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Abstract

We design and analyze a Monte-Carlo algorithm for calibrating a
financial model, in which some quantities (e.g., volatility) are repre-
sented in terms of a stochastic differential equation driven by a con-
tinuous p-variation process for p ∈ (1, 2) (e.g., a fractional Brownian
motion with Hurst parameter bigger than a half). The p-variation pro-
cess can be correlated to the Brownian motion, which drives the stock
prices, in order to capture the so-called leverage effect. The key tool is
an adjoint gradient representation via a new type of anticipating back-
ward stochastic differential equation, which is formulated in terms of
the Russo-Vallois forward integral. We provide rates of convergence for
an Euler approximation of this adjoint equation. Finally, the results
are illustrated by a case study, calibrating a fractional Heston model
to market data.

1 Introduction

Stochastic volatility models enjoy great popularity in financial engineering,
since they are able to capture several features observed in market data such
as the implied volatility smile and the leverage effect (i.e., negative correla-
tion between asset prices and volatility), see [12] for a discussion of stylized
facts in stock returns. In classical volatility models of the 20th century
[25, 27, 5, 47] assets price and volatility are governed by stochastic differ-
ential equations driven by correlated Brownian motions. Motivated by the
phenomenon of volatility persistence (large absolute changes in stock returns
tend to be followed by larges absolute changes), continuous-time models
with volatility processes driven by a fractional Brownian motion with Hurst
parameter bigger than a half have been suggested [8, 7, 33, 3, 36] – exploit-
ing the long memory effect of fractional Brownian motion for this range of
the Hurst parameter. More recently, the smile expansions in [18] led the
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authors of [20] to introduce rough volatility models, which correspond to
fractional Brownian motion with Hurst parameter smaller than a half, see
also [2, 19, 15].

In this paper, we extend the Monte Carlo algorithm of [29] for calibrating
stochastic volatility models driven by Brownian motions to a wide class of
models including fractional volatility models with Hurst parameter H > 1/2
(hence, in the long memory regime). More generally, we consider models
consisting of two systems of stochastic differential equations (SDEs). The
first one is driven by a continuous p-variation process for some p ∈ (1, 2),
e.g., fractional Brownian motion with Hurst parameter bigger than a half.
This SDE is interpreted in the sense of Young integration [50] and may be
used to model non-tradable quantities such as the volatilities of stocks or
a short rate process governing the term structure of interest rates. The
second SDE system is driven by a Brownian motion and is interpreted in
the classical Itô sense. Its coefficients depend on the solution of the first
system of SDEs and we may think of the solution of the second system as
the prices of tradable assets in the market. We assume that the model is
not fully specified in the sense that the two systems of SDEs depend on a
parameter vector. The objective is to minimize the quadratic error between
the model prices and observed market prices for some liquidly traded options
over the parameter vector. Borrowing ideas from [29], we design a gradient-
based adjoint Monte Carlo algorithm for tackling this problem. However, in
contrast to [29], who first discretize the optimization problem in the sense
sample average approximation [46], we follow the optimize-then-discretize
approach and study the optimization problem in continuous time.

The paper is organized as follows: In Section 2, we discuss the main
results. After setting the model dynamics and the optimization problem
in continuous time in Subsection 2.1, the gradient of the cost functional
with respect to the parameter vector is studied in Subsection 2.2. The main
result (Theorem 2.6) is a new adjoint representation of the gradient in terms
of an anticipating backward stochastic differential equation which is jointly
driven by the p-variation process and the Brownian motion. In order to
formulate this equation in a proper way, we make use of the forward integral
of Russo and Vallois [43] which encompasses the Itô integral and the Young
integral as special cases and, at the same time, extends the Itô integral to
non-adapted integrands. The key advantage of the adjoint equation is that
its dimension is independent of the number of parameters, while the Fréchet
derivative of the original SDE system with respect to the parameter vector
solves a linear SDE (sometimes called sensitivity equation, see [29]) whose
dimension increases linearly in the number of parameters. Hence, algorithms
based on the adjoint equation are expected to be more efficient than those
basing on the sensitivity equation, if the dimension of the parameter vector
is large. This general advantage of adjoint techniques has been found to be
useful in various applications, see, e.g., [22, 21, 39].
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Subsection 2.3 is devoted to the Euler discretization of the original SDE
system, its sensitivity equation and the adjoint anticipating backward SDE.
We provide rates of convergence for the error measured in the supremum
norm in time and the Lp-norm in the sample paths (Theorem 2.8). The
key technical difficulty is to control the growth of the Euler scheme for the
pathwise Young differential equations. Compared to the literature on Young
differential equations (e.g., [32]), we have to keep track of the dependence
of the constants on the sample paths. To this end we adapt the greedy
sequence technique [4, 9] to Euler partitions in a suitable way to come up
with a variant of Gronwall’s lemma (Lemma 4.5), which is tailor-made for
our purposes. The results on the Euler schemes are then applied to estimate
the error of approximations to the cost functional and to the adjoint gradient
representation.

Section 3 provides some background information on Young integration
and Russo-Vallois forward integration, which is required for the proofs of
the main results in Section 4. We sketch the proofs of all main results
emphasizing the key ideas rather than providing all technical detail. At
times, we focus on simplified versions of the equations which already contain
the key difficulties. Detailed proofs of all the results in full generality can
be found in the second author’s PhD thesis [48].

Finally, in Section 5, we present a Monte Carlo algorithm for model cal-
ibration based on the discretized adjoint gradient representation, replacing
all expectations by empirical means over simulated sample paths. The al-
gorithm is then applied to calibrate a fractional version of Heston’s model
to call option price data on the EUROSTOXX 50. Our case study sug-
gests that a Hurst parameter of about H = 0.65 yields the best fit to the
data. Additional numerical experiments illustrate the rates of convergence
established in Subsection 2.3.

