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Abstract. Motivated by the trade-off between exploitation and exploration in reinforcement

learning, we study a continuous-time entropy-regularized mean-variance portfolio selection prob-

lem in the presence of jumps. We propose an exploratory SDE for the wealth process associated

with multiple risky assets which exhibit Lévy jumps. In contrast to the existing literature, we

study the limiting behavior of the natural discrete-time formulation of the wealth process associ-

ated with a randomized control in order to derive the continuous-time dynamics. We then show

that an optimal distributional control of the continuous-time entropy-regularized exploratory

mean-variance problem is still Gaussian despite being in jump models. Moreover, the respective

optimal wealth process solves a linear SDE whose representation is explicitly obtained.
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1. Introduction

1.1. The problem. The mean-variance (MV) portfolio optimization problem pioneered by

Markowitz [27] is one of the most popular criteria in the portfolio selection theory due to

its simple and natural formulation in dealing with the two important aspects of investment,

namely, risk and return. In the MV model, investors aim to minimize the variance, which quan-

tifies the risk, of the terminal wealth of their portfolios while targeting a prespecified expected

value of the terminal wealth. This criterion therefore effectively reflects a trade-off between

the risk and expected return in an intuitive way. After Markowitz’s foundational works, the

MV approach has attracted considerable attention with numerous extensions and applications.

For example, among other works in the continuous-time setting when the financial market is

driven by a multidimensional Brownian motion, Zhou and Li [38] investigate the MV problem

in terms of stochastic linear-quadratic (LQ) optimization using an embedding method. After

that, Li et al. [24] introduce the Lagrange multiplier method to transform the MV problem to

an unconstrained stochastic LQ control problem so that standard techniques are applicable. As

the literature on the MV criterion is vast, we refer the reader to [37] for a review on this topic.
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The classical model-based MV problem, where model assumptions are predescribed, has been

fairly well investigated and quite completely solved in various settings with analytical solutions.

To apply these results in practice, one usually needs to estimate model parameters based on

historical data of the underlying asset prices accumulated during trading. Nevertheless, it is

widely acknowledged that it is difficult to estimate those parameters with an applicable accuracy,

and furthermore, classical optimal MV strategies frequently exhibit high sensitivity to those

parameters which then might become practically sub-optimal due to estimation error.

In recent years, reinforcement learning (RL) methods, which have increasingly attracted more

attention in quantitative finance, become a promising approach to overcome those practical dif-

ficulties. By and large, RL algorithms iteratively execute randomized controls for some period

(or, episode) and apply the data which has been collected over the previous periods to update

the unknown model parameters and the randomized control, see, e.g., [20, 21, 33] for RL al-

gorithms in a continuous-time stochastic control setting. The randomization of the controls

reflects the trade-off between exploration (learning the unknown investment environment) and

exploitation (optimizing adaptively to the updated model parameters). Thus, RL algorithms

can produce (nearly) optimal solutions without the need of statistically estimating the model

parameters beforehand. The reader is referred to [16] for an overview to recent developments

and applications of RL in finance.

The iterative construction of the randomized controls in the algorithms mentioned above

relies on an entropy-regularized formulation of the stochastic control problem. Here, the entropy

regularization rewards exploration and leads to the optimality of distribution-valued (or, relaxed)

controls. Recently, Wang and Zhou [34] introduced such an entropy-regularized exploratory SDE

framework for the MV problem in a Black–Scholes environment. To be more precise and for

easier explanation, let us introduce some notations. Let T > 0 be a fixed finite time horizon

and W = (Wt)t∈[0,T ] a standard 1-dimensional Brownian motion. The exploratory SDE for

the wealth process Xπ = (Xπ
t )t∈[0,T ] under an admissible control π = (πt)t∈[0,T ], which is a

distribution-valued stochastic process and where πt is the probability density function of the

exploration law at time t, is heuristically derived and has the following form

dXπ
t = µtbdt+

√
µ2t + σ2t adWt. (1.1)

Here, the drift b ∈ R and volatility a > 0 are unknown constants, µt :=
�
R uπt(u)du represents

the mean and σ2t :=
�
R u

2πt(u)du− µ2t the variance of the distribution of exploration at time t.

We refer to [34, 35] for the motivation and derivation of (1.1). To encourage and quantify the

exploration process, Wang and Zhou [34] incorporate a differential entropy term to the objective

function and the classical MV problem then becomes an entropy-regularized exploratory MV

problem. The authors then prove that the optimal feedback distributional control is Gaussian

with time-decaying variance. Moreover, via a simulation study it is also illustrated in [34] that

the RL approach for solving the MV problem significantly improves some other methods such as

the traditional maximum likelihood estimate (MLE) and the deep deterministic policy gradient

(DDPG). The approach as in [34, 35] has been extended in various contexts, see, e.g., [10, 14, 36].

It is, however, widely acknowledged that models with jumps are more appropriate to describe

the fluctuation of asset prices, see, e.g., [1, 8]. Following this direction, many researchers have

extensively studied the classical MV problem and its variants in several jump models, see,

e.g., [19, 25, 28] and the references therein. Then a question naturally arises: How would the

continuous-time entropy-regularized exploratory MV problem and its solutions be like if the asset
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prices exhibit jumps? To address this question, one first needs to describe the exploratory SDE

with jumps for the respective wealth process.

In contrast to the models built upon the Brownian framework by Wang and Zhou [34] and

by Wang et al. [35], where the exploratory SDE for the wealth/controlled process can be

heuristically inferred from knowing its first two conditional moments only, models with jumps

are quite involved as, in general, one has to test against various other functions rather than the

linear and quadratic functions to detect the distributional behavior of jumps. In fact, these test

functions essentially depend on the jump activities of the underlying asset price process. Hence,

the derivation for the exploratory SDE based on first two moments in [34, 35] is seemingly not

applicable for jump models, at least in a straightforward way. To deal with this problem, we

exploit the linear dependence on controls of the wealth process and propose a different argument

to derive the exploratory SDE.

1.2. Our contributions and discussions. Let D ∈ N and assume that the log-price process

of D risky assets is a weak solution of an SDE driven by a D-dimensional Lévy process L.

Here L includes, but not necessarily simultaneously, a Brownian motion W and an independent

pure-jump Lévy process J , both are D-dimensional. Except the square integrability, there are

no additional assumptions imposed on the Lévy measure.

1.2.1. Continuous-time exploratory SDE with Lévy jumps. To derive an exploratory SDE for

the wealth process, we begin with a discrete-time dynamic of the wealth under an exploration

procedure, see Section 3.2.1. In [34, 35], the authors first average out realizations of distributional

controls on each discrete-time sub-interval using a law of large numbers, and then combine them

all together to infer the dynamic on entire [0, T ]. Here, unlike the argument in [34, 35], we first

explicitly model randomized controls on discrete-time partitions of [0, T ] and identify a family

of discrete-time integrators which incorporate the additional “exploration noise”. To do that,

we need to handle the additional randomness caused by exploration differently for the Brownian

and for the jump component which can be roughly described as follows:

• For the Brownian part, thanks to the linear structure with respect to the control, one

can (partially) separate the original randomness caused by the asset prices and the

randomness caused by exploration in an appropriate way, see Section 3.2.3.

• For the jump component, we employ a suitable D2-dimensional random measure to

simultaneously capture both sources of randomness, see Section 3.2.4.

Then, by refining the discrete time points, we show in Theorem 3.5 below that the stochastic

integrators of our discrete-time scheme converge in distribution to a multidimensional Lévy

process. This limit theorem gives rise to a natural continuous-time formulation of the exploratory

control problem with entropy regularization. Note that randomized controls on discrete-time

grids have recently been considered in [11, 33] for diffusion models. However, [33, Theorem

2.2] investigates the limiting behavior of the cost of such controls and [11, Lemma 4] describes

the convergence of the optimal control density, while we apply this discretization to infer the

structure of the continuous-time “exploration noise”.

We also remark that the heuristic passage to the limit in the existing literature [34, 35] only

yields information about the conditional mean and covariance of the continuous-time controlled

system. It, thus, allows for many different SDE representations, even in the case of no jumps,

as discussed below. In contrast, our derivation identifies a specific SDE formulation, which we

consider a natural choice for modeling exploration in the continuous-time framework. Indeed,
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as discussed in Section 4.5 below, our formulation of the exploratory SDE, which is derived

from discrete-time randomized controls, is closely related to the sample state process, which is

a key object for the design of learning algorithms in the recent continuous-time RL literature

[20, 21]. It can even be interpreted as a mathematically rigorous reformulation of this sample

state process which avoids the use of an independent identically distributed sampling mechanism

indexed by continuous time.

1.2.2. Problem formulation in multidimensional setting. We consider D risky assets with jumps

and derive the continuous-time dynamics of the wealth process with exploration, see SDE (3.7)

and Remark 3.6 for further discussion.

Let us compare our exploratory SDE with other works in the case of no jumps. Since we

use a different argument, our exploratory SDE unsurprisingly takes a different form from (1.1)

in [34]. If D = 1, then the dynamic of wealth under a distributional control π in our setting

particularly becomes

dXπ
t = µtbdt+ µtadWt + σtadWt, (1.2)

where W is a 1-dimensional Brownian motion independent of W . We notice that Xπ in (1.1)

and in (1.2) have the same distribution. However, differently from (1.1), in our SDE (1.2)

the exploration randomness represented by W is separated from the noise W caused by asset

prices. One also remarks that the SDE in form of (1.2) has been recently considered in [10, 36].

Nevertheless, when D > 1, the authors in [10, 36] use an additional 1-dimensional Brownian

motion to model the exploration (i.e. W is 1-dimensional), while, according to our analysis, it

suggests to use a D2-dimensional Brownian motion (i.e. W is D2-dimensional).

1.2.3. Optimal distributional control and wealth process. Following [34], we first use the La-

grange multiplier method to transform the exploratory MV problem to an entropy-regularized

quadratic-loss control problem and then apply the dynamic programing principle to find its

solutions.

We show in Theorem 4.10 that, despite the presence of jumps, among admissible distributional

controls which are not necessarily in the feedback form, an optimal Gaussian control in feedback

form can be obtained. As a feature of our approach, the respective optimal wealth process

satisfies a linear SDE (see (4.23)) which allows us to find its expression in a closed-form (see

(4.27) and [5]). As a consequence, the Lagrange multiplier is also explicitly obtained (see (4.28)

and [5]). Moreover, the value function has a quadratic form with respect to the wealth variable

whose coefficients are solutions to a system of partial integro-differential equations (PIDEs).

In the special case of no jumps and D = 1 and with constant coefficients, our value function

coincides, of course, with that in [34], see Example 4.16.

1.3. Structure of the article. In Section 2, we introduce the notation and recall the classical

MV problem. The derivation of the continuous-time exploratory SDE with Lévy jumps is

presented in Section 3. In Section 4, we study the entropy-regularized exploratory MV problem,

investigate its closed-form solutions, and discuss the Lagrange multipliers. Section 5 is devoted

to present the proof of weak convergence of the discrete-time integrators (Theorem 3.5).

2. Preliminaries

2.1. Notations. Let D ∈ N := {1, 2, . . .}. For a, b ∈ R, we use the usual notations a ∧ b :=

min{a, b} and a ∨ b := max{a, b}. For a < b, let
� b
a :=

�
(a,b]. Notation log indicates the natural
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logarithm. Sub-indexing a symbol by a label means the place where that symbol appears. We

also use the conventions inf ∅ := ∞ and
∑

i∈∅ =
�
∅ := 0.

2.1.1. Vector spaces and matrices. Let ∥·∥ be the usual Euclidean norm and (ed)
D
d=1 the natural

basis in RD. For r > 0, we set BD(r) := {x ∈ RD : ∥x∥ < r} and Bc
D(r) := RD\BD(r).

All vectors are written in the column form. For a vector x we use the notation x(i) or [x](i)

to denote its i-th component. For a matrix A,

• A(i,j) or [A](i,j) is the element in the i-th row and j-th column of A;

• if A is a D × D matrix, then tr[A], det(A), A−1 denote the trace, determinant and

inverse of A respectively. Let diag(A) := diag(A(1,1), . . . , A(D,D)) denote the diagonal

matrix with diagonal entries A(1,1), . . . , A(D,D);

• the usual Euclidean/Frobenius norm of A is also denoted by ∥A∥, i.e. ∥A∥ :=
√

tr[ATA].

Notation ID means the D ×D identity matrix. We also use the following classes of matrices:

• RD×D′
denotes the family of all real matrices with size D ×D′;

• SD (resp. SD+ , SD++) is the family of all symmetric (resp. positive semidefinite, positive

definite) A ∈ RD×D. For A ∈ SD+ , denote by A
1
2 ∈ SD+ the unique square root of A, i.e.

A
1
2A

1
2 = A. If A ∈ SD++, then we let A− 1

2 := (A
1
2 )−1.

• OD consists of all orthonormal O ∈ RD×D, i.e. OTO = ID.

For A ∈ RD×D′
, denote by vec(A) the vectorization of A defined as an element of RDD′

by

stacking the columns of A on top of one another, i.e.

vec(A) := (A(1,1), . . . , A(D,1), A(1,2), . . . , A(D,2), . . . , A(1,D′), . . . , A(D,D′))T.

For (column) vectors x1, . . . , xn with possibly different sizes, vec(x1, . . . , xn) means the vector

obtained by stacking xi on top of xi+1, 1 ≤ i ≤ n − 1. To shorten notation at some places we

also use the Kronecker product ⊗ : RD × RD′ → RDD′
defined by

x⊗ y := vec(x(1)y, . . . , x(D)y).

One notices that the operator ⊗ is bilinear and ∥x⊗ y∥ = ∥x∥∥y∥.

2.1.2. Function spaces. For a function f : RD → R, we use the following notations:

• ∥f∥∞ := supx∈RD |f(x)|;
• ∂f and ∂2f denote usual partial derivatives of f with respect to scalar components;

• ∇f and ∇2f denote the gradient and the Hessian of f respectively, and ∥∇f∥2∞ :=∑D
d=1 ∥∂df∥2∞, ∥∇2f∥2∞ :=

∑D
d,d′=1 ∥∂2d,d′f∥2∞, where partial derivatives ∂df := ∂x(d)f

and ∂2d,d′f := ∂2
x(d)x(d

′)f ;

• When f has several (multivariate) components, we use ∇yf and ∇2
yyf to indicate the

gradient and Hessian of f with respect to component y. If x is a scalar component and

y is a multivariate component, then we write ∇2
xy := (∂2

xy(1)
, . . . , ∂2

xy(D))
T.

• supp(f) stands for the support of f , i.e. the closure of {x ∈ RD : f(x) ̸= 0}.

For k = 1, 2, . . ., denote by Ck(RD) the family of all k times continuously differentiable functions

on RD. Ckb (RD) consists of all bounded f ∈ Ck(RD) with bounded derivatives (up to the k-

th order) and C∞
b (RD) := ∩k≥1C

k
b (RD). Ckc (RD) denotes the family of all f ∈ Ck(RD) with

compact support. We let f ∈ C1,2([0, T ] × RD) if f is (resp. twice) continuously differentiable

with respect to t ∈ [0, T ] (resp. to y ∈ RD) and its partial derivatives are jointly continuous.
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2.2. Stochastic basis. Let us fix a time horizon T ∈ (0,∞). Assume that (Ω,F ,P; (Ft)t∈[0,T ])
satisfies the usual conditions, which means that (Ω,F ,P) is a compete probability space, the

filtration (Ft)t∈[0,T ] is right-continuous and F0 contains all P-null sets. This allows us to assume

that every (Ft)t∈[0,T ]-adapted local martingale has càdlàg (right-continuous with finite left lim-

its) paths. For a random variable ξ, the expectation, variance, and conditional expectation given

a sub-σ-algebra G ⊆ F , if it exists under P, is respectively denoted by E[ξ], V[ξ], and E[ξ|G].
We also use Lp(P) := Lp(Ω,F ,P).

For a càdlàg process X = (Xt)t∈[0,T ], we denote ∆Xt := Xt − Xt− for t ∈ [0, T ], where

X0− := X0 and Xt− := limt>s↑tXs for t ∈ (0, T ]. For a time index set I ⊆ [0,∞) and for

processes X = (Xt)t∈I, Y = (Yt)t∈I, we write X = Y to indicate that Xt = Yt for all t ∈ I
a.s., and the same meaning applied when the relation “=” is replaced by some other standard

relations such as “≤”, “>”, etc.

We refer to [30] for unexplained notions such as semimartingales, (optional) quadratic covari-

ation [X,Y ] and conditional quadratic covariation ⟨X,Y ⟩ of semimartingales X, Y .

2.3. Multidimensional Lévy process. An RD-valued process L = (Lt)t∈[0,T ] is called a Lévy

process if it has independent and stationary increments, has càglàg paths with L0 = 0 a.s.

The distributional property of L is characterized by the Lévy–Khintchine formula (see, e.g., [2,

Theorem 1.2.14]), for t ∈ [0, T ] and u ∈ RD,

E[eiu
TLt ] = e−tκ(u)

where the characteristic exponent κ is given, for u ∈ RD, by

κ(u) = −iuTb+
uTAu

2
−
�
z ̸=0

(eiu
Tz − 1− iuTz1{∥z∥≤1})ν(dz).

