
applicable to obtain the first assertion in (5.14). The integrability condition in (5.14) is easily
verified by noting that

H,(
supE[G( 13)( )] < \|V2g||oo Asup EHnnz )nn z()”

n>1 1<i<n,n>

IN

1 (k H,(l
V2%l sup Eflns R 4 02 = 1192 o
2 1<i<n,n>1

Hence, (5.10) is proved.
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Step 5. We prove G?S_H) — 0. By the independence and Fubini’s theorem we obtain

T n
iy = /E/O E[Z ‘Ri’(Ws — Wi Js— — Jt?_l;ﬁffiaﬁn,z;e)
i=1

— RI(Ws = Win |, Jo— — Jin 50,85 €)

Lgn o (S)] dsv(de)

/ / G 1oy (s3€)] dsw(de). (5.15)

By dominated convergence, it suffices to show that

V(s,e) € (0,T) x h_}m E[G(5 15 (s:€)] =0, (5.16)
and / / sup E[G5 ;5(s; €)]dsv(de) < oc. (5.17)
0 n>1

Indeed, for each (s,e) € (0,T) x E, using (5.7) yields

15)(5:€) £ 3 [es0)(IWs = Wag 1+ W5 = Wap 12 + Infls @ (W = Wap )|
i=1

o+ Ity @ (Wy = Wag )II?) + s lel(

Then, by Holder’s inequality we get

E[G?a.la)(sé e)] < Z [40(5.6) <\/5 s—t,+ D(s—t"q) + D\/ s—t, + D2(5 - t?—l))
i=1

2] \JElE, © (We = Wep )PV i (5)

Ity @ Wy = W Dl Ty (5):

+cioylle
— 0 asn— oo,
which then verifies (5.16). To show (5.17), we use the estimate (5.8) to get

SHPE[G(r 5(s70)] <25 sup  E[(1+ (€7 lell?] = 2¢(5.9)(D + 1)lel|.

n>1 n>1,1<i<n
Since [} |le[[*v(de) < oo by assumption, (5.17) follows.
Step 6. We show G?sglz) — 0. By the independence and Fubini’s theorem one has

G?s 12)

SN
<[ )L E2 )]
x dsv(de)pp(u)du

/R i / / (sie u)}dsu(de)@( )du. (5.18)

For any (s,e,u) € (0,7] x E x RP| since the first two arguments in R{ converge to 0 a.s. as

RI(W, — Wiy Js%yﬁofmﬁ@(/ 9(0, e, p(e)u)pp(w)du
RD

} dsv(de)

Rg W Wt" Jsf - Jtzil;oau;e) - g(oae’d}(e)u)

n — 00, we obtain that G&_IS)(S; e,u) — 0 a.s. Moreover, one has

B[ sup 67, g5l SB[ sup ROV < Wi 0,01 4 0., weh)

n>1,1<i<n

< ey (L4 [l ]2 + 90, e, v(e)u)].
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Since, by (5.2

/ [ (TP + 1900, e, v vide)epudu < o,

the dominated convergence theorem implies that G%.]Q) — 0 asn — oo. O

We first deal with the jump part of the limit of (£"),>1. To do this, we recall from [18, p.395]
the function space C3(RP), which consists of all continuous bounded functions g: RP — R with

0 ¢ supp(g).

Lemma 5.3. The assertion (5.1) holds true for g € Co(RP). Consequently, for any t € [0, 00)

one has when n — oo that

Tt

ZE[g(Anin”ﬂ}—n,pﬂ L@, (tAT) /Rw 9(0, e,u)sz(de, du).

i=1

Proof. Tt suffices to show the convergence for t € [0,7]. Let g € C2(RP) and assume that
supp(g) N Bp(ry) = 0 for some ry > 0. Let ¢ > 0 be arbitrarily small and K > r, a sufficiently
large constant which is specified later. Since g is continuous and bounded, there is a continuous
function gx with compact support such that ||gx|lcc < ||gllcc and gx = g on Bp(K'). Moreover,
by convolution approximation, there is a function g. x € C2(RP)NC?(RP) such that supp(gx —
Ge,k) N Bp(rg/2) =0 and ||gx — §e. i ||oo < €. For t € (0,7, we denote

n
Ot

I(qs.lg) = Z

=1

Blo(AniZ") Fust] = (07 = #0) [ 0(0.c.u)vf (de. ) (5.19)

and then get by the triangle inequality that

9—9K 9K — geK gsK
(6.19) = L509) Ts0) — + (500

Since g i € Co(RP) N C2(RP) c C2(RP), according to Proposition 5.2 one has

I

Ge, i Li(P)
I() ff)) 0.