2 Discussion of the main results

2.1 The model dynamics and the cost functional

In this subsection, we introduce the general setting consisting of two parameter-
dependent systems of stochastic differential equations (SDEs). The first SDE
is driven by a multivariate stochastic process (wt)t∈[0,T ] which has contin-
uous paths of finite p-variation for some p ∈ (1, 2), which includes, e.g., a
fractional Brownian motion with Hurst parameter H ∈ (1/2, 1). We here
recall that a fractional Brownian motion (BH

t )t∈[0,T ] with Hurst parameter
H ∈ (0, 1) is a centered Gaussian process with covariance structure

E[BH
t B

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
In the financial application, this first SDE may model several factors,
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which are not directly tradable and storeable, such as the volatility of pri-
mary assets or the short rate of a money market account. The second SDE
is driven by a multidimensional Brownian motion and may be thought to
represent, e.g., the price processes of the primary assets traded in the mar-
ket.

We fix a time horizon T > 0 and positive integers n1,m1, n2,m2, d ∈ N =
{1, 2, . . . }. Let (Ω,F ,F, P ) be a filtered probability space (satisfying the
usual conditions) carrying an m1-dimensional stochastic process (wt)t∈[0,T ],
whose paths are almost surely continuous and have finite p-variation for
p ∈ (1, 2), and an m2-dimensional standard Brownian motion (Bt)t∈[0,T ],
both adapted to the filtration F = (Ft)t∈[0,T ], but possibly dependent. The
dependence between the two driving processes is crucial to capture, e.g., the
leverage effect between stock prices and volatility [16].

Furthermore let U be an open, convex and bounded subset of Rd, which
represents the parameter set. We consider the parameter dependent systems
of stochastic differential equations

ξut = ξ0(u) +

∫ t

0
b(r, ξur , u) dr +

m1∑
j=1

∫ t

0
σj(r, ξur , u) dw

j
r, (1)

xut = x0(u) +

∫ t

0
b̂(r, ξur , x

u
r , u) dr +

m2∑
j=1

∫ t

0
σ̂j(r, ξur , x

u
r , u) dB

j
r , (2)

where ξ0 : U → Rn1 , b : [0, T ] × Rn1 × U → Rn1 , σ = (σ1, . . . , σm1) :
[0, T ]× Rn1 × U → Rn1×m1 and x0 : U → Rn2 , b̂ : [0, T ]× Rn1 × Rn2 × U →
Rn2 , σ̂ = (σ̂1, . . . , σ̂m2) : [0, T ] × Rn1 × Rn2 × U → Rn2×m2 . Conditions on
the coefficient functions which guarantee wellposedness of (1)–(2) for each
parameter choice u ∈ U will be imposed at the end of this subsection.

The stochastic integral with respect to w in (1) can be understood in the
sense of Young integration [50, 13, 14], while the stochastic integral in (2)
can be interpreted as a classical Itô integral (e.g., [30]). It is, however, more
convenient to work with a unifying notion of stochastic integration, which
generalizes the Young integral and the Itô integral, namely with the forward
integral of Russo and Vallois [43, 44], which is defined as follows: Let the
integrator (Xt)t∈[0,T ] be a continuous process and the integrand (Yt)t∈[0,T ]

be integrable in the time variable, i.e.,
∫ T
0 |Ys| ds <∞, P -almost surely. For

every ε > 0, the ε-forward integral

I−(ε, Y, dX)(t) =

∫ t

0
Ys
X(s+ε)∧T −Xs

ε
ds

is then well-defined and may be considered as a regularized version of a
forward Riemann sum (i.e., a Riemann sum with tag point at the left interval
boundary point of the subintervals of the partition) of Y with respect to X.

4



The forward integral of Y with respect to X is said to exist and is denoted
by (

∫ t
0 Ys d

−Xs)t∈[0,T ], if

lim
ε→0

sup
t∈[0,T ]

∣∣∣∣∫ t

0
Ys d

−Xs − I−(ε, Y, dX)(t)

∣∣∣∣ = 0 in probability, (3)

i.e., it is the uniform limit in probability of the ε-forward integral. More
background information on the Russo-Vallois forward integral and on the
Young integral will be provided in Section 3.

With this notation at hand, we may rewrite the system (1)–(2) in more
compact form as

X u
t =

(
ξ0(u)
x0(u)

)
+

∫ t

0

(
b
(
r,X u,1:n1

r , u
)

b̂ (r,X u
r , u)

)
dr

+

m1∑
j=1

∫ t

0

(
σj
(
r,X u,1:n1

r , u
)

0

)
d−wj

r +

m2∑
j=1

(
0

σ̂j (r,X u
r , u)

)
d−Bj

r (4)

where X u
t = (X u,1

t , . . . ,X u,n1+n2
t )⊤, X u,1:n1

t := (X u,1
t , . . . ,X u,n1

t )⊤ = ξut , and
X u,n1+1:n2
t := (X u,n1+1

t , . . . ,X u,n2
t )⊤ = xut .

We now introduce cost the functional

J(u) =
1

2

M∑
µ=1

E
[
gµ(X u

Tµ
)
]2
, u ∈ U (5)

where 0 < T1 ≤ · · · < TM = T is a finite sequence of time points. Each
of the functions gµ : Rn1+n2 → R may represent the difference between the
payoff function of an option with maturity Tµ and its observed market price,
when calibrating a financial model.

We will aim at minimizing the cost functional J by a gradient descent, for
which we derive two gradient representations in the next subsection. Before
doing so, we collect the assumptions required for our results:

For the p-variation process w, we assume the following exponential mo-
ment bound:

(W ) There exists K > 0 such that

E
[
eK∥w∥2p,0,T

]
<∞. (6)

Here, ∥x∥p,s,t denotes the p-variation norm of a path x over the interval
[s, t].

Remark 2.1. Let us recall some standard notation concerning p-variation
functions for p ≥ 1. We define P([s, t]) as the set of all finite partitions of
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the interval [s, t]. For a partition Πk = (ti)i=0,...,k of [s, t] into k subintervals
(i.e., s = t0 < t1 < · · · < tk = t) we call |Πk| = maxi=0,...,k−1{|ti+1 − ti|} the
mesh of the partition and, for i = 0, . . . , k− 1, we call [ti, ti+1] a subinterval
of the partition. If the number of subintervals of a partition does not need
to be specified, we will omit the index k. For 1 ≤ p < ∞, the p-variation
semi-norm of a function x : [s, t] → Rn×m is then given by

|x|p,s,t := sup
k∈N,Πk∈P([s,t])

(
k−1∑
i=0

|xti+1 − xti |p
) 1

p

,

where | · | denotes the Frobenius norm of a matrix. x is said to be of finite
p-variation over the interval [s, t], if |x|p,s,t <∞. We write W p([s, t],Rn×m)
for the space of finite p-variation functions over [s, t], which endowed with
the p-variation norm ∥x∥p,s,t := |xs| + |x|p,s,t, becomes a Banach space.
The subspace of continuous functions in W p([s, t],Rn×m) will be denoted by
Cp([s, t],Rn×m).