The characteristic triplet (b, A, ν) associated with the canonical truncation function h(z) :=

z1{∥z∥≤1} is deterministic and consists of the drift coefficient b ∈ RD, the Gaussian covariance

matrix A ∈ SD+ , and the Lévy measure ν, i.e. a measure on B(RD\{0}) with
�
z ̸=0(∥z∥

2∧1)ν(dz) <
∞. We call L a Gaussian Lévy process if ν ≡ 0, and call L a purely non-Gaussian Lévy process

if A = 0.

2.4. Classical continuous-time MV portfolio selection. Assume that the price process

of a risk-less asset S(0) = (S
(0)
t )t∈[0,T ] and D risky assets S = (St)t∈[0,T ] are governed by the

following SDEs

dS
(0)
t = rS

(0)
t dt, S

(0)
0 = 1,

dS
(d)
t = S

(d)
t− dR

(d)
t , S

(d)
0 := s

(d)
0 > 0, d = 1, . . . , D.

where the interest rate r ≥ 0 is given and the (stochastic) log-price process R is described

by (2.1) and (2.2) below. In the context of stock price modeling, it is natural to assume the

condition ∆R(d) > −1 on the jump sizes, which ensures that the stock prices S(d) stay strictly

positive. This condition is, however, not required to obtain the main results, and so we do not

impose it.

An investment strategy in D risky assets is expressed by a predictable RD-valued process

H where H
(d)
t is the discounted dollar amount invested in the d-th risky asset at time t−, i.e

instantly before time t. The resulting discounted wealth process XH = (XH
t )t∈[0,T ] associated



ENTROPY-REGULARIZED PORTFOLIO OPTIMIZATION WITH JUMPS 7

with H can be written as

dXH
t =

D∑
d=1

H
(d)
t (dR

(d)
t − rdt) =: HT

t dYt, (2.1)

where XH
0 = x0 ∈ R is the given initial wealth. From now we will work with the driving process

Y and the discounted wealth XH as in (2.1).

Assume that the log-price of D underlying (discounted) risky assets is represented by a càdlàg

and adapted process Y = (Yt)t∈[0,T ] which is Markovian whose infinitesimal generator is given,

for sufficiently smooth f , by

(LY f)(y) = b(y)T∇f(y) + 1

2
tr[A(y)∇2f(y)] +

�
z ̸=0

(
f(y + γ(y)z)− f(y)−∇f(y)Tγ(y)z

)
ν(dz).

(2.2)

Here ν is a square integrable Lévy measure and the coefficients b : RD → RD, A ∈ SD+ , and
γ : RD → RD×D satisfy standard assumptions which will be specified later in Section 3.1.

The classical Markowitz MV portfolio selection problem, parameterized by ẑ ∈ R, is then

formulated as minH V[XH
T ]

subject to XH given in (2.1) and E[XH
T ] = ẑ,

(2.3)

where the minimum is taken over admissible H which will be specified in our setting later. To

deal with the constraint E[XH
T ] = ẑ in (2.3), we follow [38, 34] to consider the objective function

parameterized by w ∈ R,

V[XH
T ]− 2w(E[XH

T ]− ẑ),

which is equal to

E[(XH
T − w)2]− (ẑ − w)2.

Then, to solve (2.3), we consider the following unconstrained quadratic-loss minimization prob-

lem parameterized by w, minH E[(XH
T − w)2]

subject to XH given in (2.1).
(2.4)

Once (2.4) is solved with a minimizer H∗(w), which depends on w, we let ŵ be the value such

that the constraint E
[
X
H∗(ŵ)
T

]
= ẑ is satisfied. Then such an H∗(ŵ) solves the original problem

(2.3), and ŵ is called the Lagrange multiplier1.

3. Exploratory SDE with Lévy jumps

3.1. Setting. Let us fix D ∈ N and set E := RD\{0}. Let φD be a probability density of

ξ ∼ N (0, ID) where N (0, ID) is the D-dimensional Gaussian distribution with zero mean and

covariance ID.

For b, A, γ and ν appearing in (2.2) we assume throughout this article the following:

Assumption 3.1. The Lévy measure ν and coefficients b : RD → RD, a, γ : RD → RD×D ,

A := aaT ∈ SD+ satisfy:

(a) (Square integrability) ν is square integrable on E, i.e.
�
E ∥e∥2ν(de) <∞;

1The Lagrange multiplier actually is 2ŵ, but we use ŵ to slightly simplify the presentation.
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(b) (Growth condition) ∥b(x)∥+ ∥a(x)∥+ ∥γ(x)∥ ≤ C1(1 + ∥x∥) for all x ∈ RD;

(c) (Lipschitz condition) ∥b(x) − b(y)∥ + ∥a(x) − a(y)∥ + ∥γ(x) − γ(y)∥ ≤ C2∥x − y∥ for all

x, y ∈ RD;

(d) (Non-degeneration) Σ(y) := A(y) + γ(y)
�
E ee

Tν(de)γ(y)T ∈ SD++ for all y ∈ RD.

3.2. Continuous-time dynamic of the wealth process with exploration: A heuristic

approach. Let W = (Wt)t∈[0,T ] be a D-dimensional standard Brownian motion, and J =

(Jt)t∈[0,T ] ⊆ L2(P) a purely non-Gaussian Lévy process which is independent of W and has the

following Lévy–Itô decomposition (see, e.g., [2, Theorem 2.4.26])

Jt :=

� t

0

�
E
eÑ(ds, de).

Here Ñ is the compensated Poisson random measure of J associated with Lévy measure ν. Since

b, a, γ in Assumption 3.1 are sufficiently regular, it is known that the following SDE has a unique

(strong) solution in L2(P) (see, e.g., [22, Theorem 3.1]),

dYt = b(Yt−)dt+ a(Yt−)dWt + γ(Yt−)dJt, Y0 = y0 ∈ RD,

which admits LY provided in (2.2) as the Markov generator.

Let {Πn}n≥1 be a sequence of partitions of [0, T ], where Πn = {0 =: tn0 < tn1 < . . . < tnn := T}.
Denote ∆tni := tni − tni−1 and assume that |Πn| := max1≤i≤n∆t

n
i → 0 as n→ ∞. To shorten the

presentation at some places, for a process (Pt)t∈[0,T ], we also use the notations

Pn,i := Ptni and ∆n,iP := Pn,i − Pn,i−1.

With the convention sup ∅ := 0, we define

σnt := sup{i ≥ 1 : tni ≤ t}, t ∈ [0, T ].

For each n, we obtain a process Y n, which approximates Y along the partition Πn, given by

Y n
t := Y0 +

σn
t∑

i=1

(
b(Yn,i−1)∆t

n
i + a(Yn,i−1)∆n,iW + γ(Yn,i−1)∆n,iJ

)
, t ∈ [0, T ].

3.2.1. Exploration procedure. Our main idea is as follows: For i = 1, . . . , n, we draw the control

at time tni−1 from some distribution, which is chosen with the accumulative information available

at time tni−1. Once the distribution is fixed, the realization is independent of the rest. In addition,

since any distribution on RD can be represented as F (ξ) for some measurable F : RD → RD and

ξ ∼ N (0, ID), determining a distribution boils down to find such an F .

Let us specify this idea.

(i) Let Ξ := {ξn,i}n≥1,1≤i≤n be a collection of i.i.d. random vectors in RD with common

distribution N (0, ID) and probability density φD. Assume that Ξ is independent of (W,J).

Family Ξ represents a new source of randomness caused from the exploration along with the

randomness generated by (W,J). To capture the information flow, we define the filtration

FΠn = (Fn,i)ni=0 as follows

Fn,i := σ{(Ws, Js) : 0 ≤ s ≤ tni } ∨ Gn,i, where Gn,i := σ
{
ξn,j : j ≤ i

}
,Gn,0 := {∅,Ω}.

(ii) H : Πn×Ω×RD → RD is admissible in the following sense (here Hn,i−1 stands for Htni−1
):

(a) For each i = 1, . . . , n, the map (ω, u) 7→ Hn,i−1(ω;u) is Fn,i−1 ⊗ B(RD)-measurable;

(b) One has E
[ �

RD ∥Hn,i−1(u)∥2φD(u)du
]
<∞;
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(c) As proposed in [34], the exploration cost can be represented in terms of differential

entropy which is assumed to be finite to encourage the exploration. Following this

idea, we in addition assume that for each i = 1, . . . , n and ω ∈ Ω, Hn,i−1(ω; ζ) has

a probability density pHn,i−1(ω; ·), where ζ ∼ N (0, ID) is independent of Fn,i−1, such

that
�
RD p

H
n,i−1(u) log p

H
n,i−1(u)du is an integrable random variable. Then the expected

accumulative differential entropy

E
[
−

n∑
i=1

(tni − tni−1)

�
RD

pHn,i−1(u) log p
H
n,i−1(u)du

]
is finite.

(iii) The controlled wealth XH = (XH
t )t∈[0,T ] associated with H along time points of Πn is

XH
n,i = XH

n,i−1 +Hn,i−1(ξn,i)
T∆n,iY

n, i = 1, . . . , n, XH
0 = x0 ∈ R.

Proposition 3.2. For n ≥ 1, 1 ≤ i ≤ n, there exist (uniquely up to a P-null set) a random vector

µHn,i−1 and a random matrix ϑHn,i−1 ∈ SD++, both are Fn,i−1-measurable and square integrable, and

a square integrable random vector ηHn,i with

E[ηHn,i|Fn,i−1] = 0 and E[ηHn,i(ηHn,i)T|Fn,i−1] = ID a.s. (3.1)

such that

Hn,i−1(ξn,i) = µHn,i−1 + ϑHn,i−1η
H
n,i a.s. (3.2)

Proof. See Appendix A. □

We decompose the process XH with the initial wealth XH
0 = x0 ∈ R as

XH
t = x0 +

σn
t∑

i=1

Hn,i−1(ξn,i)
Tb(Yn,i−1)∆t

n
i

+

σn
t∑

i=1

Hn,i−1(ξn,i)
Ta(Yn,i−1)∆n,iW +

σn
t∑

i=1

Hn,i−1(ξn,i)
Tγ(Yn,i−1)∆n,iJ

=: x0 + I(3.3) + II(3.3) + III(3.3). (3.3)

3.2.2. The drift part I(3.3). According to the decomposition (3.2), we express, a.s.,

I(3.3) =

σn
t∑

i=1

(µHn,i−1)
Tb(Yn,i−1)∆t

n
i +

σn
t∑

i=1

(ϑHn,i−1η
H
n,i)

Tb(Yn,i−1)∆t
n
i

=

σn
t∑

i=1

(µHn,i−1)
Tb(Yn,i−1)∆t

n
i +

D∑
d=1

σn
t∑

i=1

[
D∑
k=1

ϑ
H,(k,d)
n,i−1 b(k)(Yn,i−1)

][
η
H,(d)
n,i ∆tni

]
.

For the discrete-time integrator in the second term, we have the following law of large numbers

σn
t∑

i=1

η
H,(d)
n,i ∆tni

L2(P)−−−→ 0 as n→ ∞

for all d = 1, . . . , D. Indeed, due to the orthogonality and E[|ηH,(d)n,i |2] = 1 it holds that

E
[∣∣∣∣ σ

n
t∑

i=1

η
H,(d)
n,i ∆tni

∣∣∣∣2] =

σn
t∑

i=1

|∆tni |2 ≤ t max
1≤i≤n

∆tni → 0.
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3.2.3. The Brownian part II(3.3). By the same arguments as for the drift part, we decompose

II(3.3) as

II(3.3) =

σn
t∑

i=1

(µHn,i−1)
Ta(Yn,i−1)∆n,iW +

∑
d,d′=1,...,D

σn
t∑

i=1

[
D∑
k=1

ϑ
H,(k,d)
n,i−1 a(k,d

′)(Yn,i−1)

][
η
H,(d)
n,i ∆n,iW

(d′)
]
.

Define the interpolated processWn = (Wn
t )t∈[0,T ] and the RD2

-valued processMn = (Mn
t )t∈[0,T ]

by

Wn
t :=

σn
t∑

i=1

∆n,iW,

M
n,(d,d′)
t :=

σn
t∑

i=1

η
H,(d)
n,i ∆n,iW

(d′), d, d′ = 1, . . . , D,

Mn
t = (M

n,(1,1)
t , . . . ,M

n,(1,D)
t ,M

n,(2,1)
t , . . . ,M

n,(2,D)
t , . . . ,M

n,(D,1)
t , . . . ,M

n,(D,D)
t )T,

so that ∆n,iW
n = ∆n,iW and Mn

t =
∑σn

t
i=1 η

H
n,i ⊗∆n,iW . Then we get

II(3.3) =

σn
t∑

i=1

(µHn,i−1)
Ta(Yn,i−1)∆n,iW

n +
∑

d,d′=1,...,D

σn
t∑

i=1

[ϑHn,i−1a(Yn,i−1)]
(d,d′)∆n,iM

n,(d,d′).

Here Wn,Mn can be respectively regarded as a discrete-time integrator of the first and the

second term in the decomposition of II(3.3).

3.2.4. The jump part III(3.3). For the jump part in (3.3), a first try is to rewrite

III(3.3) =

�
(0,t]×E×RD

n∑
i=1

[
Hn,i−1(u)

Tγ(Yn,i−1)e

]
1(tni−1,t

n
i ]
(s)mn(ds, de,du),

for the random measure

mn(dt,de,du) :=
n∑
i=1

δ(tni ,∆n,iJ, ξn,i)(dt,de,du), (3.4)

on B([0, T ]× E × RD). Here, δ denotes the Dirac measure. So, we move the Gaussian random

variables ξn,i for the control randomization from the integrand to the random measure mn, that

acts as a new integrator. It is, however, intuitively clear that the limit random measure (in a

weak sense) should be

m(dt,de,du) =
∑
j

δ(τj ,∆Jτj , ξj)(dt,de,du), (3.5)

where (τj)j∈N are the jump times of J and (ξj)j∈N is a sequence of independent standard Gaus-

sians (independent of J), i.e., in the limit we would like to create independent Gaussian jumps

at each jump time of L as additional source of noise. If the original Lévy process has infinite

activity, this random measure does not induce a Lévy process, because the squared Gaussian

jumps
∑

j;τj≤t ξ
2
j do not converge. As a way out, we re-scale the additional Gaussian jumps

depending on the jump sizes of the original Lévy process.

To this end, let us fix a ψ ∈ C2(RD) which satisfies

∥∇ψ∥∞ + ∥∇2ψ∥∞ <∞, ψ ≥ 0 and ψ(x) = 0 ⇔ x = 0.

A prototype example in our context is that, for a given constant c > 0,

ψ(x) =
√
∥x∥2 + c2 − c.
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Define the random measure mψ
n on B([0, T ]× E × RD) by setting

m
ψ
n(dt,de,du) :=

n∑
i=1

δ(tni ,∆n,iJ, ψ(∆n,iJ)ξn,i)(dt,de,du).

Then the third term III(3.3) is finally expressed as

III(3.3) =

�
(0,t]×E×RD

n∑
i=1

[
Hn,i−1

(
u

ψ(e)

)T

γ(Yn,i−1)e

]
1(tni−1,t

n
i ]
(s)mψ

n(ds, de,du).

Note that the randommeasuremψ
n is characterized by the induced martingale Ln,ψ = (Ln,ψt )t∈[0,T ]

with Ln,ψ0 = 0 and

Ln,ψt :=

�
(0,t]×E×RD

(e, u)Tmψ
n(ds, de,du) =

σn
t∑

i=1

(∆n,iJ, ψ(∆n,iJ)ξn,i)
T =

σn
t∑

i=1

∆n,iL
n,ψ.

As explained above, the “damping factor” ψ(∆n,iJ) in front of ξn,i in the third coordinate of

m
ψ
n is introduced to ensure that Ln,ψ can converge to a Lévy process in the infinite activity case.

The smoothness condition for ψ is merely convenient for applying Itô’s formula later on.

3.2.5. Distributional limit of discrete-time integrators. SetD := D2+3D. We collect all discrete-

time integrators of the Brownian and the jump parts to obtain the triangular array of D-

dimensional random vectors Zn = (Zn
t )t∈[0,T ] with

Zn := vec(Wn,Mn, Ln,ψ).

Our purpose is to investigate the distributional limit of (Zn)n≥1. To this end, we introduce the

Borel measure νψL defined on R2D by setting

νψL(de,du) := 1{∥e∥>0}φD

(
u

ψ(e)

)
du

ψ(e)D
ν(de), e, u ∈ RD.