IQ 9K

(5.19) We have, a.s.,

For the stochastic term in

oy

D Ell(g - 95)(AniZ")| | Fni-a] < llg - QK”OOZE Lgya,,zn =&} 1 Fni-1]
i=1 i=1

2]19lloo
< HgH ZE |Anlzn” |-7:n1 1]

2||9!| 0o
_ 2lal ZE[|AMW||2+||nm®AmW||2+||AmJ||2+w<AmJ> 612 Fnic]

IN

2
sl 5 [tn_t D+ D7)+ (14 DIVBIR)E 12 [ elwtae)

2T 9|l o
_ 27l {D+D2 + DIVl [ felPuao)

For the stochastic term in I (“(’,Klg)ge X we use the same arguments as for I é’;_f;; to obtain, a.s.,

oy

> Ell(gx — Ge)(BniZ™)| | Fniz1] < llgx — gaKuooZE (A, 20 >ry /2| Frie1]
=1 =1
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4T€
ooz el [ fefpua)|
g
Then, by the triangle inequality,
27|19l 0
o < 208004 D2y 4 DIVWIR) [ llelPviae)] + 2Tl [ v(ae,an
emeK E 0 (K)

which can be made arbitrarily small as long as we choose a sufficiently large K > 0. Analogously,
4T
g < S (o v pivel) [ epva)) <7 [ vbaean),
Tg SD(TQ/Q)

Ly (P)

g —5%0. O

Eventually, since € > 0 is arbitrarily small, it implies that I7. (5.19)

We continue to investigate the continuous and the drift components of the limit of (2"),>1.
To this end, let us fix a truncation function h: RP — RP in the sense of [18, Definition 11.2.3], i.e.
h is bounded and h(z) = z in a neighborhood of 0. As we will see later that the limit of (2"),>1
does not depend on the particular form of truncation function, we assume that h = (h())D |
with h(9) € CZ(RP).

Lemma 5.4. For any t € [0,00), one has when n — oo that

L. (P
sup L> 0,

s<t

> Eh(AniZ™")| Fnia] — B
1

where B := B(h) given by

By = (tAT) / (h(0, e,) — (0, e, u)T )’ (de, du).

R2D

Proof. 1t is sufficient to consider ¢ € [0, 7] and prove that for any d = 1,...,D one has

Li(P)

@) = Sup ZE N(AniZ™)| Frizi] — sBY 0, (5.20)

s<t

Let h(D(2) := hD(2) — 2 for z = (21, ..., 2(P)) € RP. Tt follows from E[A, ;Z"|Fni 1] =0
a.s. that

E D (A i2")| Foia] = BRD (A0 2| Fai ] s (5.21)

Hence we now prove (5.20) for h(4 in place of A9, We remark that there is no problem regarding
P-null sets for that replacement as only countably many random variables are considered in
(5.20). On the other hand, since h(¥) € CZ(RP) and h{®(2) = 2(¥) in a neighborhood of 0, it is
straightforward to check that h(® e C2 (RP). By the triangle inequality, a.s.,

V(i Z") | Fima] — By

< sup ton Bgd) - ngd)

(r zo)

+ sup
s<t
<Z’E (Dni Z™)|Fria] — (7 — 7 )B(d>‘+ max (% — £ ,)|BY|
n,% n,1— 7 i—1 1 1<i<n 1 I

According to Proposition 5.2, the ﬁrst term on the right-hand side converges to 0 in L (P). The
second term maxj<j<n (] —t;" 1)\B )\ obviously tends to 0 as n — oco. Hence, (5.20) follows. O
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We now investigate the continuous part of the limit of (£™),>1. For t € [0, 00), we define the
matrices Cy = (Ct(k’l)) € RP x RP and its modification C; = (@(M)) € RP x RP by
tAT if1<k=1<D?+D
ckh = = = (5.22)
0 otherwise,

and

it = o™ 4+ (kA T) / (RORD)(0, ¢, uvp (de, du).
R2D

Lemma 5.5. For anyt € [0,00) and 1 < k,l <D, one has when n — oo that

ZE (i 2 Fiot) ERO (A 2| Frioa] 2 0, (5.23)
ZE RO (A Z)| Fria] 28 G0, (5.24)

Ly (P
Proof. Tt suffices to prove for t € [0,T]. We first show that (5 .3 M 0 as n — oo. In the
sequel we employ the notation as in the proof of Lemma 5.4. According to (5.21) one has, a.s.,

ZE[ (A Z") = (8 = 60 B | Foiet | B (A 27)| Fria]

(@)