Remark 2.2. If (wt)t∈[0,T ] is a Gaussian process with continuous paths, which
are of bounded p-variation for some p ∈ (1, 2), then the exponential moment
bound in condition (W ) is satisfied by Theorem 2.3 in [28].

Concerning the coefficients of the SDE (1), we suppose:

(H1) Let ξ0 : U → Rn1 be continuously differentiable, such that ξ0 and its
Jacobian Dξ0 are bounded.

(H2) Let b : [0, T ]×Rn1 ×U → Rn1 be a continuous function which satisfies:

◦ b(t, ξ, u) is bounded and twice continuously differentiable with
respect to ξ and u with bounded partial derivatives.

(H3) Let σ := (σ1, . . . , σm1) : [0, T ] × Rn1 × U → Rn1×m1 be a continuous
function which satisfies:

◦ σ(t, ξ, u) is bounded and three times continuously differentiable
with respect to ξ and u with bounded partial derivatives.

◦ σ(t, ξ, u) and all its partial derivatives with respect to ξ and u
up to order 2 are Hölder continuous in t with Hölder exponent
β ∈ [12 , 1].

For the coefficients of SDE (2), we assume:

(B1) Let x0 : U → Rn2 be a continuously differentiable deterministic func-
tion, such that x0 and its Jacobian Dx0 are bounded.

(B2) Let b̂ : [0, T ] × Rn1 × Rn2 × U → Rn2 be a continuous function which
satisfies:
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◦ b(t, ξ, x, u) is continuously differentiable with respect to x, ξ and
u with bounded partial derivatives.

(B3) Let σ̂ = (σ̂1, . . . , σ̂m2) : [0, T ]×Rn1 ×Rn2 ×U → Rn2×m2 be a contin-
uous function which satisfies:

◦ σ(t, ξ, x, u) is continuously differentiable with respect to x, ξ and
u with bounded partial derivatives.

Finally, on the cost functional we impose the following condition:

(G) For every µ = 1, . . . ,M , the function gµ : Rn1+n2 → R is bounded and
continuously differentiable with bounded and Lipschitz continuous first
derivative.

We will refer to (W ), (H1)–(H3), (B1)–(B3), and (G) as the standing
assumptions. They are supposed to be in force for the rest of this paper.

2.2 Gradient representations

In this subsection, we derive two representations for the gradient of the
cost functional J introduced in (5). The first one is a simple consequence
of the Fréchet differentiability of the state dynamics (4) with respect to the
parameter vector u and the chain rule. The second one is an adjoint gradient
representation in terms of an anticipating backward stochastic differential
equation in the sense of forward integration and constitutes one of the main
results of this paper.

Formally differentiating the state dynamics X u in (4) with respect to u
(cp. Subsection 4.1 below) suggests that its Fréchet derivative DX u is an
R(n1+n2)×d-valued stochastic process, which solves the linear matrix SDE

Yu
t =

(
Dξ0(u)
Dx0(u)

)
+

∫ t

0

(
bξ

(
r,X u,1:n1

r , u
)

0

b̂ξ (r,X u
r , u) b̂x (r,X u

r , u)

)
Yu
r +

(
bu

(
r,X u,1:n1

r , u
)

b̂u (r,X u
r , u)

)
dr

+

m1∑
j=1

∫ t

0

(
σjξ

(
r,X u,1:n1

r , u
)

0

0 0

)
Yu
r +

(
σju
(
r,X u,1:n1

r , u
)

0

)
d−wj

r

+

m2∑
j=1

∫ t

0

(
0 0

σ̂jξ (r,X
u
r , u) σ̂jx (r,X u

r , u)

)
Yu
r +

(
0

σ̂ju (r,X u
r , u)

)
d−Bj

r

(7)

We will refer to (7) as the sensitivity equation, compare, e.g., [29].
The following theorem provides existence and uniqueness of the SDEs

(4) and (7) under the standing assumptions. We will make use of the
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space Ll
F(Ω, C

p,0[0, T ],R(n1+k)×m) of F-adapted processes (xt)t∈[0,T ] satis-

fying E[∥x∥l∞,0,T ] < ∞ and taking values in R(n1+k)×m such that P -almost
every path is continuous and the component paths in the first n1 lines of x
are of finite p-variation. Here, ∥x∥∞,s,t := supr∈[s,t] |xr| denotes the supre-
mum norm over the interval [s, t].

Theorem 2.3. For every u ∈ U , the SDEs (4) and (7) have unique solutions
X u ∈ Ll

F(Ω, C
p,0[0, T ],Rn1+2) and Yu ∈ Ll

F(Ω, C
p,0[0, T ],R(n1+2)×d), respec-

tively, for every l ≥ 1. Moreover, there is a constant CX ,Y,l independent of
u ∈ U such that

E
[
∥X u∥l∞,0,T

]
+ E

[
∥Yu∥l∞,0,T

]
≤ CX ,Y,l, (l ≥ 1).

Finally, for every l ≥ 1, the map

U → Ll
F(Ω, C

p,0[0, T ],Rn1+2), u 7→ X u

is Fréchet differentiable with Fréchet derivative DX u = Yu.

The details of the technical proof can be found in [48]. We will comment
in Subsection 4.1 below on the key steps of the proof and on related results
in the literature.

Applying the previous theorem in conjunction with assumption (G) and
the chain rule for Fréchet derivatives (see Proposition 1.1.4 in [1]), we obtain
the following representation for the gradient of the cost functional

∇J(u) =
M∑
µ=1

E[gµ(X u
Tµ
)]E[g′µ(X u

Tµ
)Yu

Tµ
] (8)

under the standing assumptions. In order to obtain the adjoint gradient
representation, we first derive a variation-of-constants formula for the linear
matrix SDE (7) in Theorem 2.5 below.