Then, by a change of variables, one has�
R2D

f(e, u)νψL(de,du) =

�
E×RD

f(e, ψ(e)u)ν(de)φD(u)du

provided that f ≥ 0 or
�
R2D |f(e, u)|νψL(de,du) < ∞. In particular, choosing f(e, u) = ∥e∥2 +

∥u∥2 we find that νψL is a square integrable Lévy measure on R2D\{0} with νψL({0} × RD) = 0

as �
R2D\{0}

(∥e∥2 + ∥u∥2)νψL(de,du) =
�
E×RD

(∥e∥2 + ψ(e)2∥u∥2)ν(de)φD(u)du

=

�
E
∥e∥2ν(de) +

�
E
ψ(e)2ν(de)

�
RD

∥u∥2φD(u)du ≤ (1 +D∥∇ψ∥2∞)

�
E
∥e∥2ν(de) <∞.

We need the following condition to obtain the desired weak convergence.

Assumption 3.3. {H̃n,i−1(ξn,i)
T(ΘH

n,i−1)
−1H̃n,i−1(ξn,i)}1≤i≤n,n≥1 is uniformly integrable.

Remark 3.4. Let us briefly comment on Assumption 3.3.

(1) By the construction of ηHn,i in the proof of Proposition 3.2, one has, a.s.,

H̃n,i−1(ξn,i)
T(ΘH

n,i−1)
−1H̃n,i−1(ξn,i)

= tr[(ΘH
n,i−1)

− 1
2 H̃n,i−1(ξn,i)((Θ

H
n,i−1)

− 1
2 H̃n,i−1(ξn,i))

T]

= ∥ηHn,i∥2,

i.e., Assumption 3.3 is equivalent to the uniform integrability of {∥ηHn,i∥2}1≤i≤n,n≥1.
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(2) Assume, for all n, that H : Πn × Ω× RD → RD has the form

Hn,i−1(ω;u) = mn,i−1(ω) + vn,i−1(ω)u, i = 1, . . . , n, (3.6)

where mn,i−1 and vn,i−1 are respectively RD-valued and SD++-valued random variables,

both are Fn,i−1-measurable and square integrable with log(det(vn,i−1)) ∈ L1(P). Then

H is linear with respect to the exploration variable and is admissible in the sense given

in Section 3.2.1. Moreover, in the notation of Proposition 3.2, one has µHn,i−1 = mn,i−1,

ϑHn,i−1 = vn,i−1, and η
H
n,i = ξn,i, which obviously implies that Assumption 3.3 holds.

(3) We will see in Theorem 4.10 below that the time discretization of the optimal control

process for the associated continuous-time control problem has the form (3.6).

Under the setting of Section 3.2.1, we have the following result whose proof is postponed to

Section 5.

Theorem 3.5. Assume that W is a D2-dimensional standard Brownian motion independent of

W , and that Lψ is a square integrable martingale null at 0 which is a 2D-dimensional purely

non-Gaussian Lévy process with Lévy measure νψL . Assume that processes W,W, Lψ are defined

on the same probability space. Then, Lψ is independent of (W,W), and under Assumption 3.3,

the sequence (Zn)n≥1 converges weakly to vec(W,W, Lψ) as n → ∞ in the Skorokhod topology

on the space of càdlàg functions f : [0, T ] → RD2+3D.

By rearranging components of W, we may consider W as an RD×D-valued process. Then

Theorem 3.5 suggests that the exploratory SDE in the continuous-time setting for the controlled

wealth process XH with an admissible H is as follows

dXH
t = (µHt )

Tb(Yt−)dt+ (µHt )
Ta(Yt−)dWt + tr[(ΘH

t )
1
2a(Yt−)dWT

t ]

+

�
E×RD

Ht

(
u

ψ(e)

)T

γ(Yt−)e Ñ
ψ
L (dt,de,du), XH

0 = x0 ∈ R, (3.7)

where Ñψ
L is the compensated Poisson random measure of Lψ and the underlying process Y is

given by

dYt = b(Yt−)dt+ a(Yt−)dWt + γ(Yt−)

�
E×RD

eÑψ
L (dt,de,du), Y0 = y0 ∈ RD.

One notices that such a Y also admits LY in (2.2) as the generator.

Remark 3.6. Let us briefly comment on SDE (3.7). For the Brownian component, the noise

caused by exploration, i.e. W, is completely separated from the original noise, i.e. W . While

for the jump part, both noises are simultaneously captured by the Poisson random measure

generated by a D2-dimensional Lévy process. Interestingly, for the optimal control H obtained

in (4.22), it turns out that one can completely separate these two sources of randomness due to

the linearity with respect to the exploration variable.

Remark 3.7. If the control enters in the drift part only, then the reasoning in Section 3.2.2

shows that there is no extra exploration noise in the continuous-time formulation. This is the

case, e.g., in [13] where the authors add jumps as uncontrolled Lévy noise.

Remark 3.8. We briefly explain the relation of the jump part in (3.7) to the notion of a relaxed

Poisson measure, which has been introduced in the context of relaxed controls by [23]. We will
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restrict our discussion to the finite activity case (as assumed in [23]), in which we do not need

to re-scale the Gaussian jumps and we can formally set ψ ≡ 1. Then,

Ñψ
L (dt,de,du) =m(dt,de,du)− ν(de)φD(u)dudt

for the random measure m defined in (3.5). Hence, m is a relaxed Poisson measure for the

relaxed control φD(u)dudt in the sense of [23, p. 190]. The approximation mn, which we

consider in (3.4), arises from the modeling of control randomization in RL. Numerically it can

be interpreted as a Monte Carlo approximation of the relaxed control φD(u)dudt on the time

grid tn0 , . . . , t
n
n. This Monte Carlo approximation is conceptually different to the numerical

approximation considered by Kushner in [23]. Roughly speaking, Kushner’s approach would

approximate the relaxed control by replacing the multivariate Gaussian distribution by a discrete

distribution supported on N points α1, . . . , αN and successively calling these N points over a

refined time grid.

4. Entropy-regularized exploratory MV problem with Lévy jumps

We work on a fixed complete probability space (Ω,F ,P) carrying the triplet (W,W, Lψ)

aforementioned in Theorem 3.5. Let Nψ
L denote the associated Poisson random measure of Lψ

with the compensation Ñψ
L := Nψ

L −λ1 ⊗ νψL , where λ1 is the 1-dimensional Lebesgue measure.

For 0 ≤ t ≤ s ≤ T , we denote F t
s = σ{Wr −Wt,Wr −Wt, L

ψ
r − Lψt : t ≤ r ≤ s} augmented by

all P-null sets. Set Fs := F0
s .

For ξ ∼ N (0, ID) we define the family of deterministic admissible functions as

A :=

{
F

∣∣∣∣ F : RD → RD Borel,

�
RD

∥F (u)∥2φD(u)du <∞, F (ξ) has a probability density pF
}
.

Admissible controls in the discrete-time setting are adapted to the continuous-time setting as

follows.

Definition 4.1 (Admissible control). For (t, y) ∈ [0, T ) × RD, denote by A(t, y) the family of

all admissible controls H for which the following conditions hold:

(H1) (Admissibility) H : [t, T ]× Ω× RD → RD satisfies that

(a) H is P([t, T ]) ⊗ B(RD)-measurable, where P([t, T ]) is the predictable σ-algebra on

[t, T ]× Ω;

(b) Hs(·) := Hs(ω; ·) ∈ A for all (s, ω) ∈ [t, T ]× Ω.

(H2) (Integrability) It holds that

P
( � T

t

�
RD

∥Hs(u)∥2φD(u)du <∞
)

= 1, (4.1)

and that processes µH = (µHs )s∈[t,T ], Θ
H = (ΘH

s )s∈[t,T ] defined on [t, T ]× Ω by

µHs :=

�
RD

Hs(u)φD(u)du, H̃s(u) := Hs(u)− µHs , ΘH
s :=

�
RD

H̃s(u)H̃s(u)
TφD(u)du,

satisfy that

E
[� T

t

(
(µHs )

TA(Y t,y
s− )µHs + tr[A(Y t,y

s− )ΘH
s ] +

�
E×RD

|Hs(u)
Tγ(Y t,y

s− )e|2ν(de)φD(u)du
)
ds

]
+ E

[∣∣∣∣� T

t
|(µHs )Tb(Y

t,y
s− )|ds

∣∣∣∣2] <∞, (4.2)
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where Y t,y = (Y t,y
s )s∈[t,T ] is a (unique) strong solution to the following SDE on [t, T ]

dY t,y
s = b(Y t,y

s− )ds+ a(Y t,y
s− )dWs + γ(Y t,y

s− )

�
E×RD

eÑψ
L (ds, de,du), Y t,y

t = y. (4.3)

(H3) (Finite accumulative differential entropy) There is a kernel pH : [t, T ] × Ω × RD → R
such that pHs (ω; ·) is a probability density function of Hs(ω; ζ) for any (s, ω) ∈ [t, T ]×Ω,

where ζ ∼ N (0, ID) is independent of F t
s, and that (s, ω) 7→

�
RD p

H
s (u) log p

H
s (u)du is

(F t
s)s∈[t,T ]-predictable with

E
[� T

t

∣∣∣∣�
RD

pHs (u) log p
H
s (u)du

∣∣∣∣ds] <∞. (4.4)

For a given control H ∈ A(t, y) and x ∈ R, the dynamic of the controlled wealth process

Xt,x,y;H = (Xt,x,y;H
s )s∈[t,T ], which is assumed to has càdlàg paths, is described by the exploratory

SDE on [t, T ] as

dXt,x,y;H
s = (µHs )

Tb(Y t,y
s− )ds+ (µHs )

Ta(Y t,y
s− )dWs + tr[(ΘH

s )
1
2a(Y t,y

s− )dWT
s ]

+

�
E×RD

Hs

(
u

ψ(e)

)T

γ(Y t,y
s− )e Ñψ

L (ds, de,du), Xt,x,y;H
t = x, (4.5)

where Y t,y solves the SDE (4.3).

Remark 4.2. (1) Processes µH and ΘH are predictable by (H1) and Fubini’s theorem.

(2) As a consequence of [6, Theorem X.1.1], there exists a cD > 0 such that ∥A
1
2 − B

1
2 ∥ ≤

cD∥A−B∥
1
2 for any A,B ∈ SD+ . Hence SD+ ∋ A 7→ A

1
2 is (Hölder) continuous which then

ensures that (ΘH)
1
2 is also a predictable SD+ -valued process.

(3) Due to (4.2), Xt,x,y;H in (4.5) is a square integrable process satisfying

E
[

sup
t≤s≤T

|Xt,x,y;H
s |2

]
<∞. (4.6)

4.1. Problem formulation. We are now in a position to formulate the entropy-regularized

exploratory MV problem. Remark that, due to the time inconsistency of the MV problem, we

just examine solutions among precommitted strategies which are optimal at t = 0 only.

Let us fix a ẑ ∈ R which represents the targeted expected terminal wealth. For an initial

wealth x0 ∈ R and y0 ∈ RD, we consider the problem
min

H∈A(0,y0)
E
[(
X0,x0,y0;H
T − E

[
X0,x0,y0;H
T

])2
+ λ

� T

0

�
RD

pHs (u) log p
H
s (u)duds

]
subject to X0,x0,y0;H given in (4.5) and E

[
X0,x0,y0;H
T

]
= ẑ.

(4.7)

Here the exploration weight λ ≥ 0, which is fixed from now on, describes the trade-off between

exploitation and exploration and it is also known as the temperature parameter in the RL

literature.

We follow [34] to apply the Lagrange multiplier method to solve (4.7) (see Section 2.4 for a

similar argument in the setting without exploration). In the first step, we examine the following

entropy-regularized quadratic-loss minimization problem, parameterized by ŵ ∈ R, min
H∈A(0,y0)

E
[(
X0,x0,y0;H
T − ŵ

)2
+ λ

� T

0

�
RD

pHs (u) log p
H
s (u)duds

]
subject to X0,x0,y0;H given in (4.5).

(4.8)
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We solve (4.8) to obtain a solution H∗ := H∗(ŵ) depending on ŵ. This task is presented

in Section 4.2. In the next step, we find the Lagrange multiplier ŵ by using the constraint

E[XH∗
T ] = ẑ. Then H∗(ŵ) is a solution to problem (4.7) where ŵ is the obtained Lagrange

multiplier. The latter task is done in Section 4.3.

4.2. The entropy-regularized quadratic-loss optimization problem. Let us fix ŵ ∈ R.
Problem (4.8) is an unconstrained control problem and we will find its solutions via the dynamic

programing approach. Define the function V H(·|ŵ) associated with a control H ∈ A(t, y) and

x ∈ R by setting

V H(t, x, y|ŵ) := E
[(
Xt,x,y;H
T − ŵ

)2
+ λ

� T

t

�
RD

pHs (u) log p
H
s (u)duds

]
.

We consider the following system of problems which particularly yields to (4.8) when (t, x, y) =

(0, x0, y0).

Problem 4.3. For given (t, x, y) ∈ [0, T )× R× RD, find an H∗ ∈ A(t, y) such that

V ∗(t, x, y|ŵ) := V H∗
(t, x, y|ŵ) = min

H∈A(t,y)
V H(t, x, y|ŵ) (4.9)

subject to the state equation (4.5).

Definition 4.4. For a given initial triple (t, x, y), any H∗ ∈ A(t, y) satisfying (4.9) is called

an optimal control, the corresponding controlled state process Xt,x,y;∗ := Xt,x,y;H∗
is called

an optimal state/wealth process, and V ∗(·|ŵ) satisfying the terminal condition V ∗(T, x, y|ŵ) =
(x− ŵ)2 is called the value function.

4.2.1. Entropy-regularized Hamilton–Jacobi–Bellman (HJB) equation. As we use the dynamic

programming approach to solve Problem 4.3, it is useful to consider the associated HJB equation.

Let us first introduce some notations. For F ∈ A, we define mF ∈ RD and θF ∈ SD+ by

mF :=

�
RD

F (u)φD(u)du,

θF :=

�
RD

(F (u)−mF )(F (u)−mF )TφD(u)du =

�
RD

F (u)F (u)TφD(u)du−mF (mF )T,

and the differential entropy of F is denoted by

Ent(F ) := −
�
RD

pF (u) log pF (u)du.

Using the classical Bellman’s principle of optimality and a standard verification argument (see

the proof of Theorem 4.10 below) we find that the HJB type formula in our setting is stated in

form of a (possibly degenerate) second-order PIDE as follows:

0 = ∂tv(t, x, y) + b(y)T∇yv(t, x, y) +
1

2
tr[A(y)∇2

yyv(t, x, y)]

+ min
F∈A

{
1

2
∂2xxv(t, x, y)

(
(mF )TA(y)mF + tr[A(y)θF ]

)
+ (mF )T

(
A(y)∇2

xyv(t, x, y) + ∂xv(t, x, y)b(y)
)

+

�
E×RD

(
v(t, x+ F (u)Tγ(y)e, y + γ(y)e)− v(t, x, y)

− ∂xv(t, x, y)F (u)
Tγ(y)e−∇yv(t, x, y)

Tγ(y)e
)
ν(de)φD(u)du
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− λEnt(F )

}
, (t, x, y) ∈ [0, T )× R× RD, (4.10)

with the terminal condition v(T, x, y) = (x− ŵ)2 for (x, y) ∈ R× RD.

Remark 4.5. By [9, Theorem 8.6.5], one has Ent(F ) = −∞ if det(θF ) = 0. Hence, it suffices to

consider the above minimization over F ∈ A with det(θF ) > 0, i.e. over F ∈ A with θF ∈ SD++.

Remark 4.6. In the case of no jumps, i.e. ν = 0, (4.10) simplifies to

0 = ∂tv(t, x, y) + b(y)T∇yv(t, x, y) +
1

2
tr[A(y)∇2

yyv(t, x, y)]

+ min
m∈RD,θ∈SD++

{
1

2
∂2xxv(t, x, y)

(
mTA(y)m+ tr[A(y)θ]

)
+mT

(
A(y)∇2

xyv(t, x, y) + ∂xv(t, x, y)b(y)
)

− λ max
F∈A; mF=m and θF=θ

Ent(F )

}
, (t, x, y) ∈ [0, T )× R× RD.

By the entropy-maximizing property of the Gaussian distribution, the maximum over F is

achieved at the linear function F (u) = m+ θ
1
2u and the HJB-equation becomes a second-order

PDE for the unknown value function v. This PDE can the be solved by a quadratic ansatz as

done e.g. in [34] for the case D = 1 and constant coefficients. In the presence of jumps, this

“separation argument” (solving first for F given its first two moments) a priori does not work

anymore, because F explicitly enters the integral term of the HJB-PIDE (4.10). As we will

show in the next section, (4.10) can nonetheless be solved by a quadratic ansatz, and, then, the

separation step can be performed a posteriori, leading to the Gaussianity of the optimal control

law.

4.2.2. Quadratic ansatz. We first introduce the following function classes in relation to the

coefficient γ and Lévy measure ν.

Definition 4.7. For a Borel function g : [0, T ]× RD → R we let g ∈ Υ(0) (resp. g ∈ Υ(1), g ∈
Υ(2)) if there exists a (jointly) continuous function Υ

(0)
g (resp. Υ

(1)
g ,Υ

(2)
g ) : [0, T ]×RD → [0,∞)

such that �
E
|g(t, y + γ(y)e)| ∥e∥2ν(de) ≤ Υ(0)

g (t, y),

resp.