B3 - B [RO(A0:2") = (8 = #21) B | Fuia | + BV B
i=1

—_

1=

Then, a.s.,

o) < 1000 Y [E[9(8,.27) = (1 = 2B 7o
=1

+ |B( | max () —ti Z ’E[ (AniZ2") = (17 — t?—l)Bg)

)

—l—t\Bk)B ]ma<x(t?—t 1)-

Since maxi<;<p(t —tI' ;) — 0, applying Proposition 5.2 yields (5.23).
We next show that 594y — ét(k’l) in Li(P). For z = (21, ..., 2(P)) € RP, we define

(RFRDY(2) =gV (2) if1<kVI<D?>+D

g®0(2) = 200 and KD (2) =
(B pD)(2) otherwise.

We now verify that A% € C?%(RP) for any k,l =1,...,D:
o hkD obviously satisfies (G1).
eletl <dvd <D?>+D. Ifkvi< D?+ D, then ﬁ(k’l), and thus 837[1,]3(’“71), are 0 in a
neighborhood of 0. If k V1> D2+ D + 1, then 93 ,,h®) = 93 , (h® 1 — q(:D) which
also shows that 837 2+ is 0 around 0. Hence, (G2) is satisfied.
e Ford=1,...,D%?+ D and for any j € R?”, one has

dg(h W h1Y(0, ) — daq*D(0,5) if1<kVI<D?*+D

= 0a(h™h)(0, 7).
dg(RFh1)(0, ) otherwise

dah*™D(0, 5) =
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Hence, max; <4< p2p 104h* D (024 b, Voo < V(P RD)|| o < 00, which verifies (G3).

e Ford=D?+D+1,...,D, since 9;¢*%) =0 if kv < D2+ D we infer that dzh(:) =
(WMDY and §*D(0) = AD(0)9zhH)(0) + ¥ (0)9hP(0) = 0. Thus, (G4) is
satisfied.

Applying Proposition 5.2 and noticing that, for any 1 < k,l < D,

W00, e u)vp (de, du) = / (RORD)(0, e, u)v} (de, du)

R2D R2D
we obtain
o
S (B[RED (A i 2| Fsa] — (£ — 1) / (ROROY0, e, u)’ (de, du)| 2 0. (5.25)
i—1 RQD

On the other hand, for 1 < kVI < D?+ D, a direct calculation exploiting the independence and
(3.1) gives the following convergence as n — oo, particularly in L (PP),

i’ i’
Z Elq%D (AniZ™)| Frio1] = Z E[An: 28 A 20| Fy ]
i=1 =1

tn, if1<k=1<D?+D
_ o iflsk=is< )
0 otherwise

Therefore, (5.24) follows from (5.25), and the proof is completed. O

Proof of Theorem 3.5. We combine [18, Theorem VIII.2.29] with Lemmas 5.3 to 5.5 to obtain
that (Z{}7)ic0,00) — Z weakly in the Skorokhod topology on the space of cadlag functions
: [0,00) — RP. Here, Z is a semimartingale with the predictable characteristic’® (B, C,mz)
associated with the truncation function h, where

e Zy=0as Z} =0 for all n;

e h is taken as in the paragraph right before Lemma 5.4;

e B is provided in Lemma 5.4;

C is defined in (5.22);

mz(dt,dz) = vz(dz) Ao (dt), where A 7y is the restriction of the Lebesgue measure

on [0,7], vz is a Lévy measure on RY := RP\{0} with support on {0} x R2P i.e.
I/Z<ROD2+D x R2P) = 0, and such that vz ({0} x B) = V%(B) for B € B(R2P).

Note that ((Winr, WinT))ie[0,00) @and (L?/\T)te[o,oo) are independent due to Lemma B.3. Then a
standard calculation using Lévy—Khintchine formula shows that (vec(Wisr, Winr, L;Z}/\T))te[o,oo)
is a (time-inhomogeneous) Lévy process with characteristic triplet (B, C,mz) with respect to
the truncation function h. Hence, we derive from [18, Theorem VIII.2.29] the weak convergence

(2P r)ici0.00) = (vec(Wint, Wint, L)) icio.00) -

Eventually, since the limit process has no fixed time of discontinuity, we apply [7, Theorem 16.7]
to obtain the weak convergence on the time interval [0, 7] as desired. [l

6in the sense of [18, Definition I1.2.6].
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APPENDIX A. PROOF OF PROPOSITION 3.2

Condition E| [pp [|Hn,i—1(w)||*¢p(u)du] < oo allows us to define

pllyi= [ Hua(epdu, i) = Haioa(w) -l
R

Offi 1= [ s () yia(w)pp ()