Notation 2.4. To simplify the notation for the rest of this paper, we define for
r ∈ [0, T ] and u ∈ U : au(r) := a(r,X u,1:n1

r ,X u,n1+1:n2
r , u), for some generic

function a mapping from [0, T ]× Rn1 × Rn2 × U to some Euclidean space.

With this notation at hand, we consider the following homogeneous
matrix-valued SDEs with initial condition equal to the unit matrix In1+n2

in R(n1+n2)×(n1+n2) at time s0 ∈ [0, T ):

Φs0
t = In1+n2 +

∫ t

s0

(
buξ (r) 0

b̂uξ (r) b̂ux(r)

)
Φs0
r dr +

m1∑
j=1

∫ t

s0

(
σu,jξ (r) 0

0 0

)
Φs0
r d−wj

r

+

m2∑
j=1

∫ t

s0

(
0 0

σ̂u,jξ (r) σ̂u,jx (r)

)
Φs0
r d−Bj

r , (9)
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and

Ψs0
t = In1+n2 −

∫ t

s0

Ψs0
r

(buξ (r) 0

b̂uξ (r) b̂ux(r)

)
−

m2∑
j=1

(
0 0

σ̂uξ (r) σ̂u,jx (r)

)2
 dr

−
m1∑
j=1

∫ t

s0

Ψs0
r

(
σu,jξ (r) 0

0 0

)
d−wj

r −
m2∑
j=1

∫ t

s0

Ψs0
r

(
0 0

σ̂u,jξ (r) σ̂u,jx (r)

)
d−Bj

r ,

(10)

for t ∈ [s0, T ], suppressing the dependence on u by abbreviating Φs0
t = Φs0,u

t

and Ψs0
t = Ψs0,u

t .

Theorem 2.5. For every u ∈ U and s0 ∈ [0, T ] the matrix-valued SDEs
(9) and (10) have a unique solution Φs0,u, respectively Ψs0,u in the space
Ll
F(Ω, C

p,0[s0, T ],R(n1+n2)×(n1+n2)) for every l ≥ 1, such that

E
[
∥Φs0,u∥l∞,s0,T

]
+ E

[
∥Ψs0,u∥l∞,s0,T

]
≤ CΦ,Ψ,l,

where the positive constant CΦ,Ψ,l is independent of u and s0. Moreover,
Ψs0,u

t = (Φs0,u
t )−1 for t ∈ [s0, T ], P -almost surely. Furthermore the solution

Yu
t to (7) is, for every t ∈ [0, T ], given by the following variation-of-constants

formula (here we set the initial time of the homogeneous equations to s0 = 0
and skip the superscripts s0 and u)

Yu
t =Φt

(
Dξ0(u)
Dx0(u)

)
+Φt

∫ t

0
Φ−1
r

(buu(r)
b̂uu(r)

)
−

m2∑
j=1

(
0

σ̂u,jx (r)σ̂u,ju (r)

) dr
+

m1∑
j=1

Φt

∫ t

0
Φ−1
r

(
σu,ju (r)

0

)
d−wj

r +

m2∑
j=1

Φt

∫ t

0
Φ−1
r

(
0

σ̂u,ju (r)

)
d−Bj

r .

(11)

A sketch of the proof will be provided in Subsection 4.2 below. Inserting
the variation-of-constants formula (11) into the gradient representation (8),
we obtain, by manipulating the forward integrals as detailed in Lemma 4.3
of Subsection 4.3 below:

∇J(u) = E

[
Λ0

(
Dξ0(u)
Dx0(u)

)
+

∫ T

0
Λr

[(
buu(r)

b̂uu(r)

)
−

m2∑
j=1

(
0

σ̂u,jx (r)σ̂u,ju (r)

)]
dr

+

m1∑
j=1

∫ T

0
Λr

(
σu,ju (r)

0

)
d−wj

r +

m2∑
j=1

∫ T

0
Λr

(
0

σ̂u,ju (r)

)
d−Bj

r

]
.

(12)
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Here, (Λt)t∈[0,T ] = (Λu
t )t∈[0,T ] is the R1×(n1+n2)-valued (i.e., row-vector val-

ued) process defined via

Λt =
∑

µ;Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
t , (13)

(where again Φ = Φ0,u).
We emphasize that the process Λ is not F-adapted, but anticipates fu-

ture information through the factors g′µ(X u
Tµ
)ΦTµ . In particular, the integrals

with respect to the Brownian motions in (12) cannot be interpreted as Itô
integrals, but are ‘true’ forward integrals. These anticipating forward inte-
grals, in general, do not have zero expectation, and, hence, contribute to the
adjoint gradient representation (12).

Theorem 2.6. The process Λ = (Λu) satisfies E[∥Λ∥l∞,0,T ] < ∞ for every
l ≥ 1 and solves the anticipating backward SDE (t ∈ [0, T ])

Λt =
∑
Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)

+

∫ T

t
Λr

[(
buξ (r) 0

b̂uξ (r) b̂ux(r)

)
−

m2∑
j=1

(
0 0

σ̂u,jξ (r) σ̂u,jx (r)

)2 ]
dr

+

m1∑
j=1

∫ T

t
Λr

(
σu,jξ (r) 0

0 0

)
d−wj

r +

m2∑
j=1

∫ T

t
Λr

(
0 0

σ̂u,jξ (r) σ̂u,jx (r)

)
d−Bj

r .

(14)

The proof will be given in Subsection 4.3.
We call (14) the adjoint equation, as it resembles the adjoint equation in

the Pontryagin maximum principle for optimal control problems:

1. Deterministic case: σ ≡ 0, b ≡ 0, ξ0 ≡ 0, σ̂ ≡ 0, and Tµ = T for every
µ = 1, . . . ,M :
Then (14) reduces to the terminal value problem for the ordinary dif-
ferential equation (ignoring the first n1 components of Λ)

Λ̇t = −Λtb̂
u
x(t), ΛT =

M∑
µ=1

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)

which corresponds to the adjoint equation in the Pontryagin maximum
principle for the control of ordinary differential equations, compare,
e.g., Chapter 3.2 in [49]. Note that the local optimality condition in
terms of the Hamiltonian in the optimal control situation, e.g. Eq.
(3.2.7) in [49], turns into the global condition

0 = ∇J(u) = Dx0(u) +

∫ T

0
Λr b̂

u
u(r)dr

10



in our case, see (12), because we are minimizing over constant param-
eters (in contrast to optimizing dynamically over functions).