�
E
|g(t, y + γ(y)e)− g(t, y)| ∥e∥ν(de) ≤ Υ(1)

g (t, y),

resp.

�
E

∣∣∣g(t, y + γ(y)e)− g(t, y)−∇yg(t, y)
Tγ(y)e

∣∣∣ν(de) ≤ Υ(2)
g (t, y),

for all (t, y) ∈ [0, T ] × RD, where we additionally assume that ∇yg exists and measurable for

g ∈ Υ(2). Then Υ
(k)
g is called an Υ-dominating function of g ∈ Υ(k).

Remark 4.8. A standard calculation shows that g ∈ Υ(0) ∩ Υ(1) ∩ Υ(2) if
�
E ∥e∥2ν(de) < ∞

and one of the following holds:

(a) g is twice continuously differentiable with respect to y with

sup
(t,y)∈[0,T ]×RD

(|g(t, y)|+ ∥∇yg(t, y)∥+ ∥∇2
yyg(t, y)∥) <∞.

(b) sup(t,y)∈[0,T ]×RD |g(t, y)| <∞, ∇yg is jointly continuous on [0, T ]× RD, and ν(E) <∞.
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For α ∈ Υ(0)∩Υ(1), α > 0 on [0, T ]×RD, and∇yα exists, we define the functionsMα : [0, T ]×
RD → RD and Sα : [0, T ]× RD → SD++ as

Mα(t, y) := α(t, y)b(y) +A(y)∇yα(t, y) + γ(y)

�
E
(α(t, y + γ(y)e)− α(t, y))e ν(de), (4.11)

Sα(t, y) := α(t, y)A(y) + γ(y)

( �
E
α(t, y + γ(y)e)eeTν(de)

)
γ(y)T. (4.12)

In particular, if α ≡ 1 on [0, T ] × RD then Mα = b and Sα = Σ. One also remarks that the

mapping Sα is well-defined. Indeed, for any (t, y) ∈ [0, T ] × RD and u ∈ RD\{0}, one has

uTSα(t, y)u > 0 because of α > 0 and the non-degenerate condition (see Section 3.1). As a

consequence, the inverse S−1
α (t, y) exists and also belongs to SD++ which can be easily derived

from the spectral decomposition of Sα(t, y).

Proposition 4.9 (Quadratic value function). Let α, β ∈ C1,2([0, T ]×RD)∩Υ(2). Assume that

α ∈ Υ(0) ∩ Υ(1) and α > 0, and that α, β solve the following system of PIDEs pointwise on

[0, T )× RD, 
∂tα(t, y) + LY α(t, y)− (MT

αS
−1
α Mα)(t, y) = 0,

∂tβ(t, y) + LY β(t, y)−
λ

2
log

(
(λπ)D

det(Sα(t, y))

)
= 0,

α(T, ·) ≡ 1 and β(T, ·) ≡ 0,

(4.13)

where LY ϕ(t, y) := (LY ϕ(t, ·))(y) for ϕ ∈ {α, β}. Then, for (t, x, y) ∈ [0, T ]× R× RD,

vopt(t, x, y) := α(t, y)(x− ŵ)2 + β(t, y) (4.14)

solves the HJB equation (4.10). Moreover, a minimizer F opt = F opt
α (t, x, y;λ; ·) ∈ A is

F opt
α (t, x, y;λ;u) = mopt

α (t, x, y) + θoptα (t, y;λ)
1
2u, (4.15)

where

mopt
α (t, x, y) := −(x− ŵ)(S−1

α Mα)(t, y) and θoptα (t, y;λ) :=
λ

2
S−1
α (t, y). (4.16)

Proof. One first notices that LY α(t, ·) and LY β(t, ·) are well-defined functions for t ∈ [0, T ]. To

simplify the presentation, we omit the argument y of coefficient functions b, A, γ, and for fixed

(t, y), we formally use the following notations for α (and analogously for β),

α := α(t, y), α̃(e) := α(t, y + γ(y)e), LY α := LY α(t, y).

Plugging the ansatz (4.14) into the HJB equation (4.10) and rearranging terms we get the

following which holds pointwise on [0, T )× R× RD,

0 = (x− ŵ)2(∂tα+ LY α) + (∂tβ + LY β)

+ min
F∈A, θF∈SD++

{
α
(
(mF )TAmF + tr[AθF ]

)
+ 2(x− w)(mF )T(A∇yα+ αb)

+

�
E

(
α̃(e)eTγT(θF +mF (mF )T)γe+ 2(x− w)(α̃(e)− α)(mF )Tγe

)
ν(de)− λEnt(F )

}
,

(4.17)

where the minimization is taken over F ∈ A with θF ∈ SD++ due to Remark 4.5. Remark that

given any m ∈ RD, θ ∈ SD++, there always exists an F ∈ A such that mF = m and θF = θ, for

example, one might take F (u) = m + θ
1
2u. Then the minimum over F ∈ A with θF ∈ SD++ in

(4.17) can be separated into two individual minimization problems, one is over mF ∈ RD and
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the other is over θF ∈ SD++. Specifically, let ΨF
(4.17) denote the expression inside the minimum

in (4.17), then one has

min
F∈A, θF∈SD++

ΨF
(4.17) = min

m∈RD

{
αmTAm+ 2(x− w)mT(A∇yα+ αb)

+

�
E

(
α̃(e)(mTγe)2 + 2(x− w)(α̃(e)− α)mTγe

)
ν(de)

}
+ min
θ∈SD++

{
αtr[Aθ] +

�
E
α̃(e)eTγTθγe ν(de)− λ max

F∈A, θF=θ
Ent(F )

}
=: min

m∈RD
f(4.18)(m) + min

θ∈SD++

g(4.18)(θ). (4.18)

It is known that the differential entropy is translation invariant and it is maximized over all

distributions with a given covariance matrix by Gaussian distribution, see, e.g., [9, Theorem

8.6.5]. Hence, g(4.18) can be expressed as

g(4.18)(θ) = αtr[Aθ] +

�
E
α̃(e)eTγTθγe ν(de)− λ

2
log(det(θ))− λD

2
log(2πe).

Combining (4.17) with (4.18) yields the equation

(x− ŵ)2(∂tα+ LY α) + (∂tβ + LY β) + min
m∈RD

f(4.18)(m) + min
θ∈SD++

g(4.18)(θ) = 0. (4.19)

We first consider the minimization problem

min
θ∈SD++

g(4.18)(θ).

By vectorization, SD++ can be regarded as an open subset of RD(D+1)/2, where the openness

(under the Euclidean norm) can be inferred from Sylvester’s criterion, so that g(4.18) becomes

a function defined on SD++ ⊂ RD(D+1)/2. Since θ 7→ − log(det(θ)) is a convex and differ-

entiable function on SD++, it implies that g(4.18) is also convex and differentiable. Hence,

solutions of ∇g(4.18) globally minimize g(4.18) on SD++. To find its solutions, we represent

θ = (θ(1,1), . . . , θ(D,1), θ(2,2), . . . θ(D,2), . . . , θ(D,D))T ∈ RD(D+1)/2. Then, for 1 ≤ j ≤ i ≤ D,

according to [17, p.311, Eq. (8.12)] one has

∂ log det(θ)

∂θ(i,j)
= [2θ−1 − diag(θ−1)](i,j)

so that the partial derivatives of g(4.18) are computed by

∂g(4.18)

∂θ(i,j)
(θ)

= α[2A− diag(A)](i,j) +

�
E
α̃(e)[2γeeTγT − diag(γeeTγT)](i,j)ν(de)− λ

2
[2θ−1 − diag(θ−1)](i,j).

Solving ∇g(4.18)(θ) = 0 we get the solution θ = θoptα (t, y;λ) as provided in (4.16). Hence,

θoptα (t, y;λ) is a global minimizer of g(4.18) on SD++. We next investigation the problem

min
m∈RD

f(4.18)(m).

Solving ∇f(4.18)(m) = 0 yields the solution m = mopt
α (t, x, y) which is provided in (4.16). More-

over, since

∇2f(4.18) = 2αA+ 2γ

(�
E
α̃(e)eeTν(de)

)
γT = 2Sα
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and Sα ∈ SD++ as claimed above, we infer that mopt
α (t, x, y) is a global minimizer of f(4.18) on

RD. Plugging these minimizers back into (4.19) and noticing that

tr[αAS−1
α ] = tr

[
ID −

�
E
α̃(e)γeeTγTS−1

α ν(de)

]
= D −

�
E
α̃(e)eTγTS−1

α γe ν(de)

we eventually arrive at the equation

0 = (x− ŵ)2
(
∂tα+ LY α−MT

αS
−1
α Mα

)
+

(
∂tβ + LY β − λ

2
log

(
(λπ)D

det(Sα)

))
which holds true according to assumption (4.13). As a consequence, the function provided in

(4.15) is an optimal solution of (4.17). □

4.2.3. Verification argument. In the following result, the coefficients K ∈ {b, a, γ,A,Σ} are

conveniently extended to be defined on [0, T ] × RD by setting K(t, y) := K(y). We recall Mα

and Sα from (4.11) and (4.12) respectively.

Theorem 4.10. Let α, β satisfy the assumptions of Proposition 4.9. Let (t, x, y) ∈ [0, T )×R×
RD and recall Y t,y in (4.3). Assume furthermore that {β(τ, Y t,y

τ ) | τ : Ω → [t, T ] is a stopping time}
is uniformly integrable and that α is bounded on [0, T ]× RD and satisfies

� T

t
|(MT

αS
−1
α b)(s, Y t,y

s− )|2ds+ sup
s∈(t,T )

|(MT
αS

−1
α ΣS−1

α Mα)(s, Y
t,y
s− )| ≤ c(4.20) a.s., (4.20)

E
[� T

t
tr[(ΣS−1

α )(s, Y t,y
s− )]ds

]
+ E

[� T

t

∣∣∣ log (det(Sα(s, Y
t,y
s− ))

)∣∣∣ds] <∞, (4.21)

for some non-random constant c(4.20) > 0. Then a solution for Problem 4.3 is

Ht,x,y;∗
s (u) = −(Xt,x,y;∗

s− − ŵ)(S−1
α Mα)(s, Y

t,y
s− ) +

√
λ

2
S
− 1

2
α (s, Y t,y

s− )u, s ∈ (t, T ], u ∈ RD, (4.22)

with Ht,x,y;∗
t (u) := −(x−ŵ)(S−1

α Mα)(t, y)+
√

λ
2S

− 1
2

α (t, y)u, and the corresponding optimal wealth

process Xt,x,y;∗ = (Xt,x,y;∗
s )s∈[t,T ] is a unique càdlàg (strong) solution to the SDE on [t, T ],

dXt,x,y;∗
s = −(Xt,x,y;∗

s− − ŵ)dZt,ys +

√
λ

2
dM t,y

s , Xt,x,y;∗
t = x. (4.23)

Here Zt,y = (Zt,ys )s∈[t,T ], M
t,y = (M t,y

s )s∈[t,T ] are càdlàg with Zt,yt = 0,M t,y
t = 0 given by

dZt,ys = (MT
αS

−1
α )(s, Y t,y

s− )dY t,y
s ,

dM t,y
s = tr[(S

− 1
2

α a)(s, Y t,y
s− )dWT

s ] +

�
E×RD

(
S
− 1

2
α (s, Y t,y

s− )
u

ψ(e)

)T

γ(Y t,y
s− )e Ñψ

L (ds, de,du).

The value function is V ∗(·|ŵ) = vopt, where vopt is provided in (4.14).

Remark 4.11. The RL algorithms developed in [20, 21] learn the value function and the opti-

mal measure-valued control in parametric classes of functions and probability measures (which

have to be chosen beforehand). The structural results on the optimal value and the optimal

control obtained in Proposition 4.9 and Theorem 4.10 facilitate such a parametrization. Indeed,

Proposition 4.9 shows that the optimal value function is quadratic in the portfolio wealth with

coefficients which can be computed in terms of the functions α and β. Moreover, the opti-

mal control law is Gaussian with mean −(Xt,x,y;∗
− − ŵ)(S−1

α Mα)(·, Y t,y
− ) and covariance matrix

λ
2S

−1
α (·, Y t,y

− ) by Theorem 4.10 (and, hence, mean and covariance matrix do not depend on β).

Under additional structural assumptions on the stock price model, see Example 4.14 below, the
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PIDE for α can be solved in closed form, leading to an explicit parametrization for the optimal

control law.

We also remark that, in general, the mean of the optimal control linearly depends on the

associated portfolio wealth, while its covariance matrix is independent of the portfolio wealth.

Proof of Theorem 4.10. Let us fix (t, x, y) ∈ [0, T )×R×RD. For the sake of notational simplicity,

in the presentation below we omit the super-scripts (t, y) and (t, x, y) in relevant processes such as

Y t,y in (4.3), Xt,x,y;H in (4.5), and M t,y, Zt,y. Since E
[ � T

t tr[(ΣS−1
α )(s, Ys−)]ds

]
<∞ by (4.21),

it implies that M is a uniformly square integrable martingale with E[maxt≤s≤T |Ms|2] <∞ due

to Doob’s maximal inequality. By assumption (4.20), we apply Lemma B.2 to infer that the

SDE (4.23) has a unique càdlàg solution X∗ with

E
[

sup
t≤s≤T

|X∗
s |2

]
<∞. (4.24)

Step 1. Take H ∈ A(t, y) arbitrarily. For vopt given in (4.14), one has

V H(t, x, y|ŵ) = E
[
vopt(T,XH

T , YT ) + λ

� T

t

�
R
pHs (u) log p

H
s (u)duds

]
.

Applying Itô’s formula (see, e.g., [22, Theorem 2.5]) for vopt ∈ C1,2([0, T ]× R1+D) and XH , Y

we obtain, a.s., for t < r ≤ T ,

vopt(r,XH
r , Yr)− vopt(t, x, y) =

� r

t
∂tv

opt(s,XH
s−, Ys−)ds

+

� r

t
∂xv

opt(s,XH
s−, Ys−)(µ

H
s )

Tb(Ys−)ds+

� r

t
∇yv

opt(s,XH
s−, Ys−)

Tb(Ys−)ds

+

� r

t
∂xv

opt(s,XH
s−, Ys−)

(
(µHs )

Ta(Ys−)dWs + tr[(ΘH
s )

1
2a(Ys−)dWT

s ]
)

+

� r

t
∇yv

opt(s,XH
s−, Ys−)

Ta(Ys−)dWs

+
1

2

� r

t
∂2xxv

opt(s,XH
s−, Ys−)

(
(µHs )

TA(Ys−)µ
H
s + tr[A(Ys−)Θ

H
s ]

)
ds

+

� r

t

(
(µHs )

TA(Ys−)∇2
xyv

opt(s,XH
s−, Ys−) +

1

2
tr[∇2

yyv
opt(s,XH

s−, Ys−)A(Ys−)]
)
ds

+

�
(t,r]×E×RD

[
vopt

(
s,XH

s− +Hs

(
u

ψ(e)

)T

γ(Ys−)e, Ys− + γ(Ys−)e

)
− vopt(s,XH

s−, Ys−)

]
Ñψ
L (ds, de,du)

+

�
(t,r]×E×RD

[
vopt

(
s,XH

s− +Hs

(
u

ψ(e)

)T

γ(Ys−)e, Ys− + γ(Ys−)e

)
− vopt(s,XH

s−, Ys−)

− ∂xv
opt(s,XH

s−, Ys−)Hs

(
u

ψ(e)

)T

γ(Ys−)e−∇yv
opt(s,XH

s−, Ys−)
Tγ(Ys−)e

]
νψL(de,du)ds.

(4.25)

We let z := u
ψ(e) and denote by P (s, e, z) the integrand against νψL(de,du)ds in (4.25). It follows

from the explicit form of vopt that

P (s, e, z) = α(s, Ys− + γ(Ys−)e)(X
H
s− +Hs(z)

Tγ(Ys−)e− ŵ)2 − α(s, Ys−)(X
H
s− − ŵ)2

+ β(s, Ys− + γ(Ys−)e)− β(s, Ys−)− 2α(s, Ys−)(X
H
s− − ŵ)Hs(z)

Tγ(Ys−)e
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−∇yα(s, Ys−)
T(XH

s− − ŵ)2γ(Ys−)e−∇yβ(s, Ys−)
Tγ(Ys−)e

= (XH
s− − ŵ)2

[
α(s, Ys− + γ(Ys−)e)− α(s, Ys−)−∇yα(s, Ys−)

Tγ(Ys−)e
]

+ 2(XH
s− − ŵ)

[
α(s, Ys− + γ(Ys−)e)− α(s, Ys−)

]
Hs(z)

Tγ(Ys−)e

+ α(s, Ys− + γ(Ys−)e)(Hs(z)
Tγ(Ys−)e)

2

+ β(s, Ys− + γ(Ys−)e)− β(s, Ys−)−∇yβ(s, Ys−)
Tγ(Ys−)e.