Obviously ,u,]ii_l € Lgo(P). In addition, the finiteness of accumulative entropy implies that
det(@nZ 1) > 0 as. for all n,i. Since @nHZ 1 € S£+, we apply the spectral theorem for
n,i—1 — dlag(/\l(@nHz 1) 7)‘D(@£,Iz 1))
) >0and a U}, | € Op, such that

symmetric matrices to obtain a real diagonal matrix AX

with A\ (], 1) > --- > Ap(OF;

n,t—1
671;[1— U'r]zr{z—lAn i—1 (U'r]zr{z— )

One remarks that U i1 and An ;_1 are matrices whose entries are F,, ;_1-measurable random
variables. Now, by adjusting on a P-null set, we define

19711 1= (@n}{ifl)2 _Unz 1(Anz 1) (Unz 1) ’
H,(d) _ 1

W(Unz 1ed)Tﬁn,i—1(§n,i), d=1,...,D.
d\Mn i1

H . A A k]
nn,z . Unz 1nn 2 where nn,i

Then it is easy to check that 1951;1 € Ly(P). Moreover, for d =1,..., D, one has, a.s.,

J(d,k) / H,(d,k)yH,(,k l
[ﬁﬁi—lnnz Z n,i— 1) @rljl 1 nnz Z Unz(l nz(l)Hr(L)z 1(‘57%1')

k=1
D l)
Z n, U7{I7,— ) ](leT(Lz 1(6”2) = nz 1(6"”)
=1
which shows 1971;[z 177m = n,ifl(gn,i) a.s. Foranyd=1,...,D, we let ﬁﬁ;(d) (¢) be the random
variable obtained by adding € > 0 to )‘d(@g@ 1) in the definition of ﬁg ;(d). Then one has, a.s.,
2 1 Tl 77 7 T H
Fric1] = gt (U ) "B i1 () (i (€0,0)) | P | U
B[4 @ Faina] = 5@y 2 O ) [Fnica 60) (s 60| Faima | U s
1 TirrH ~ToH TAgz 1€d
- e (UM _)TeN Ul e, = —dmi
MO,y et Unimt) Onimabuiciea = sygm 7y
)‘d(ggz 1)

Ad(enz 1) +5.

Letting ¢ | 0 yields E[|ﬁf ; @ 2| Fni—1] = 1 a.s. by the monotone convergence theorem, and thus,

||ﬁ£ll|] € Ly(P) as a by-product. Analogously, we can show that E[ﬁfl(d) ZZ | Frji-1] = Lig=ar}

a.s., which means that E[ﬁgi(ﬁgi)-r\?n,i_l] = Ip. Then we get E[nnvz(nm) |\ Fri—1] = Ip as.,
and hence, (3.2) follows. The uniqueness is straightforward.

APPENDIX B. SOME AUXILIARY RESULTS
B.1. Positive semidefinite matrices. For matrices A, B € S we write A < Bif B—A € Sf .

Lemma B.1 ([15], Sec.82, Exercises 12 and 13).
(1) For A, B € SP with A < B one has det(A) < det(B).
(2) Let A,B €SP, with A< B. Then B~ < A~ and tr[AC] < tr[BC] for any C € SP.
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B.2. Integrability for solutions of SDEs with jumps. Although the following fact can be
easily extended to a multidimensional setting, however, we formulate it in the one-dimensional
case for the sake of simplicity. We refer to [5] for its proof.

Lemma B.2. Let § = (&)ic(o,1) be cadlag and adapted with H§H‘292([07T]) := E[supge;<r 7] < o0.
Assume that dZy = ¢dt + dKy, where K = (K)o, is a cadlag La(P)-martingale satisfying
d (K, K), = n?dt, where n and ¢ are progressively measurable with supy.,.pn7 + fOT p3dt < C
a.s. for some (non-random) constant C' > 0. Then, for a Lipschitz function o: R — R, the SDE

t
X, =& +/ o(Xu)dZu,  Xo =& = w0 € R,
0

has a unique cadlag strong solution X = (X¢)ejo,m) satisfying E[supg<;<r X?] < C' < o for
some constant C" = C'(||¢]|s,(0,17), T> 0, C) > 0.

B.3. Independence of Gaussian and purely non-Gaussian Lévy processes. Lévy pro-
cesses in the following assertion are considered with the canonical truncation function h(x) =
21|z <13- We refer to [5] for its proof.

Lemma B.3. Let D, D’ € N. Assume that W is a D-dimensional Gaussian Lévy process and
L is a D'-dimensional purely non-Gaussian Lévy process, both defined on the same probability
space. Then W and L are independent.
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