2. Brownian motion case: σ ≡ 0, b ≡ 0, ξ0 ≡ 0, and Tµ = T for every
µ = 1, . . . ,M :
In order to avoid to work with the anticipating process Λ, one can
project Λ (ignoring the first n1 components of Λ, again) on the avail-
able information leading to

pt := E[Λt|Ft].

By Theorem 7.2.2 in [49] and its proof, there is a matrix-valued pro-
cess q = (q1, . . . , qm2) such that the pair (p, q) solves the following
nonanticipating backward stochastic differential equation (BSDE) in
terms of Itô integration

dpt = −

ptb̂ux(t) + m2∑
j=1

qjt σ̂
u,j
x (t)

+

m2∑
j=1

qjt dBt,

pT =

M∑
µ=1

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)

The process q can be constructed via the martingale representation
theorem. This BSDE corresponds to the first adjoint equation in the
maximum principle for controlled stochastic differential equations, see
Eq. (3.3.8) in [49].

Note that the techniques related to moving from Λ to p, by condition-
ing in the Brownian motion case, heavily rely on the martingale prop-
erty of a Brownian motion. As these martingale techniques are not at
our disposal in the presence of the second driving process (wt)t∈[0,T ],
we decided to work directly with Λ and to derive the adjoint equation
in terms of a new type of an anticipating backward SDE in Theorem
2.6.

2.3 Euler discretization of the gradient representations

Any numerical resolution of the gradient representations (8) or (12) requires
a time-discretization scheme either for the pair (X u,Yu) or for the pair
(X u,Λu). From a computational point of view, it is beneficial to approximate
the pair (X u,Λu), because both processes are Rn1+n2-dimensional, while Yu

is a matrix-valued, precisely R(n1+n2)×d-dimensional process, where d equals
the number of parameters. However, Λu solves, by Theorem 2.6, a new type
of anticipating backward SDE in terms of the forward integral. Devising
an Euler scheme for Λu and analyzing its rate of convergence constitute the
main results of this subsection.

11



For the discretization of the state dynamics (4) and the sensitivity equa-
tion (7), we apply a continuously interpolated Euler scheme along a partition
ΠE = (ti)i=0,...,n of [0, T ], which is not necessarily equidistant. We will al-
ways assume that the time points Tµ, connected to the cost functional (5),
are elements of ΠE.

Precisely, we consider, for t ∈ (ti, ti+1],

X n,u
t =

(
ξn,ut

xn,ut

)
=

(
ξn,uti
xn,uti

)
+

(
b
(
ti, ξ

n,u
ti
, u
)

b̂
(
r, ξn,uti

, xn,uti
, u
)) (t− ti)

+

m1∑
j=1

(
σj
(
ti, ξ

n,u
ti
, u
)

0

)(
wj
t − wj

ti

)
+

m2∑
j=1

(
0

σ̂j
(
ti, ξ

n,u
ti
, xn,uti

, u
))(Bj

t −Bj
ti

)
(15)

initialized at X n,u
0 via ξn,u0 = ξ0(u) and x

n,u
0 = x0(u), as well as

Yn,u
t =Yn,u

ti
+ ηn,uti,t

Yn,u
ti

+

(
bu
(
ti, ξ

n,u
ti
, u
)

b̂u
(
ti, ξ

n,u
ti
, xn,uti

, u
)) (t− ti)

+

m1∑
j=1

(
σju(ti, ξ

n,u
ti
, u)

0

)(
wj
t − wj

ti

)
+

m2∑
j=1

(
0

σ̂ju
(
ti, ξ

n,u
ti
, xn,uti

, u
))(Bj

t −Bj
ti

)
(16)

Yn,u
0 =

(
Dξ0(u)
Dx0(u)

)
, (17)

where

ηn,uti,t
=

(
bξ(ti, ξ

n,u
ti
, u) 0

b̂ξ(ti, ξ
n,u
ti
, xn,uti

, u) b̂x(ti, ξ
n,u
ti
, xn,uti

, u)

)
(t− ti)

+

m1∑
j=1

(
σjξ(ti, ξ

n,u
ti
, u) 0

0 0

)
(wj

t − wj
ti
)

+

m2∑
j=1

(
0 0

σ̂jξ(ti, ξ
n,u
ti
, xn,uti

, , u) σ̂jx(ti, ξ
n,u
ti
, xn,uti

, u)

)
(Bj

t −Bj
ti
). (18)

The discretization of the adjoint equation (12) is initialized at terminal
time tn = T via

Λn,u
tn =

∑
µ;Tµ=T

E[gµ(X n,u
T )]g′µ(X

n,u
T ) (19)

and then follows a backward recursion along the grid points

Λn,u
ti

= Λn,u
ti+1

+ Λn,u
ti+1

ηn,uti,ti+1
+

∑
µ;Tµ=ti

E[gµ(X n,u
ti

)]g′µ(X
n,u
ti

). (20)

12



We apply a piecewise constant interpolation on the interval [0, T ], i.e.,

Λn,u
t = Λn,u

ti+1

for t ∈ (ti, ti+1).

Remark 2.7. In order to motivate the discretization for the adjoint equation,
let us look at a 1-dimensional equation of the form

λt = λT +

∫ T

t
λr(br − σ̂2r ) dt+

∫ T

t
λrσr d

−wr +

∫ T

t
λrσ̂r d

−Br, (21)

where b, σ and σ̂ are F-adapted processes. As forward integrals are based
on Riemann sums with the tag point at the left interval boundary point, we
get

λti ≈ λti+1 + λti
[
(bti − σ̂2ti)∆i + σti∆wi + σ̂ti∆Bi

]
=: λti+1 + λti η̃ti ,

for ∆i := ti+1− ti, ∆wi =: wti+1 −wti and ∆Bi := Bti+1 −Bti . Rearranging
terms and performing a second order Taylor expansion (dropping higher
order terms), we arrive at

λti ≈λti+1(1− η̃ti)
−1 ≈ λti+1(1 + η̃ti + η̃2ti)

≈λti+1(1 + (bti − σ̂2ti)∆i + σti∆wi + σ̂ti∆Bi + σ̂2ti∆B
2
i )

≈λti+1(1 + bti∆i + σti∆wi + σ̂ti∆Bi).