Let Υ
(0)
α ,Υ

(1)
α ,Υ

(2)
α and Υ

(2)
β respectively be (continuous) Υ-dominating functions of α and β in

the sense of Definition 4.7. Then, for some constant cD > 0 depending only on D, we get, a.s,� T

t

�
E×RD

|P (s, e, z)|νψL(de,du)ds =
� T

t

�
E×RD

|P (s, e, u)|ν(de)φD(u)duds

≤
� T

t
(XH

s− − ŵ)2Υ(2)
α (s, Ys−)ds

+ 2cD

� T

t
|XH

s− − ŵ|
(�

RD

∥Hs(u)∥φD(u)du
)
∥γ(Ys−)∥Υ(1)

α (s, Ys−)ds

+ cD

� T

t
∥γ(Ys−)∥2Υ(0)

α (s, Ys−)

( �
RD

∥Hs(u)∥2φD(u)du
)
ds+

� T

t
Υ

(2)
β (s, Ys−)ds

<∞,

where we use the càdlàg property of XH , Y and assumption (4.1) to deduce the finiteness.

Let Q(s, e, z) denote the integrand against Ñψ
L in (4.25) and define

R(s, e, z) :=
[
2α(s, Ys−)(X

H
s− − ŵ)Hs(z) +∇yα(s, Ys−)(X

H
s− − ŵ)2 +∇yβ(s, Ys−)

]T
γ(Ys−)e

=: R̃(s, z)Tγ(Ys−)e

so that

Q(s, e, z) = P (s, e, z) +R(s, e, z).

Then, there is a constant c′D > 0 such that, a.s.,
� T

t

�
E×RD

|R(s, e, z)|2νψL(de,du)ds =
� T

t

�
E×RD

|R(s, e, u)|2ν(de)φD(u)duds

≤ c′D

(�
E
∥e∥2ν(de)

) � T

t

�
RD

∥R̃(s, u)∥2∥γ(Ys−)∥2φD(u)duds

<∞.

On the other hand, by rearranging terms we get a predictable process ϕH and a local martingale

UH null at t such that

vopt(r,XH
r , Yr)− vopt(t, x, y) =

� r

t
ϕHs ds+ UHr .

Since vopt solve the HJB equation (4.17) and any H ∈ A(t, y) is sub-optimal in general, we

arrive at, a.s,

vopt(r,XH
r , Yr)− vopt(t, x, y) ≥ −λ

� r

t

�
RD

pHs (u) log p
H
s (u)duds+ UHr . (4.26)

To deal with UH , we define the localizing sequence (τn)n≥1 as follows

τn := T ∧ inf

{
r ∈ (t, T ] :

� r

t

(�
E×RD

(|P (s, e, u)|+ |R(s, e, u)|2)ν(de)φD(u)du
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+∇yv
opt(s,XH

s−, Ys−)
TA(Ys−)∇yv

opt(s,XH
s−, Ys−)

+ |∂xvopt(s,XH
s−, Ys−)|2

(
(µHs )

TA(Ys−)µ
H
s + tr[A(Ys−)Θ

H
s ]

))
ds ≥ n

}
.

Since the integrand against ds in the definition of τn is integrable on [t, T ] a.s., the integral� r
t (· · · )ds is finite and non-decreasing in r a.s., and hence (τn)n≥1 is a non-decreasing sequence

of stopping times converging a.s. to T as n→ ∞. We note that the local martingale UH on the

right-hand side of (4.26) is an integrable martingale null at t when stopping at τn, and hence,

vanishes when taking the expectation. Therefore,

vopt(t, x, y) ≤ E
[
vopt(τn, X

H
τn , Yτn) + λ

� τn

t

�
RD

pHs (u) log p
H
s (u)du

]
= E

[
α(τn, Yτn)(X

H
τn − ŵ)2 + β(τn, Yτn) + λ

� τn

t

�
RD

pHs (u) log p
H
s (u)du

]
.

By assumption, α is continuous and bounded, β is continuous and {β(τn, Yτn)}n≥1 is uniformly

integrable, and the entropy term is also uniform integrable for H ∈ A(t, y), we exploit (4.6) and

use the dominated convergence theorem with keeping in mind that (τn)n≥1 is a.s. eventually

constant T to get

vopt(t, x, y) ≤ E
[
vopt(T,XH

T , YT ) + λ

� T

t

�
RD

pHs (u) log p
H
s (u)du

]
= V H(t, x, y|ŵ).

Since H ∈ A(t, y) is arbitrary, it implies that vopt(t, x, y) ≤ V ∗(t, x, y|ŵ).

Step 2. As suggested by (4.15), H∗ provided in (4.22) is a candidate for optimal controls. If

H∗ is admissible, then we can apply the arguments in Step 1 for H∗, where inequality (4.26)

becomes an equality, to obtain

vopt(t, x, y) = V H∗
(t, x, y|ŵ).

Hence vopt(t, x, y) = V ∗(t, x, y|ŵ). It remains to show that H∗ is admissible by verifying the

requirements in Definition 4.1. Condition (H1) is obvious from the definition of H∗. For (H2),

one has

µH
∗

s = −(X∗
s− − ŵ)(S−1

α Mα)(s, Ys−) and ΘH∗
s =

λ

2
S−1
α (s, Ys−).

Condition (4.1) is straightforward due to the càdlàg property of X∗, Y and the continuity of

Mα, S
−1
α on [0, T ] × RD. For (4.2), expanding the square and using

�
RD uφD(u)du = 0 and�

RD uu
TφD(u)du = ID in the jump part we get

(µH
∗

s )TA(Ys−)µ
H∗
s + tr[A(Ys−)Θ

H∗
s ] +

�
E×RD

|H∗
s (u)

Tγ(Ys−)e|2ν(de)φD(u)du

= (X∗
s− − ŵ)2(MT

αS
−1
α AS−1

α Mα)(s, Ys−) +
λ

2
tr[(AS−1

α )(s, Ys−)]

+ (X∗
s− − ŵ)2

(
MT
αS

−1
α γ

�
E
eeTν(de)γTS−1

α Mα

)
(s, Ys−) +

λ

2
tr

[(
γ

�
E
eeTν(de)γTS−1

α

)
(s, Ys−)

]
= (X∗

s− − ŵ)2(MT
αS

−1
α ΣS−1

α Mα)(s, Ys−) +
λ

2
tr[(ΣS−1

α )(s, Ys−)].

In addition, using Hölder’s inequality yields∣∣∣∣� T

t
|(µH∗

s )Tb(s, Ys−)|ds
∣∣∣∣2 ≤ ( � T

t
(X∗

s− − ŵ)2ds

)( � T

t
|(MT

αS
−1
α b)(s, Ys−)|2ds

)
.



ENTROPY-REGULARIZED PORTFOLIO OPTIMIZATION WITH JUMPS 23

Hence (4.2) is satisfied by using (4.20), (4.21) and (4.24). To verify (H3), we might take pH
∗

s (·)
to be the continuous density function of the Gaussian distribution N (µH

∗
s ,ΘH∗

s ) with mean µH
∗

s

and covariance matrix ΘH∗
s , and then (4.4) follows from (4.21). □

4.3. Explicit solutions of optimal exploratory SDEs and Lagrange multipliers. As an

advantage of our approach, the optimal exploratory dynamic (4.23) is a linear SDE with jumps

which enables us to find its solutions in a closed-form. As a consequence, we can also explicitly

determine the Lagrange multiplier ŵ using the constraint E[XH∗
T ] = ẑ, where H∗ is given in

(4.22).

We consider Problem 4.3 and assume the assumptions of Theorem 4.10 for (t, x, y) = (0, x0, y0),

and omit super-scripts (0, y0) and (0, x0, y0) in relevant processes.

Proposition 4.12. Under the assumptions of Theorem 4.10, if ∆Z ̸= 1 on [0, T ] then the

optimal wealth process X∗ = (X∗
r )r∈[0,T ] in (4.23) is given by

X∗
r = ŵ +

[
x0 − ŵ +

√
λ

2

(� r

0

dMs

E(−Z)s−
+

� r

0

d[M,Z]s
E(−Z)s−

)]
E(−Z)r, r ∈ [0, T ], (4.27)

where E(−Z) = (E(−Z)r)r∈[0,T ] denotes the Doléans–Dade exponential2 of −Z, i.e.

E(−Z)0 = 1, E(−Z)r = exp

(
− Zr −

1

2

� r

0
d[Z,Z]cs

) ∏
0<s≤r

(1−∆Zs)e
∆Zs , r ∈ (0, T ].

Here the quadratic covariation terms are explicitly expressed as follows

d[M,Z]s =

�
E×RD

1

ψ(e)
eT

[
γTS−1

α Mα(S
− 1

2
α u)Tγ

]
(s, Ys−)eN

ψ
L (ds, de,du),

d[Z,Z]cs = (MT
αS

−1
α AS−1

α Mα)(s, Ys−)ds.

Moreover, if E[E(−Z)T ] ̸= 1 then the Lagrange multiplier ŵ (such that E[X∗
T ] = ẑ) is given by

ŵ =
1

1− E[E(−Z)T ]

(
ẑ −

√
λ

2
E
[(� T

0

dMs

E(−Z)s−
+

� T

0

d[M,Z]s
E(−Z)s−

)
E(−Z)T

]
− x0E[E(−Z)T ]

)
.

(4.28)

Proof. For Z given in Theorem 4.10, we write

−(X∗
s− − ŵ)dZs = (X∗

s− − ŵ)d(−Zs).

Since ∆Z ̸= 1 by assumption, it implies that inf{s ∈ (0, T ] : 1 −∆Zs = 0} = ∞ a.s. We then

apply [30, Exercise V.27] to obtain the explicit representation for X∗ as in (4.27).

For the Lagrange multiplier ŵ, we first notice that E(−Z) satisfies the following SDE on [0, T ]

E(−Z)r = 1 +

� r

0
E(−Z)s−d(−Zs).

Since the conditional quadratic variation3 of the integrator −Z is

⟨−Z,−Z⟩T =

� T

0
(MT

αS
−1
α ΣS−1

α Mα)(s, Ys−)ds ≤ c(4.20)T,

it follows from condition (4.20) and Lemma B.2 that E(−Z) is square integrable. Since X∗ is

also square integrable by (4.24), letting r = T and taking the expectation both sides of (4.27)

we rearrange terms and use the constraint E[X∗
T ] = ẑ to obtain (4.28). □

2See, e.g., [30, Section II.8].
3See, e.g., [30, Chapter III, p.124].
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Remark 4.13. (1) If ν is absolutely continuous with respect to the D-dimensional Lebesgue

measure λD, then ∆Z ̸= 1 on [0, T ]. Indeed, by letting Jt :=
� t
0

�
E×RD eÑ

ψ
L (ds, de,du) so

that J admits ν as its Lévy measure we get

E[#{s ∈ (0, T ] : ∆Zs = 1}] = E[#{s ∈ (0, T ] : (MT
αS

−1
α γ)(s, Ys−)∆Js = 1}]

= E
[� T

0

�
E
1{(MT

αS
−1
α γ)(s,Ys−)e=1}ν(de)ds

]
= 0,

where we combine Fubini’s theorem with the fact that hyperplanes have Lebesgue measure

zero to obtain the last equality. Hence, #{s ∈ (0, T ] : ∆Zs = 1} = 0 a.s.

(2) If the condition “∆Z ̸= 1 on [0, T ]” in Proposition 4.12 is not satisfied, then we can still

obtain explicit representations of X∗ and ŵ. However, as these expressions are rather

technical, we refer the interested readers to [5] for more details.

4.4. Illustrative examples. Let us consider some situations in which assumptions of Propo-

sition 4.9 and Theorem 4.10 are validated. For matrices P,Q ∈ SD we write P ⪯ Q or Q ⪰ P if

Q− P ∈ SD+ .

Example 4.14 (Proportional coefficients). Let b, a, γ in Section 3.1 satisfy b(i), a(i,j), γ(i,j) ∈
C∞
b (RD) for all i, j = 1, . . . , D. Assume that there are constants K > 0 and ε > 0 such that,

for all y ∈ RD, {
A(y) ⪰ εID,

(bTΣ−1b)(y) = K.
(4.29)

For example, if there exist U : RD → SD++ with U (i,j) ∈ C∞
b (RD), i, j = 1, . . . , D, and a constant

δ > 0 such that U(y) ⪰ δID for all y ∈ RD and that, for some constant b̃ ∈ RD, ã, γ̃ ∈ RD×D

with b̃ ̸= 0 and det(ã) ̸= 0,

b(y) = U(y)b̃, a(y) = U(y)ã, γ(y) = U(y)γ̃,

then condition (4.29) holds true with K = b̃T(ããT + γ̃
�
E ee

Tν(de)γ̃T)−1b̃ and ε = δ2ε̃, where

ε̃ > 0 is sufficiently small such that ããT ⪰ ε̃ID.

Now, under (4.29), Assumption 3.1 is obviously satisfied. Moreover, since Σ(y) ⪰ A(y), it

follows from the ellipticity condition A(y) ⪰ εID that Σ(y) ⪰ εID. Hence, Lemma B.1 gives

Σ−1(y) ⪯ 1

ε
ID, ∀y ∈ RD.

Consequently, one has supy∈RD ∥Σ−1(y)∥ <∞.

We first find solution α of the PIDEs (4.13) which does not depend on y. For α(t, ·) = α(t),

we get

Sα(t, y) = α(t)Σ(y), Mα(t, y) = α(t)b(y)

so that (MT
αS

−1
α Mα)(t, y) = α(t)K. Then the PIDE for α in (4.13) boils down to the following

ordinary differential equation (ODE){
α′(t)− α(t)K = 0, t ∈ [0, T ),

α(T ) = 1,

whose solution is given by

α(t) = e−(T−t)K , t ∈ [0, T ].
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It is easy to check that the assumptions of Proposition 4.9 and Theorem 4.10 are satisfied for

α. Next, plugging this α into the PIDE for β in (4.13) we obtain∂tβ(t, y) + LY β(t, y)−
λ

2
log

(
(λπ)D

det(α(t)Σ(y))

)
= 0, t ∈ [0, T ),

β(T, ·) = 0.

(4.30)

We apply [26, Theorem 1] to conclude that the PIDE (4.30) has a unique classical solution β ∈
C1,2([0, T ]×RD). Moreover, β and its partial derivatives ∂tβ,∇yβ,∇2

yyβ are uniformly bounded

on [0, T ]×RD. Then β also satisfies the assumptions of Proposition 4.9 and Theorem 4.10. The

Feynman–Kac representation for β (see, e.g., [3, Theorems 3.4 and 3.5]) is

β(t, y) = E
[� T

t
f(s, Y t,y

s )ds

]
, (t, y) ∈ [0, T ]× Rd,

where f(t, y) := −λ
2 log(

(λπ)D

det(α(t)Σ(y))) and Y
t,y is given in (4.3). The value function is

V ∗(t, x, y|ŵ) = e−(T−t)K(x− ŵ)2 + β(t, y).

The associated exploratory SDE for X∗ = (X∗
r )r∈[0,T ] is given by X0 = x0 and

dX∗
r = −(X∗

r− − ŵ)

(
Kdr + (bTΣ−1a)(Yr−)dWr + (bTΣ−1γ)(Yr−)

�
E×RD

eÑψ
L (dr, de,du)

)
+

√
λ

2
e

1
2
(T−r)K

(
tr[(Σ− 1

2a)(Yr−)dWT
r ] +

�
E×RD

uT

ψ(e)
(Σ− 1

2γ)(Yr−)e Ñ
ψ
L (dr, de,du)

)
,

(4.31)

whose explicit expression can be derived either from [5] or from (4.27) provided that ∆Z ̸= 1

on [0, T ].

Regarding the Lagrange multiplier ŵ, due to the condition (bTΣ−1b)(y) = K in (4.29), we

can simply calculate its value by taking the expectation of X∗
r with noting that the martingale

terms in the expression (4.31) of X∗
r are square integrable null at 0, and then using Fubini’s

theorem to get

E[X∗
r ] = x0 −K

� r

0
(E[X∗

s ]− ŵ)ds,

which then gives

E[X∗
r ] = ŵ + (x0 − ŵ)e−Kr, r ∈ [0, T ].

By the constraint E[X∗
T ] = ẑ, we arrive at

ŵ =
ẑeKT − x0
eKT − 1

.

Example 4.15 (Constant coefficients). Let b, a, γ be constants on RD with b ̸= 0 and Σ ∈ SD++,

where a might be degenerate. In this situation we can find solutions α, β of the PIDEs (4.13)

which do not depend on y. Namely, by letting α(t, ·) = α(t), β(t, ·) = β(t) and plugging them

into (4.13) we obtain a system of ODEs for α, β which possesses the following solutions on [0, T ],
α(t) = e−(T−t)K ,

β(t) = −(T − t)2
λD

4
K − (T − t)

λ

2
log

(
(λπ)D

det(Σ)

)
,
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where K := bTΣ−1b > 0. It is also easy to check that the assumptions of Proposition 4.9 and

Theorem 4.10 are fulfilled for α, β. Then the value function is explicitly given by

V ∗(t, x, y|ŵ) = V ∗(t, x|ŵ) := e−(T−t)K(x− ŵ)2 − (T − t)2
λD

4
K − (T − t)

λ

2
log

(
(λπ)D

det(Σ)

)
.