In order to measure the error of the Euler schemes under the assumed
p-variation regularity, we consider

δ(ω; ΠE) := max
i=0,...,n−1

|ti+1 − ti|+ |w(ω)|p,ti,ti+1 ,

which depends on the p-variation seminorm of the realized path of w over the
subintervals of the Euler-partition (cp. Remark 2.1), as well as the ‘averaged
error measure’ in the lth mean

δl(Π
E) := E

[
δ(ΠE)l

] 1
l
, l ≥ 1 (22)

which is finite, because w satisfies the exponential moment condition (6).
For the next theorem, we require two extra conditions:

(E1): The Hölder exponent β from condition (H3) is an element of the inter-
val [1p , 1]. Moreover, the function b from condition (H2) and its partial
derivatives bξ and bu are Hölder continuous in t with Hölder exponent
β.
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(E2): Let b̂ and σ̂ be the coefficient functions from condition (B1), respec-
tively (B2). There exists a constant L > 0, such that for all x ∈ Rn2 ,
ξ ∈ Rn1 , u ∈ U and s ≤ t ∈ [0, T ],

|b̂(t, ξ, x, u)− b̂(s, ξ, x, u)|+ |σ̂(t, ξ, x, u)− σ̂(s, ξ, x, u)|

≤ L(1 + |x|+ |ξ|)(t− s)
1
2 .

Theorem 2.8. Suppose that, next to the standing assumptions, (E1)–(E2) are
in force. Then, there is a constant CE,l depending on l ≥ 2 (but independent
of u and n) such that for every u ∈ U and l ≥ 2,

E
[
∥X u −X n,u∥l∞,0,T

] 1
l
+ E

[
∥Yu − Yn,u∥l∞,0,T

] 1
l
+ sup

t∈[0,T ]
E
[
|Λu

t − Λn,u
t |l

] 1
l

≤ CE,l(δ4l(Π
E))(2−p)∧ 1

2 .

The key steps of the proof will be discussed in Subsection 4.4 below.

Remark 2.9. If we assume (instead of the p-variation regularity), that w has
Hölder continuous paths with Hölder index H ∈ (1/2, 1) and replace the
p-variation norm by the Hölder norm in the exponential moment bound (6),
then the error of the Euler approximations can be bounded in terms of the
mesh size |ΠE | of the partition. Precisely, the upper bound in Theorem 2.8

can then be replaced by C ′
E,l|ΠE |(2H−1)∧ 1

2 for some (possibly different) con-

stant C ′
E,l. Note that the p-variation norm |w|p,ti,ti+1 is O(|ti+1 − ti|H), if

w is H-Hölder continuous and p = 1/H, so that the rates in the p-variation
case and in the Hölder case fit to each other.

Remark 2.10. The convergence analysis of Euler schemes is a classical topic
in the literature on numerical SDEs. We mention some results, which are
closely related to Theorem 2.8. Lejay [32] considers differential equations
driven by a (deterministic) p-variation function w and derives a convergence
rate of the order (maxi=0,...,n−1 |w|p,ti,ti+1)

2−p under Lipschitz conditions.
In order to achieve estimates in the lth mean, as for the convergence to
X u,1:n1 in Theorem 2.8, we additionally need to control the dependence of
the constants on the realization of w, for which we apply the greedy sequence
technique [9]. As in [26] for the fractional Brownian motion case, the bound-
edness of the coefficients significantly helps to carry out the analysis. In the
case of Hölder paths, Euler schemes for SDEs driven by a fractional Brown-
ian motion with Hurst parameter H > 1/2 are well-studied. Under Lipschitz
conditions a rate of convergence of the order 2H − 1 in the sense of almost
sure convergence is known to hold and to be sharp [35, 37, 40, 38]. The
equation solved by X u,n1+1:n2 is driven by a Brownian motion. Although
the coefficients depend on X u,1:n1 , the error estimate follows classical lines.
Recall that strong convergence of the Euler scheme for SDEs driven by a
Brownian of the order 1/2 in the mesh size is well-known under Lipschitz
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conditions, see, e.g. [31]. Hence, the results, mentioned above, indicate that
the convergence rate of the Euler scheme for X u derived in Theorem 2.8 and
Remark 2.9 are the best ones that one could expect. The key difficulty in
analyzing the Euler scheme for the linear matrix SDE Yu is to control the
growth of the Euler scheme driven by the p-variation process (wt)t∈[0,T ] in
the presence of time-dependent coefficients. We are not aware of a related
convergence result in the lth mean in the p-variation context, but refer to [6]
for a study of linear equations driven by a fractional Brownian motion in the
Hölder space setting. For the analysis of the Euler scheme for the adjoint
equation (14), the proof will be based on explicit variations-of-constants for-
mulas for the continuous-time solution Λu and its Euler discretization Λn,u.

Having the convergence results in Theorem 2.8 at hand, we can apply
them for the approximation of the cost functional (5) and the two represen-
tations (8) and (12) of its gradient.

Let ΠE = (ti)i=0,...,n be a partition of the interval [0, T ] such that all
the time points Tµ, µ = 1, . . . ,M are included in the partition. Then, the
discretized cost function and the discretization of the gradient representation
(8) are defined via

Jn(u) :=
1

2

M∑
µ=1

E
[
gµ(X n,u

Tµ
)
]2

(∇J)n(u) :=
M∑
µ=1

E
[
gµ(X n,u

Tµ
)
]
E
[
g′µ(X

n,u
Tµ

)Yn,u
Tµ

]
(23)

Given assumption (G) on the functions gµ, it is easy to check that, for every
u ∈ U ,

|J(u)− Jn(u)|+ |(∇J)(u)− (∇J)n(u)|

≤CJ

(
E
[
∥X u −X n,u∥2∞,0,T

] 1
2
+ E

[
∥Yu − Yn,u∥2∞,0,T

] 1
2

)
(24)

for some constant CJ (independent of u) and, thus, Theorem 2.8 and Re-
mark 2.9 provide rates of convergence under the different regularity assump-
tions on (wt)t∈[0,T ].