The SDE for the optimal wealth X∗ and the Lagrange multiplier ŵ are respectively the same

as those in Example 4.14 where one notices here that coefficients b, a, γ,Σ are constant4.

In the following we continue to specialize Example 4.15 to the case of no jumps.

Example 4.16 (Constant coefficients, ν ≡ 0 and D = 1). This is the setting considered by

Wang and Zhou [34]. For a > 0, b ̸= 0, letting σ := a and ρ := b
a we get the value function

V ∗(t, x|ŵ) = e−ρ
2(T−t)(x− ŵ)2 − λ

2

(
ρ2

2
(T − t)2 + (T − t) log

(
λπ

σ2

))
which coincides with that in [34, Theorem 3.1]. The associated SDE for the optimal wealth X∗

in our setting is

dX∗
s = −ρ2(X∗

s − ŵ)ds− ρ(X∗
s − ŵ)dWs +

√
λ

2
e

ρ2

2
(T−t)dWs, X∗

0 = x0, (4.32)

whose explicit representation is given, according to Proposition 4.12, by

X∗
r = ŵ +

[
x0 − ŵ +

√
λ

2

� r

0
eρWs+

3
2
ρ2se

1
2
ρ2(T−s)dWs

]
e−ρWr− 3

2
ρ2r, r ∈ [0, T ].

We emphasize that the optimal exploratory SDE (4.32) is different from that in [34, Eq. (27)]

which is formulated in our notation as

dX̃∗
s = −ρ2(X̃∗

s − ŵ)ds+

√
ρ2(X̃∗

s − ŵ)2 +
λ

2
eρ2(T−s)dWs, X̃∗

0 = x0. (4.33)

However, solutions X∗ of (4.32) and X̃∗ of (4.33) have the same (finite-dimensional) distribution

because of the uniqueness in law of (4.33).

4.5. Relation to the sample state process. The continuous-time RL algorithms designed in

[20, 21] rely on the sample state process for the actual learning task, which is the solution of an

SDE that models the state dynamics evaluated along a randomized control. In this subsection,

we explain the relation between our exploratory dynamics and the sample state process. To

avoid technicalities and to highlight the key ideas, we focus on the situation in Example 4.16.

The construction of the sample state process in [20, 21] starts with a feedback control π(·|t, x)
with values in the space of probability density functions. If the portfolio value is in state Xt = x

at time t, the portfolio position Ht is randomly drawn from the probability density π(·|t, x). The
actual drawing of the portfolio position is performed based on a family (Zt)t∈[0,T ] of independent

random variables in [21], which are uniformly distributed on [0, 1]. This family is supposed to be

independent of the stochastic processes driving the stock price, hence, of the Brownian motionW

in the context of Example 4.16. Denoting by hπ(t, x; ·) the quantile function of the distribution

with density π(·|t, x), the random drawing of the portfolio position can be made explicit by

letting Ht = hπ(t,Xt, Zt), which formally leads to the SDE

dXhπ
t = hπ(t,X

hπ
t , Zt)(bdt+ σdWt), Xhπ

0 = x. (4.34)

4If ν({e ∈ E : bTΣ−1γe = 1}) = 0, then applying the same argument as in Remark 4.13(1) yields ∆Z ̸= 1 on

[0, T ], and hence, (4.27) is usable.
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In the terminology of [21], the solution of this SDE is the sample state process corresponding to

the action process hπ(t,Xt, Zt), which is sampled from the given density π.5

Given the optimality of Gaussian randomization, which in the context of Example 4.16 has first

been derived in [34], we now specialize to the case that π(·|t, x) is a Gaussian density with mean

µ(t, x) and standard deviation ϑ(t, x) := θ(t, x)
1
2 . Then, hπ(t,Xt, Zt) = µ(t,Xt) + ϑ(t,Xt)ξt,

where (ξt)t∈[0,T ] is an independent family of standard Gaussians constructed from (Zt)t∈[0,T ]
via ξt = Φ−1(Zt) (Φ denoting the cumulative distribution function of the standard normal

distribution). Thus, (4.34) becomes (suppressing the superscript hπ)

dXt = bµ(t,Xt)dt+ bϑ(t,Xt)ξtdt+ σµ(t,Xt)dWt + σϑ(t,Xt)ξtdWt, X0 = x. (4.35)

If we write G = (Gt)t∈[0,T ] for the filtration generated by W and ξ, then ξ becomes an

adapted process, but it is well-known that non-constant families of independent, identically

distributed random variables indexed by continuous time cannot be measurable with respect to

the standard product σ-field, see, e.g., [31, Proposition 2.1]. Hence, ξ fails to be progressively

measurable in the usual sense of stochastic calculus, and so the SDE (4.35) cannot be studied

in the classical SDE framework. To deal with this problem, the authors in [21] refer to the

framework of rich Fubini extensions developed in [31, 32]. Roughly speaking, one can construct

an extension λ̄ of the Lebesgue measure on [0, T ] beyond the σ-field of Lebesgue-measurable

sets and a suitable probability space such that the process ξ becomes measurable with respect

to some appropriate Fubini extension of the classical product measure space, see [29, Theorem

2] for a precise statement. Here the notion of a Fubini extension refers to the property that a

suitable reformulation of Fubini’s theorem on iterated integration is still valid, see [31]. Then,

the Lebesgue integrals in (4.35) can be replaced by integrals with respect to the extension λ̄ of

the Lebesgue measure (but we will write dt in place of λ̄(dt) below to simplify the notation).

However, with this construction, it is still not clear to us, how to extend the Itô integral to

integrands which only satisfy this weaker measurability property ensured by the rich Fubini

construction. In the following informal discussion, we make the conjecture that Itô’s integral

can be properly extended such that the standard results of stochastic calculus are still in force.

Under this conjecture, we may consider

Aξt =

� t

0
ξsds, W ξ

t =

� t

0
ξsdWs.

Then, (4.35) can be rewritten as

dXt = bµ(t,Xt)dt+ bϑ(t,Xt)dA
ξ
t + σµ(t,Xt)dWt + σϑ(t,Xt)dW

ξ
t , X0 = x.

By the above conjecture, W ξ is a continuous martingale with

⟨W ξ⟩t =
� t

0
ξ2sds, ⟨W ξ,W ⟩t =

� t

0
ξsds.

Sun’s exact law of large numbers [31, Theorem 2.6] developed in the framework of rich Fubini

extensions now implies � t

0
ξqsds =

� t

0
E[ξqs ]ds =

0, q = 1,

t, q = 2.

5The authors in [21] do not give an explicit construction of the action process, whereas we use the construction

based on the quantile function in this subsection. It is, however, clear from the presentation in [21] that iid

uniform random variables (Zt)t∈[0,T ] independent of W are applied for the control randomization mechanism in

[21].
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Hence Aξ ≡ 0 and, by Lévy’s characterization, W ξ is a Brownian motion independent of W .

Thus, the SDE (4.35) for the sample state process with Gaussian randomization becomes

dXt = bµ(t,Xt)dt+ σµ(t,Xt)dWt + σϑ(t,Xt)dW
ξ
t , X0 = x. (4.36)

This is exactly our form of the exploratory SDE (3.7) (with a different notation for the additional

independent Brownian motion), when specialized to the setting of Example 4.16 and applied to

feedback controls with Gaussian randomization.

Let us now look at the special case, when the control randomization is performed according

to the standard Gaussian distribution independent of time and state, i.e., µ(t, x) = 0 and

ϑ(t, x) = 1. Then, the corresponding portfolio wealth process Xt = x + σW ξ
t in (4.36) is

independent of W , and, hence, independent of the stock price dynamics. This appears to

be counter-intuitive and illustrates that the SDE for the sample state process may not be able

properly describe the portfolio wealth along a randomized portfolio (with continuous re-sampling

in the randomization mechanism). In order justify the use of this SDE, we discretize the portfolio

process Ht = ξt on a time grid 0 = t0 < t1 < · · · < tn = T via Hn
t = ξtj , for t ∈ (tj , tj+1]. Then,

Hn is G-predictable (since it is adapted and left-continuous), and, hence, its wealth process with

initial endowment x

Xn
t = x+

� t

0
Hn
s (bds+ σdWs) = x+ b

n−1∑
j=0

ξtj (tj+1 ∧ t− tj ∧ t) + σ

n−1∑
j=0

ξtj (Wtj+1∧t −Wtj∧t)

is well-defined in the framework of the classical stochastic integration theory. It is not difficult to

check that the first sum converges to zero by the law of large numbers (cp. Section 3.2.2) and the

second sum weakly converges to a Brownian motion independent of W by Donsker’s invariance

principle. Hence, the “wealth process” Xt = x+ σW ξ
t for the non-predictable portfolio position

process Ht = ξt suggested by the sample state process in the continuous-time RL literature can

be properly interpreted as the weak limit of the wealth processes of the approximating sequence

of predictable randomized portfolio positions Hn. The limit result in this illustrative example

is, of course, the simplest special case of our general result, Theorem 3.5, which motivates our

formulation of the exploratory SDE.

Summarizing, the above discussion suggests that our formulation (3.7) of the exploratory SDE

is one way to give a mathematically rigorous meaning to the SDE which models the sample state

process in the recent RL literature. Moreover, Theorem 3.5 provides a justification for the use of

this SDE formulation as a limit of a natural control randomization mechanism in discrete time.

While the results in this paper are presented for the mean-variance portfolio selection problem, it

is obvious, how to transfer the derivation of our exploratory SDE based on Theorem 3.5 to more

general problems with controlled diffusion and jumps, provided the control enters the diffusion

part linearly. The case of general dependence of the diffusion coefficient on the control requires

more advanced tools from the theory of random measures and is discussed in our follow-up work

[4].

Remark 4.17. In our general setting with D stocks, the Gaussian randomization leads to an

action process of the form

µ(t,Xt, Yt) + ϑ(t,Xt, Yt)ξt

where the mean µ(t, x, y) takes values in RD, ϑ(t, x, y) is the positive definite root of the positive
definite D × D covariance matrix θ(t, x, y) and each ξt is a vector of D independent standard
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Gaussians. Following the same argument as above, we will consider the “processes”

W
ξ,(d,d′)
t =

� t

0
ξ(d)s dW (d′)

s ,

which additionally drive the SDE for the sample state process. Then, by the Lévy characteri-

zation as above, (W d′ ,W ξ,(d,d′); d = 1, . . . D, d′ = 1, . . . D) is a (D2 +D)-dimensional Brownian

motion. Thus, making the sample state process rigorous by the same reasoning as above, the

diffusion part is driven by a (D2 +D)-dimensional Brownian motion as in our formulation (3.7)

of the exploratory SDE.

5. Weak convergence of discrete-time integrators

This section provides the proof of Theorem 3.5. Throughout this part, let cD denote a positive

constant depending only on D, and its value might vary in each appearance. The time-change

σn is extended constantly over t ∈ [T,∞). To cover necessary test functions for the proof of

Theorem 3.5, we use the following function space.

Definition 5.1. For D = D2 + 3D, we let g ∈ C2
∗ (RD) if the following conditions hold:

(G1): g ∈ C2(RD) with g(0) = 0 and ∥∇2g∥∞ <∞;

(G2): for 1 ≤ d ∨ d′ ≤ D2 +D, the function ∂2d,d′g takes value 0 in a neighborhood of 0;

(G3): c(G3) := max1≤d≤D2+D ∥∂dg(0D2+D, ·)∥∞ <∞, where 0D2+D is the vector 0 in RD2+D;

(G4): c(G4) := maxD2+D+1≤d≤D ∥∂dg∥∞ <∞ and ∂dg(0) = 0 for any D2 +D + 1 ≤ d ≤ D.

Proposition 5.2. For any g ∈ C2
∗ (RD), one has when n→ ∞ that

n∑
i=1

∣∣∣∣E[g(∆n,iZn)|Fn,i−1]− (tni − tni−1)

�
R2D

g(0, e, u)νψL(de,du)

∣∣∣∣ L1(P)−−−→ 0, (5.1)

where Zn is given in Section 3.2.5.

Proof. With a slight abuse of notation, in the sequel we use symbols η, ξ without any sub-indices

to denote deterministic vectors in RD, whereas ηHn,i and ξn,i are random vectors introduced in

Section 3.2.1. Recall that

∆n,iZn = vec(∆n,iW
n,∆n,iM

n,∆n,iL
n,ψ) = vec(∆n,iW, η

H
n,i ⊗∆n,iW, ∆n,iJ, ψ(∆n,iJ)ξn,i).

Step 1. Since g(0) = 0 by (G1) and ∂dg(0) = 0 for D2 +D+ 1 ≤ d ≤ D by (G4), an argument

using Taylor expansion shows

|g(0, e, u)| ≤ cD∥∇2g∥∞(∥e∥2 + ∥u∥2), e, u ∈ RD. (5.2)

Since νψL is a square integrable Lévy measure, it ensures that
�
R2D |g(0, e, u)|νψL(de,du) < ∞.

Moreover, for any n, i, since

E[∥∆n,iZn∥2] = E[∥∆n,iW∥2 + ∥ηHn,i ⊗∆n,iW∥2 + ∥∆n,iJ∥2 + ψ(∆n,iJ)
2∥ξn,i∥2]

≤ (tni − tni−1)

(
D +D2 +

�
E
∥e∥2ν(de) +D∥∇ψ∥2∞

�
E
∥e∥2ν(de)

)
<∞,

together with the fact that g has at most quadratic growth at infinity as ∥∇2g∥∞ <∞ by (G1),

it implies that E[|g(∆n,iZn)|] <∞.

Step 2. To shorten the notation, for each η, ξ ∈ RD, we define gη,ξ : R2D → R by

gη,ξ(w, j) := g(w, η ⊗ w, j, ψ(j)ξ), w, j ∈ RD.
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Then, gη,ξ ∈ C2(R2D). Furthermore, for any d, d′ = 1, . . . , D, the partial derivatives of gη,ξ are

given, with the convention η(0) := 1 and z := (w, η ⊗ w, j, ψ(j)ξ) ∈ RD, by

∂dgη,ξ(w, j) =
D∑
k=0

η(k)∂d+kDg(z), ∂2d,d′gη,ξ(w, j) =
D∑

k,l=0

η(k)η(l)∂2d+kD,d′+lDg(z), (5.3)

∂D+dgη,ξ(w, j) = ∂D2+D+dg(z) + ∂dψ(j)
D∑
k=1

ξ(k)∂D2+2D+kg(z), (5.4)

∂2D+d′,D+dgη,ξ(w, j) = ∂2D2+D+d′,D2+D+dg(z) + ∂2d′,dψ(j)
D∑
k=1

ξ(k)∂D2+2D+kg(z)

+ ∂dψ(j)

D∑
k=1

ξ(k)
[
∂2D2+D+d′,D2+2D+kg(z) + ∂d′ψ(j)

D∑
l=1

ξ(l)∂2D2+2D+l,D2+2D+kg(z)

]
.

Hence, there exists a constant c(5.5) := c(D, ∥∇ψ∥∞, ∥∇2ψ∥∞, ∥∇2g∥∞, c(G4)) > 0 such that

max
1≤d,d′≤D

∥∂2D+d′,D+dgη,ξ∥∞ ≤ c(5.5)(1 + ∥ξ∥2). (5.5)

We also define the function Rg1, which represents the remainder term in a Taylor expansion of

gη,ξ, by setting for w, j, η, ξ, e ∈ RD that

Rg1(w, j; η, ξ; e) := gη,ξ(w, j + e)− gη,ξ(w, j)−
D∑
d=1

e(d)∂D+dgη,ξ(w, j).

Due to condition (G3), Taylor expansion implies for any a ∈ RD2+D, a′ ∈ R2D that

|g(a, a′)− g(0, a′)| ≤ cD(c(G3)∥a∥+ ∥∇2g∥∞∥a∥2) ≤ c(5.6)(∥a∥+ ∥a∥2) (5.6)

for some constant c(5.6) := c(5.6)(D, ∥∇2g∥∞, c(G3)) > 0. Hence,

|Rg1(w, j; η, ξ; e)−Rg1(w, j; 0, ξ; e)|

≤ |g(w, η ⊗ w, j + e, ψ(j + e)ξ)− g(0, j + e, ψ(j + e)ξ)|

+ |g(w, 0, j + e, ψ(j + e)ξ)− g(0, j + e, ψ(j + e)ξ)|

+ |g(w, η ⊗ w, j, ψ(j)ξ)− g(0, j, ψ(j)ξ)|+ |g(w, 0, j, ψ(j)ξ)− g(0, j, ψ(j)ξ)|

+

D∑
d=1

|e(d)|
[∣∣∣∂D2+D+dg(w, η ⊗ w, j, ψ(j)ξ)− ∂D2+D+dg(w, 0, j, ψ(j)ξ)

∣∣∣
+ |∂dψ(j)|

D∑
k=1

|ξ(k)|
∣∣∣∂D2+2D+kg(w, η ⊗ w, j, ψ(j)ξ)− ∂D2+2D+kg(w, 0, j, ψ(j)ξ)

∣∣∣]
≤ 2c(5.6)(∥(w, η ⊗ w)∥+ ∥(w, η ⊗ w)∥2 + ∥w∥+ ∥w∥2) + c(5.7)∥e∥(1 + ∥ξ∥)∥η ⊗ w∥ (5.7)

≤ 4c(5.6)(∥w∥+ ∥w∥2 + ∥η ⊗ w∥+ ∥η ⊗ w∥2) + c(5.7)∥e∥(1 + ∥ξ∥)∥η ⊗ w∥,

where c(5.7) := c(D, ∥∇ψ∥∞, ∥∇2g∥∞) > 0. Moreover, the Taylor remainder Rg1 is estimated by

sup
(w,j)∈R2D

|Rg1(w, j; η, ξ; e)| ≤ cD max
1≤d,d′≤D

∥∂2D+d,D+d′gη,ξ∥∞∥e∥2 ≤ c(5.8)(1 + ∥ξ∥2)∥e∥2, (5.8)

where c(5.8) := cDc(5.5).