The next theorem establishes an alternative representation of the dis-
cretized gradient (∇J)n(u) in terms of the Euler scheme of the adjoint
equation. It can be considered as the natural discretization of the adjoint
gradient representation (12).

Theorem 2.11. For every u ∈ U , the discretized gradient (∇J)n(u) (see (23))
can be represented by

(∇J)n(u) = E

[
Λn,u
0 DX u

0 +
n−1∑
i=0

Λn,u
ti+1

η̂n,uti,ti+1

]
,
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where (suppressing the dependence of ξn and xn on u)

η̂n,uti,ti+1
:=

(
bu(ti, ξ

n
ti , u)

b̂u(ti, ξ
n
ti , x

n
ti , , u)

)
(ti+1 − ti) +

m1∑
j=1

(
σju(ti, ξ

n
ti , u)

0

)
(wj

ti+1
− wj

ti
)

+

m2∑
j=1

(
0

σ̂ju(ti, ξ
n
ti , x

n
ti , u)

)
(Bj

ti+1
−Bj

ti
)

for all i = 0, . . . , n− 1.

Proof. Recall that, by (16),

Yn,u
ti+1

= Yn,u
ti

+ ηn,uti,ti+1
Yn
ti + η̂n,uti,ti+1

.

and, by (20),

Λn,u
ti

= Λn,u
ti+1

+ Λn,u
ti+1

ηn,uti,ti+1
+

∑
µ;Tµ=ti

E[gµ(X n,u
Tµ

)]g′µ(X
n,u
Tµ

).

Hence,

Λn,u
ti+1

Yn,u
ti+1

=Λn,u
ti+1

Yn,u
ti

+ Λn,u
ti+1

ηn,uti,ti+1
Yn
ti + Λn,u

ti+1
η̂n,uti,ti+1

=Λn,u
ti

Yn,u
ti

+ Λn,u
ti+1

η̂n,uti,ti+1
−

∑
µ;Tµ=ti

E[gµ(X n,u
Tµ

)]g′µ(X
n,u
Tµ

)Yn,u
ti
.

Therefore,

Λn,u
tn Yn,u

tn − Λn,u
t0

Yn,u
t0

=
n−1∑
i=0

Λn,u
ti+1

η̂n,uti,ti+1
−

∑
µ;Tµ<tn

E[gµ(X n,u
Tµ

)]g′µ(X
n,u
Tµ

)Yn,u
Tµ
.

Inserting the terminal condition (19) for Λn,u and the initial condition (17)
for Yn,u, we obtain

M∑
µ=1

E[gµ(X n,u
Tµ

)]g′µ(X
n,u
Tµ

)Yn,u
Tµ

= Λn,u
0 DX u

0 +

n−1∑
i=0

Λn,u
ti+1

η̂n,uti,ti+1

Recalling the definition (23) of (∇J)n(u), the proof is completed by taking
expectation.

3 On the Young integral and the Russo-Vallois forward

integral

3.1 Background on Young integration

The Young integral [50] can be considered as a Riemann-Stieltjes integral
in the context of p-variation functions. Suppose [s, t] is a compact interval,
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x : [s, t] → Rn×m and w : [s, t] → Y, where either Y = R or Y = Rm×d.
Given a partition Πk = (ti)i=0,...,k of [s, t] and a finite sequence of tag points
Θk = (θi)i=0,...,k−1, where ti ≤ θi ≤ ti+1, the pair (Πk,Θk) is said to be a
tagged partition. The Riemann-Stieltjes sum of x with respect to w on the
tagged partition (Πk,Θk) is defined to be

RS(x, dw, (Πk,Θk)) =
k−1∑
i=0

xθi(wti+1 − wti).

The Riemann-Stieltjes integral is said to exist and is, then, denoted by∫ t
s xrdwr, if for every ϵ > 0, there is a δ > 0 such that∣∣∣∣∫ t

s
xrdwr −RS(x, dw, (Π,Θ))

∣∣∣∣ < ϵ

for every tagged partition (Π,Θ) with mesh-size |Π| < δ. In the context of
p-variation functions, the Riemann-Stieltjes integral exists, e.g., under the
following conditions.

Theorem 3.1 (Young-Integral). For 1 ≤ p, 1 ≤ q such that α = 1
p + 1

q > 1,

let x ∈ W q([s, t],Rn×m) and w ∈ Cp([s, t],Y). Then, the Riemann-Stieltjes
Integral

∫ t
s xr dwr exists and the inequality∣∣∣∣∫ t

s
xr dwr − xθ(wt − ws)

∣∣∣∣ ≤ Cp,q|x|q,s,t|w|p,s,t (25)

holds for every θ ∈ [s, t], where Cp,q = ζ(α) for ζ(y) =
∑∞

i=1

(
1
i

)y
(y > 1).

Moreover, we have ∣∣∣∣∫ t

s
xr dwr

∣∣∣∣ ≤ Cp,q∥x∥q,s,t|w|p,s,t. (26)

In this situation we will speak of the Young integral and call inequality (26)
the Love-Young estimate.

Proof. As the integrator w is continuous and taking Theorem 2.42 in [14]
into account, this result is a special case of Corollary 3.91 in [14].

As limit of Riemann-Stieljes sums, the Young integral inherits, e.g., bi-
linearity as operator in integrand and integrator.

Control functions are a well-known to be a uesful tool for estimating
p-variation (semi-)norms, see, e.g., [17]:

Definition 3.2. A continuous map φ taking values in the nonnegative real
numbers, defined on the simplex ∆([s, t]) = {(u, v) ∈ R2 | 0 ≤ u ≤ v ≤ t} is
called a control function on [s, t], if it satisfies the following conditions:
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1. For all r ∈ [s, t]: φ(r, r) = 0.

2. For all u ≤ r ≤ v in [s, t]: φ(u, r) + φ(r, v) ≤ φ(u, v).

The following lemma is a variant of Proposition 5.10 in [17].