Step 3. For n ≥ 1 and 1 ≤ i ≤ n, since ηHn,i is Fn,i−1 ∨ σ{ξn,i}-measurable and (∆n,iW ,

∆n,iJ) is independent of Fn,i−1 ∨ σ{ξn,i}, we get, a.s.,

E[g(∆n,iZn)|Fn,i−1] = E
[
E
[
g(∆n,iW, η

H
n,i ⊗∆n,iW,∆n,iJ, ψ(∆n,iJ)ξn,i)

∣∣∣Fn,i−1 ∨ σ{ξn,i}
] ∣∣∣Fn,i−1

]
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= E[Gn,i(ηHn,i, ξn,i) |Fn,i−1],

where Gn,i is a non-random and measurable function defined as

Gn,i(η, ξ) := E[g(∆n,iW, η ⊗∆n,iW,∆n,iJ, ψ(∆n,iJ)ξ)], η, ξ ∈ RD.

Given η, ξ ∈ RD, applying Itô’s formula for gη,ξ ∈ C2(R2D) yields, a.s.,

g(∆n,iW, η ⊗∆n,iW,∆n,iJ, ψ(∆n,iJ)ξ) = gη,ξ(Wtni
−Wtni−1

, Jtni − Jtni−1
)

=

D∑
d=1

� tni

tni−1

∂dgη,ξ(Ws −Wtni−1
, Js− − Jtni−1

)dW (d)
s

+
1

2

D∑
d,d′=1

� tni

tni−1

∂2d,d′gη,ξ(Ws −Wtni−1
, Js− − Jtni−1

)ds

+

� tni

tni−1

�
E

(
gη,ξ(Ws −Wtni−1

, Js− − Jtni−1
+ e)− gη,ξ(Ws −Wtni−1

, Js− − Jtni−1
)
)
Ñ(de,ds)

+

� tni

tni−1

�
E
Rg1(Ws −Wtni−1

, Js− − Jtni−1
; η, ξ; e)ν(de)ds. (5.9)

For d = 1, . . . , D, we derive from (5.3) that (w, j) 7→ ∂dgη,ξ(w, j) has at most linear growth at

infinity which hence implies that the stochastic integrals with respect to the Brownian motions

are square integrable martingales. Moreover, for w, j, j′ ∈ RD, due to (5.4) and (G4) one has

|gη,ξ(w, j)− gη,ξ(w, j
′)| ≤ cD max

1≤d≤D
∥∂dgη,ξ(w, ·)∥∞∥j − j′∥ ≤ cDc(G4)(1 + ∥∇ψ∥∞∥ξ∥)∥j − j′∥.

Then, due to the assumption
�
E ∥e∥2ν(de) < ∞, the stochastic integral with respect to the

compensated Poisson random measure Ñ in (5.9) is also a square integrable martingale which

then vanishes after taking the expectation. Hence,

Gn,i(η, ξ) = GWn,i(η, ξ) +GJn,i(η, ξ),

where the integrability condition is satisfied so that Fubini’s theorem enables us to define

GWn,i(η, ξ) :=
1

2

D∑
d,d′=1

� tni

tni−1

E
[
∂2d,d′gη,ξ(Ws −Wtni−1

, Js− − Jtni−1
)
]
ds,

GJn,i(η, ξ) :=

� tni

tni−1

�
E
E
[
Rg1(Ws −Wtni−1

, Js− − Jtni−1
; η, ξ; e)

]
ν(de)ds.

To derive (5.1) it suffices to prove that the following three convergences hold:

Gn(5.10) :=

n∑
i=1

E[|GWn,i(ηHn,i, ξn,i)|] → 0, (5.10)

Gn(5.11) :=
n∑
i=1

E[|GJn,i(ηHn,i, ξn,i)−GJn,i(0, ξn,i)|] → 0, (5.11)

Gn(5.12) :=
n∑
i=1

E
[∣∣∣∣GJn,i(0, ξn,i)− (tni − tni−1)

�
E×RD

g(0, e, ψ(e)u)ν(de)φD(u)du

∣∣∣∣] → 0. (5.12)

Step 4. We show Gn(5.10) → 0. For 1 ≤ d, d′ ≤ D, by (5.3) one has

GWn,i(η, ξ) =
1

2

D∑
d,d′=1

D∑
k,l=0

η(k)η(l)
� tni

tni−1

E
[
∂2d+kD,d′+lDg(Ws −Wtni−1

, η ⊗ (Ws −Wtni−1
),
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Js− − Jtni−1
, ψ(Js− − Jtni−1

)ξ)
]
ds.

Let (W̄ , J̄) be an independent copy of (W,J) with the corresponding expectation Ē. Applying

Fubini’s theorem we get

Gn(5.10) ≤
1

2

D∑
d,d′=1

D∑
k,l=0

n∑
i=1

E
[
|ηH,(k)n,i η

H,(l)
n,i |

� tni

tni−1

Ē
[∣∣∣∂2d+kD,d′+lDg(W̄s − W̄tni−1

, ηHn,i ⊗ (W̄s − W̄tni−1
),

J̄s− − J̄tni−1
, ψ(J̄s− − J̄tni−1

)ξn,i)
∣∣∣]ds]

=
1

2

D∑
d,d′=1

D∑
k,l=0

� T

0
E
[ n∑
i=1

|ηH,(k)n,i η
H,(l)
n,i |

∣∣∣∂2d+kD,d′+lDg(Ws −Wtni−1
, ηHn,i ⊗ (Ws −Wtni−1

),

Js− − Jtni−1
, ψ(Js− − Jtni−1

)ξn,i)
∣∣∣1(tni−1,t

n
i ]
(s)

]
ds

=:
1

2

D∑
d,d′=1

D∑
k,l=0

� T

0
E
[
Gn(5.13)(s)

]
ds. (5.13)

In order to derive (5.10), we prove for any 1 ≤ d, d′ ≤ D, 0 ≤ k, l ≤ D that
� T

0
E
[
Gn(5.13)(s)

]
ds→ 0 as n→ ∞.

By the dominated convergence theorem, it is sufficient to show that

lim
n→∞

E[Gn(5.13)(s)] = 0 for all s ∈ (0, T ), and

� T

0
sup
n≥1

E[Gn(5.13)(s)]ds <∞. (5.14)

Indeed, for each fixed s ∈ (0, T ) one has

ηHn,i ⊗ (Ws −Wtni−1
)

L2(P)−−−→ 0 and ψ(Js− − Jtni−1
)ξn,i

L2(P)−−−→ 0

when n→ ∞ because of the independence, tni−1 → s, and

E[∥ηHn,i ⊗ (Ws −Wtni−1
)∥2] = E[∥ηHn,i∥2]E[∥Ws −Wtni−1

∥2] = D2(s− tni−1),

E[∥ψ(Js− − Jtni−1
)ξn,i∥2] ≤ D∥∇ψ∥2∞E[∥Js− − Jtni−1

∥2] = (s− tni−1)D∥∇ψ∥2∞
�
E
∥e∥2ν(de).

Since ∂2d+kD,d′+lDg is continuous and is equal to 0 in a neighborhood of 0 by (G2), we get

Gn(5.13)(s)
P−→ 0 as n→ ∞,

where the convergence in probability can be asserted by showing that any subsequence has a

further subsequence converging a.s. to 0. Moreover, since g has bounded second-order partial

derivatives by (G1) and {∥ηHn,i∥2}1≤i≤n,n≥1 is uniformly integrable by Assumption 3.3, it implies

that {Gn(5.13)(s)}n≥1 is also uniformly integrable. Hence, the dominated convergence theorem is

applicable to obtain the first assertion in (5.14). The integrability condition in (5.14) is easily

verified by noting that

sup
n≥1

E[Gn(5.13)(s)] ≤ ∥∇2g∥∞ sup
1≤i≤n,n≥1

E[|ηH,(k)n,i η
H,(l)
n,i |]

≤ 1

2
∥∇2g∥∞ sup

1≤i≤n,n≥1
E[|ηH,(k)n,i |2 + |ηH,(l)n,i |2] = ∥∇2g∥∞.

Hence, (5.10) is proved.
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Step 5. We prove Gn(5.11) → 0. By the independence and Fubini’s theorem we obtain

Gn(5.11) ≤
�
E

� T

0
E
[ n∑
i=1

∣∣∣Rg1(Ws −Wtni−1
, Js− − Jtni−1

; ηHn,i, ξn,i; e)

−Rg1(Ws −Wtni−1
, Js− − Jtni−1

; 0, ξn,i; e)
∣∣∣1(tni−1,t

n
i ]
(s)

]
dsν(de)

=:

�
E

� T

0
E
[
Gn(5.15)(s; e)

]
dsν(de). (5.15)

By dominated convergence, it suffices to show that

∀(s, e) ∈ (0, T )× E : lim
n→∞

E[Gn(5.15)(s; e)] = 0, (5.16)

and

�
E

� T

0
sup
n≥1

E[Gn(5.15)(s; e)]dsν(de) <∞. (5.17)

Indeed, for each (s, e) ∈ (0, T )× E, using (5.7) yields

Gn(5.15)(s; e) ≤
n∑
i=1

[
4c(5.6)

(
∥Ws −Wtni−1

∥+ ∥Ws −Wtni−1
∥2 + ∥ηHn,i ⊗ (Ws −Wtni−1

)∥

+ ∥ηHn,i ⊗ (Ws −Wtni−1
)∥2

)
+ c(5.7)∥e∥(1 + ∥ξn,i∥)∥ηHn,i ⊗ (Ws −Wtni−1

)∥
]
1(tni−1,t

n
i ]
(s).

Then, by Hölder’s inequality we get

E[Gn(5.15)(s; e)] ≤
n∑
i=1

[
4c(5.6)

(√
D
√
s− tni−1 +D(s− tni−1) +D

√
s− tni−1 +D2(s− tni−1)

)
+ c(5.7)∥e∥

√
E[|1 + ∥ξn,i∥|2]

√
E[∥ηHn,i ⊗ (Ws −Wtni−1

)∥2]
]
1(tni−1,t

n
i ]
(s)

→ 0 as n→ ∞,

which then verifies (5.16). To show (5.17), we use the estimate (5.8) to get

sup
n≥1

E[Gn(5.15)(s; e)] ≤ 2c(5.8) sup
n≥1,1≤i≤n

E[(1 + ∥ξn,i∥2)∥e∥2] = 2c(5.8)(D + 1)∥e∥2.

Since
�
E ∥e∥2ν(de) <∞ by assumption, (5.17) follows.

Step 6. We show Gn(5.12) → 0. By the independence and Fubini’s theorem one has

Gn(5.12)

≤
n∑
i=1

�
E

� tni

tni−1

E
[∣∣∣∣Rg1(Ws −Wtni−1

, Js− − Jtni−1
; 0, ξn,i; e)−

�
RD

g(0, e, ψ(e)u)φD(u)du

∣∣∣∣]dsν(de)
≤

�
RD

�
E

� T

0
E
[ n∑
i=1

∣∣∣∣Rg1(Ws −Wtni−1
, Js− − Jtni−1

; 0, u; e)− g(0, e, ψ(e)u)

∣∣∣∣1(tni−1,t
n
i ]
(s)

]
× dsν(de)φD(u)du

=:

�
RD

�
E

� T

0
E
[
Gn(5.18)(s; e, u)

]
dsν(de)φD(u)du. (5.18)

For any (s, e, u) ∈ (0, T ] × E × RD, since the first two arguments in Rg1 converge to 0 a.s. as

n→ ∞, we obtain that Gn(5.18)(s; e, u) → 0 a.s. Moreover, one has

E
[
sup
n≥1

|Gn(5.18)(s; e, u)|
]
≤ E

[
sup

n≥1,1≤i≤n
|Rg1(Ws −Wtni−1

, Js− − Jtni−1
; 0, u; e)|

]
+ |g(0, e, ψ(e)u)|

≤ c(5.8)(1 + ∥u∥2)∥e∥2 + |g(0, e, ψ(e)u)|.
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Since, by (5.2), �
RD

�
E

(
(1 + ∥u∥2)∥e∥2 + |g(0, e, ψ(e)u)|

)
ν(de)φD(u)du <∞,

the dominated convergence theorem implies that Gn(5.12) → 0 as n→ ∞. □

We first deal with the jump part of the limit of (Zn)n≥1. To do this, we recall from [18, p.395]

the function space C2(RD), which consists of all continuous bounded functions g : RD → R with

0 /∈ supp(g).

Lemma 5.3. The assertion (5.1) holds true for g ∈ C2(RD). Consequently, for any t ∈ [0,∞)

one has when n→ ∞ that

σn
t∑

i=1

E[g(∆n,iZn)|Fn,i−1]
L1(P)−−−→ (t ∧ T )

�
R2D

g(0, e, u)νψL(de,du).

Proof. It suffices to show the convergence for t ∈ [0, T ]. Let g ∈ C2(RD) and assume that

supp(g) ∩BD(rg) = ∅ for some rg > 0. Let ε > 0 be arbitrarily small and K > rg a sufficiently

large constant which is specified later. Since g is continuous and bounded, there is a continuous

function gK with compact support such that ∥gK∥∞ ≤ ∥g∥∞ and gK = g on BD(K). Moreover,

by convolution approximation, there is a function ĝε,K ∈ C2(RD)∩C2
c (RD) such that supp(gK−

ĝε,K) ∩BD(rg/2) = ∅ and ∥gK − ĝε,K∥∞ ≤ ε. For t ∈ (0, T ], we denote

Ig(5.19) :=

σn
t∑

i=1

∣∣∣∣E[g(∆n,iZn)|Fn,i−1]− (tni − tni−1)

�
R2D

g(0, e, u)νψL(de,du)

∣∣∣∣ (5.19)

and then get by the triangle inequality that

Ig(5.19) ≤ Ig−gK(5.19) + I
gK−ĝε,K
(5.19) + I

ĝε,K
(5.19).

Since ĝε,K ∈ C2(RD) ∩ C2
c (RD) ⊂ C2

∗ (RD), according to Proposition 5.2 one has

I
ĝε,K
(5.19)

L1(P)−−−→ 0.

For the stochastic term in Ig−gK(5.19) , we have, a.s.,

σn
t∑

i=1

E[|(g − gK)(∆n,iZn)| |Fn,i−1] ≤ ∥g − gK∥∞
n∑
i=1

E[1{∥∆n,iZn∥≥K}|Fn,i−1]

≤ 2∥g∥∞
K2

n∑
i=1

E[∥∆n,iZn∥2|Fn,i−1]

=
2∥g∥∞
K2

n∑
i=1

E
[
∥∆n,iW∥2 + ∥ηHn,i ⊗∆n,iW∥2 + ∥∆n,iJ∥2 + ψ(∆n,iJ)

2∥ξn,i∥2
∣∣∣Fn,i−1

]
≤ 2∥g∥∞

K2

n∑
i=1

[
(tni − tni−1)(D +D2) + (1 +D∥∇ψ∥2∞)(tni − tni−1)

�
E
∥e∥2ν(de)

]
=

2T∥g∥∞
K2

[
D +D2 + (1 +D∥∇ψ∥2∞)

�
E
∥e∥2ν(de)

]
.

For the stochastic term in I
gK−ĝε,K
(5.19) , we use the same arguments as for Ig−gK(5.19) to obtain, a.s.,

σn
t∑

i=1

E[|(gK − ĝε,K)(∆n,iZn)| |Fn,i−1] ≤ ∥gK − ĝε,K∥∞
n∑
i=1

E[1{∥∆n,iZn∥≥rg/2}|Fn,i−1]
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≤ 4Tε

r2g

[
D +D2 + (1 +D∥∇ψ∥2∞)

�
E
∥e∥2ν(de)

]
.

Then, by the triangle inequality,

Ig−gK(5.19) ≤ 2T∥g∥∞
K2

[
D +D2 + (1 +D∥∇ψ∥2∞)

�
E
∥e∥2ν(de)

]
+ 2T∥g∥∞

�
Bc

2D(K)
νψL(de,du)

which can be made arbitrarily small as long as we choose a sufficiently largeK > 0. Analogously,

I
gK−ĝε,K
(5.19) ≤ ε

[
4T

r2g

(
D +D2 + (1 +D∥∇ψ∥2∞)

�
E
∥e∥2ν(de)

)
+ T

�
Bc

2D(rg/2)
νψL(de,du)

]
.

Eventually, since ε > 0 is arbitrarily small, it implies that Ig(5.19)
L1(P)−−−→ 0. □

We continue to investigate the continuous and the drift components of the limit of (Zn)n≥1.

To this end, let us fix a truncation function h : RD → RD in the sense of [18, Definition II.2.3], i.e.

h is bounded and h(z) = z in a neighborhood of 0. As we will see later that the limit of (Zn)n≥1

does not depend on the particular form of truncation function, we assume that h = (h(d))Dd=1

with h(d) ∈ C2
b (RD).

Lemma 5.4. For any t ∈ [0,∞), one has when n→ ∞ that

sup
s≤t

∥∥∥∥ σn
s∑

i=1

E[h(∆n,iZn)|Fn,i−1]−Bs

∥∥∥∥ L1(P)−−−→ 0,

where B := B(h) given by

Bt := (t ∧ T )
�
R2D

(h(0, e, u)− (0, e, u)T)νψL(de,du).

Proof. It is sufficient to consider t ∈ [0, T ] and prove that for any d = 1, . . . ,D one has

I
(d)
(5.20) := sup

s≤t

∣∣∣∣ σ
n
s∑

i=1

E[h(d)(∆n,iZn)|Fn,i−1]− sB
(d)
1

∣∣∣∣ L1(P)−−−→ 0, (5.20)

Let h̃(d)(z) := h(d)(z)− z(d) for z = (z(1), . . . , z(D)) ∈ RD. It follows from E[∆n,iZn|Fn,i−1] = 0

a.s. that

E[h(d)(∆n,iZn)|Fn,i−1] = E[h̃(d)(∆n,iZn)|Fn,i−1] a.s. (5.21)

Hence we now prove (5.20) for h̃(d) in place of h(d). We remark that there is no problem regarding

P-null sets for that replacement as only countably many random variables are considered in

(5.20). On the other hand, since h(d) ∈ C2
b (RD) and h(d)(z) = z(d) in a neighborhood of 0, it is

straightforward to check that h̃(d) ∈ C2
∗ (RD). By the triangle inequality, a.s.,

I
(d)
(5.20) ≤ sup

s≤t

∣∣∣∣ σ
n
s∑

i=1

E[h̃(d)(∆n,iZn)|Fn,i−1]− tnσn
s
B

(d)
1

∣∣∣∣+ sup
s≤t

∣∣∣tnσn
s
B

(d)
1 − sB

(d)
1

∣∣∣
≤

n∑
i=1

∣∣∣E[h̃(d)(∆n,iZn)|Fn,i−1]− (tni − tni−1)B
(d)
1

∣∣∣+ max
1≤i≤n

(tni − tni−1)|B
(d)
1 |.

According to Proposition 5.2, the first term on the right-hand side converges to 0 in L1(P). The
second term max1≤i≤n(t

n
i −tni−1)|B

(d)
1 | obviously tends to 0 as n→ ∞. Hence, (5.20) follows. □
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We now investigate the continuous part of the limit of (Zn)n≥1. For t ∈ [0,∞), we define the

matrices Ct = (C
(k,l)
t ) ∈ RD × RD and its modification C̃t = (C̃

(k,l)
t ) ∈ RD × RD by

C
(k,l)
t :=

t ∧ T if 1 ≤ k = l ≤ D2 +D

0 otherwise,
(5.22)

and

C̃
(k,l)
t := C

(k,l)
t + (t ∧ T )

�
R2D

(h(k)h(l))(0, e, u)νψL(de,du).

Lemma 5.5. For any t ∈ [0,∞) and 1 ≤ k, l ≤ D, one has when n→ ∞ that

I(5.23) :=

σn
t∑

i=1

E[h(k)(∆n,iZn)|Fn,i−1]E[h(l)(∆n,iZn)|Fn,i−1]
L1(P)−−−→ 0, (5.23)

I(5.24) :=

σn
t∑

i=1

E[(h(k)h(l))(∆n,iZn)|Fn,i−1]
L1(P)−−−→ C̃

(k,l)
t . (5.24)

Proof. It suffices to prove for t ∈ [0, T ]. We first show that I(5.23)
L1(P)−−−→ 0 as n → ∞. In the

sequel we employ the notation as in the proof of Lemma 5.4. According to (5.21) one has, a.s.,

I(5.23) =

σn
t∑

i=1

E
[
h̃(k)(∆n,iZn)− (tni − tni−1)B

(k)
1

∣∣∣Fn,i−1

]
E[h(l)(∆n,iZn)|Fn,i−1]

+B
(k)
1

σn
t∑

i=1

(tni − tni−1)E
[
h̃(l)(∆n,iZn)− (tni − tni−1)B

(l)
1

∣∣∣Fn,i−1

]
+B

(k)
1 B

(l)
1

σn
t∑

i=1

(tni − tni−1)
2.

Then, a.s.,

|I(5.23)| ≤ ∥h(l)∥∞
n∑
i=1

∣∣∣E[h̃(k)(∆n,iZn)− (tni − tni−1)B
(k)
1

∣∣∣Fn,i−1

]∣∣∣
+ |B(k)

1 | max
1≤i≤n

(tni − tni−1)
n∑
i=1

∣∣∣E[h̃(l)(∆n,iZn)− (tni − tni−1)B
(l)
1

∣∣∣Fn,i−1

]∣∣∣
+ t|B(k)

1 B
(l)
1 | max

1≤i≤n
(tni − tni−1).

Since max1≤i≤n(t
n
i − tni−1) → 0, applying Proposition 5.2 yields (5.23).

We next show that I(5.24) → C̃
(k,l)
t in L1(P). For z = (z(1), . . . , z(D)) ∈ RD, we define

q(k,l)(z) := z(k)z(l) and ĥ(k,l)(z) :=

(h(k)h(l))(z)− q(k,l)(z) if 1 ≤ k ∨ l ≤ D2 +D

(h(k)h(l))(z) otherwise.

We now verify that ĥ(k,l) ∈ C2
∗ (RD) for any k, l = 1, . . . ,D:

• ĥ(k,l) obviously satisfies (G1).

• Let 1 ≤ d ∨ d′ ≤ D2 +D. If k ∨ l ≤ D2 +D, then ĥ(k,l), and thus ∂2d,d′ ĥ
(k,l), are 0 in a

neighborhood of 0. If k ∨ l ≥ D2 +D + 1, then ∂2d,d′ ĥ
(k,l) = ∂2d,d′(h

(k)h(l) − q(k,l)), which

also shows that ∂2d,d′ ĥ
(k,l) is 0 around 0. Hence, (G2) is satisfied.

• For d = 1, . . . , D2 +D and for any j ∈ R2D, one has

∂dĥ
(k,l)(0, j) =

∂d(h(k)h(l))(0, j)− ∂dq
(k,l)(0, j) if 1 ≤ k ∨ l ≤ D2 +D

∂d(h
(k)h(l))(0, j) otherwise

= ∂d(h
(k)h(l))(0, j).
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Hence, max1≤d≤D2+D ∥∂dĥ(k,l)(0D2+D, ·)∥∞ ≤ ∥∇(h(k)h(l))∥∞ <∞, which verifies (G3).

• For d = D2 +D + 1, . . . ,D, since ∂dq
(k,l) = 0 if k ∨ l ≤ D2 +D we infer that ∂dĥ

(k,l) =

∂d(h
(k)h(l)) and ∂dĥ

(k,l)(0) = h(l)(0)∂dh
(k)(0) + h(k)(0)∂dh

(l)(0) = 0. Thus, (G4) is

satisfied.

Applying Proposition 5.2 and noticing that, for any 1 ≤ k, l ≤ D,

�
R2D

ĥ(k,l)(0, e, u)νψL(de,du) =

�
R2D

(h(k)h(l))(0, e, u)νψL(de,du)

we obtain

σn
t∑

i=1

∣∣∣∣E[ĥ(k,l)(∆n,iZn)|Fn,i−1]− (tni − tni−1)

�
R2D

(h(k)h(l))(0, e, u)νψL(de,du)

∣∣∣∣ L1(P)−−−→ 0. (5.25)

On the other hand, for 1 ≤ k∨ l ≤ D2+D, a direct calculation exploiting the independence and

(3.1) gives the following convergence as n→ ∞, particularly in L1(P),

σn
t∑

i=1

E[q(k,l)(∆n,iZn)|Fn,i−1] =

σn
t∑

i=1

E[∆n,iZn,(k)∆n,iZn,(l)|Fn,i−1]

=

tnσn
t

if 1 ≤ k = l ≤ D2 +D

0 otherwise
→ tC

(k,l)
1 .

Therefore, (5.24) follows from (5.25), and the proof is completed. □

Proof of Theorem 3.5. We combine [18, Theorem VIII.2.29] with Lemmas 5.3 to 5.5 to obtain

that (Zn
t∧T )t∈[0,∞) → Z weakly in the Skorokhod topology on the space of càdlàg functions

: [0,∞) → RD. Here, Z is a semimartingale with the predictable characteristic6 (B,C,mZ)

associated with the truncation function h, where

• Z0 = 0 as Zn
0 = 0 for all n;

• h is taken as in the paragraph right before Lemma 5.4;

• B is provided in Lemma 5.4;

• C is defined in (5.22);

• mZ(dt,dz) = νZ(dz)λ[0,T ](dt), where λ[0,T ] is the restriction of the Lebesgue measure

on [0, T ], νZ is a Lévy measure on RD
0 := RD\{0} with support on {0} × R2D

0 , i.e.

νZ(RD
2+D

0 × R2D
0 ) = 0, and such that νZ({0} ×B) = νψL(B) for B ∈ B(R2D

0 ).

Note that ((Wt∧T ,Wt∧T ))t∈[0,∞) and (Lψt∧T )t∈[0,∞) are independent due to Lemma B.3. Then a

standard calculation using Lévy–Khintchine formula shows that (vec(Wt∧T ,Wt∧T , L
ψ
t∧T ))t∈[0,∞)

is a (time-inhomogeneous) Lévy process with characteristic triplet (B,C,mZ) with respect to

the truncation function h. Hence, we derive from [18, Theorem VIII.2.29] the weak convergence

(Zn
t∧T )t∈[0,∞) → (vec(Wt∧T ,Wt∧T , L

ψ
t∧T ))t∈[0,∞).

Eventually, since the limit process has no fixed time of discontinuity, we apply [7, Theorem 16.7]

to obtain the weak convergence on the time interval [0, T ] as desired. □

6in the sense of [18, Definition II.2.6].
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Appendix A. Proof of Proposition 3.2

Condition E
[ �

RD ∥Hn,i−1(u)∥2φD(u)du
]
<∞ allows us to define

µHn,i−1 :=

�
RD

Hn,i−1(u)φD(u)du, H̃n,i−1(u) := Hn,i−1(u)− µHn,i−1,

ΘH
n,i−1 :=

�
RD

H̃n,i−1(u)H̃n,i−1(u)
TφD(u)du.

Obviously µHn,i−1 ∈ L2(P). In addition, the finiteness of accumulative entropy implies that

det(ΘH
n,i−1) > 0 a.s. for all n, i. Since ΘH

n,i−1 ∈ SD++, we apply the spectral theorem for

symmetric matrices to obtain a real diagonal matrix ΛHn,i−1 = diag(λ1(Θ
H
n,i−1), . . . , λD(Θ

H
n,i−1))

with λ1(Θ
H
n,i−1) ≥ · · · ≥ λD(Θ

H
n,i−1) > 0 and a UHn,i−1 ∈ OD, such that

ΘH
n,i−1 = UHn,i−1Λ

H
n,i−1(U

H
n,i−1)

T.

One remarks that UHn,i−1 and ΛHn,i−1 are matrices whose entries are Fn,i−1-measurable random

variables. Now, by adjusting on a P-null set, we define

ϑHn,i−1 := (ΘH
n,i−1)

1
2 = UHn,i−1(Λ

H
n,i−1)

1
2 (UHn,i−1)

T,

ηHn,i := UHn,i−1η̂
H
n,i, where η̂

H,(d)
n,i :=

1√
λd(Θ

H
n,i−1)

(UHn,i−1ed)
TH̃n,i−1(ξn,i), d = 1, . . . , D.

Then it is easy to check that ϑHn,i−1 ∈ L2(P). Moreover, for d = 1, . . . , D, one has, a.s.,

[ϑHn,i−1η
H
n,i]

(d) =

D∑
k=1

U
H,(d,k)
n,i−1

√
λk(Θ

H
n,i−1)η̂

H,(k)
n,i =

D∑
k,l=1

U
H,(d,k)
n,i−1 U

H,(l,k)
n,i−1 H̃

(l)
n,i−1(ξn,i)

=

D∑
l=1

[UHn,i−1(U
H
n,i−1)

T](d,l)H̃
(l)
n,i−1(ξn,i) = H̃

(d)
n,i−1(ξn,i),

which shows ϑHn,i−1η
H
n,i = H̃n,i−1(ξn,i) a.s. For any d = 1, . . . , D, we let η̂

H,(d)
n,i (ε) be the random

variable obtained by adding ε > 0 to λd(Θ
H
n,i−1) in the definition of η̂

H,(d)
n,i . Then one has, a.s.,

E
[∣∣η̂H,(d)n,i (ε)

∣∣2∣∣∣Fn,i−1

]
=

1

λd(Θ
H
n,i−1) + ε

eTd (U
H
n,i−1)

TE
[
H̃n,i−1(ξn,i)(H̃n,i−1(ξn,i))

T
∣∣∣Fn,i−1

]
UHn,i−1ed

=
1

λd(Θ
H
n,i−1) + ε

eTd (U
H
n,i−1)

TΘH
n,i−1U

H
n,i−1ed =

eTdΛ
H
n,i−1ed

λd(Θ
H
n,i−1) + ε

=
λd(Θ

H
n,i−1)

λd(Θ
H
n,i−1) + ε

.

Letting ε ↓ 0 yields E[|η̂H,(d)n,i |2|Fn,i−1] = 1 a.s. by the monotone convergence theorem, and thus,

∥η̂Hn,i∥ ∈ L2(P) as a by-product. Analogously, we can show that E[η̂H,(d)n,i η̂
H,(d′)
n,i |Fn,i−1] = 1{d=d′}

a.s., which means that E[η̂Hn,i(η̂Hn,i)T|Fn,i−1] = ID. Then we get E[ηHn,i(ηHn,i)T|Fn,i−1] = ID a.s.,

and hence, (3.2) follows. The uniqueness is straightforward.

Appendix B. Some auxiliary results

B.1. Positive semidefinite matrices. For matrices A,B ∈ SD we write A ⪯ B if B−A ∈ SD+ .

Lemma B.1 ([15], Sec.82, Exercises 12 and 13).

(1) For A,B ∈ SD+ with A ⪯ B one has det(A) ≤ det(B).

(2) Let A,B ∈ SD++ with A ⪯ B. Then B−1 ⪯ A−1 and tr[AC] ≤ tr[BC] for any C ∈ SD+ .
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B.2. Integrability for solutions of SDEs with jumps. Although the following fact can be

easily extended to a multidimensional setting, however, we formulate it in the one-dimensional

case for the sake of simplicity. We refer to [5] for its proof.

Lemma B.2. Let ξ = (ξt)t∈[0,T ] be càdlàg and adapted with ∥ξ∥2S2([0,T ])
:= E[sup0≤t≤T ξ2t ] <∞.

Assume that dZt = ϕtdt + dKt, where K = (Kt)t∈[0,T ] is a càdlàg L2(P)-martingale satisfying

d ⟨K,K⟩t = η2t dt, where η and ϕ are progressively measurable with sup0<t<T η
2
t +

� T
0 ϕ2tdt ≤ C

a.s. for some (non-random) constant C > 0. Then, for a Lipschitz function σ : R → R, the SDE

Xt = ξt +

� t

0
σ(Xu−)dZu, X0 = ξ0 = x0 ∈ R,

has a unique càdlàg strong solution X = (Xt)t∈[0,T ] satisfying E[sup0≤t≤T X2
t ] ≤ C ′ < ∞ for

some constant C ′ = C ′(∥ξ∥S2([0,T ]), T, σ, C) > 0.

B.3. Independence of Gaussian and purely non-Gaussian Lévy processes. Lévy pro-

cesses in the following assertion are considered with the canonical truncation function h(x) =

x1{∥x∥≤1}. We refer to [5] for its proof.

Lemma B.3. Let D,D′ ∈ N. Assume that W is a D-dimensional Gaussian Lévy process and

L is a D′-dimensional purely non-Gaussian Lévy process, both defined on the same probability

space. Then W and L are independent.
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