Lemma 3.3. Let φ1, . . . , φm be superadditive functions on [s, t] (i.e., they
satisfy property (2) in Definition 3.2), p ≥ 1, C1, . . . , Ck positive constants
and x : [s, t] → Rn×m a function on [s, t]. The pointwise estimate

|xv − xu| ≤
m∑
j=1

Cjφj(u, v)
1
p for all u ≤ v in [s, t]

implies the p-variation estimate

|x|p,u,v ≤
m∑
j=1

Cjφj(u, v)
1
p for all u ≤ v in [s, t].

If φj is a control function on [s, t] for all j = 1, . . . ,m, then x is continuous
on [s, t].

Note that p-variation estimates lead to estimates in the sup-norm via
the relation

∥x∥∞,s,t ≤ |x|s + |x|p,s,t = ∥x∥p,s,t. (27)

The following proposition states that the pth power of the p-variation
semimnorm constitutes a control. For a proof, we refer to [17], Proposition
5.8.

Proposition 3.4. Let p ≥ 1 and x : [s, t] → Rn×m be a continuous function
of finite p-variation, then

φ(u, v) = |x|pp,u,v

defines a control function on [s, t].

We state two elementary lemmas (without proof), which are useful for
estimating p-variation (semi-)norms.

Lemma 3.5. Let p ≥ 1, B ∈ W p([s, t],Rn×n), x ∈ W p([s, t],Rn×m) and
assume that f : Rn×m → Rk is Lipschitz continuous with constant L. Then
we have

∥Bx∥p,s,t ≤ |Bsxs|+ ∥B∥∞,s,t|x|p,s,t + ∥x∥∞,s,t|B|p,s,t ≤ 2∥B∥p,s,t∥x∥p,s,t

and
|f(x)|p,s,t ≤ L|x|p,s,t.
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Lemma 3.6. Let x ∈ W p([s, t],Rn×m), p ≥ 1. If s = t0 < t1 < · · · < tk = t,
then

k−1∑
i=0

|x|pp,ti,ti+1
≤ |x|pp,s,t ≤ kp−1

k−1∑
i=0

|x|pp,ti,ti+1
.

The following lemma, see, e.g., Theorem 3.92 in [14], is devoted to the
indefinite integral

IY (x,w)(u) =

∫ u

s
xr dwr ∀u ∈ [s, t]

Lemma 3.7. Let 1 ≤ p, 1 ≤ q such that α = 1
p +

1
q > 1, x ∈W q([s, t],Rn×m)

and w ∈ Cp([s, t],Y). The indefinite integral IY (x,w) exists and is an ele-
ment of Cp([s, t],X), where X = Rn×d or X = Rn×m depending on the choice
of Y. Furthermore, we have

∥IY (x,w)∥p,s,t = |IY (x,w)|p,s,t =
∣∣∣∣∫ ·

s
xr dwr

∣∣∣∣
p,s,t

≤ Cp,q∥x∥q,s,t|w|p,s,t.

We provide a proof in order to illustrate the control function technique.

Proof. For every r ∈ [s, t] the indefinite Integral IY (x,w)(r) exists by Theo-
rem 3.1. Let u < v ∈ [s, t], then we have by additivity of the Young integral
and the Young-Love estimate

|IY (x,w)(v)− IY (x,w)(u)| =
∣∣∣∣∫ v

u
xr dwr

∣∣∣∣ ≤ Cp,q∥x∥q,u,v|w|p,u,v

≤ Cp,q∥x∥q,s,t|w|p,u,v.

Since φ(u, v) = |w|pp,u,v is a control function on [s, t], we conclude the proof
by applying Lemma 3.3 and by noting that IY (x,w)(s) = 0.

A crucial tool for the study of Young differential equations is the follow-
ing variant of Gronwall’s lemma:

Lemma 3.8. Let 1 ≤ p ≤ q satisfy 1
p + 1

q > 1 and fix T > 0. Assume that

y ∈ W q([0, T ],Rn×m) and w ∈ Cp([s, t],Y) satisfy the following condition:
There exist constants K1,K2 > 0 such that for all [s, t] ⊂ [0, T ], which satisfy
|t− s|+ |w|p,s,t ≤ K2, we have

|y|q,s,t ≤ K1 + |ys|. (28)

Then,

|y|q,0,T ≤ (K1 + |y0|)e2
pK−p

2 (T p+|w|pp,0,T ) (29)

and
∥y∥∞,0,T ≤ ∥y∥q,0,T ≤ (K1 + 2|y0|)e2

pK−p
2 (T p+|w|pp,0,T ).
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If the right hand side of (28) only consists of the constant K1, then the
estimates simplify to

|y|q,0,T ≤ K12
p−1K−p

2 (T p + |w|pp,0,T ) (30)

and
∥y∥∞,0,T ≤ ∥y∥q,0,T ≤ |y0|+K12

p−1K−p
2 (T p + |w|pp,0,T ). (31)

This lemma is a matrix-valued variant of results in [9] (see their Lemma
3.3, Remark 3.4, and Corollary 3.5). We include the proof in order to il-
lustrate the greedy sequence technique of [4] and [9]. A greedy sequence is
an increasing sequence of time points (τi)i=0,...,N of the interval [0, T ] with
τN = T satisfying

|τi+1 − τi|+ |w|p,τi,τi+1 = µ for i = 0, . . . , N − 2

|τN − τN−1|+ |w|p,τN−1,τN ≤ µ
(32)

for given µ > 0, p ≥ 1. For the construction of such a sequence, one
can first define τ0 = 0. Notice that κ(t) = t + |w|p,0,t is continuous and
strictly increasing with respect to t, with κ(0) = 0 and κ(T ) = T + |w|p,0,T .
The intermediate value theorem ensures, that there exists a unique t > 0
such that t + |w|p,0,t = µ, if µ < T + |w|p,0,T . In this case we let τ1 =
sup {0 ≤ t ≤ T | t+ |w|p,0,t ≤ µ} . Otherwise let τ1 = T . This construction
can be continued inductively. For T > 0 and 0 ≤ s < t ≤ T denote

N(t) = sup
k∈N0

{τk ≤ t}, N(t) = inf
k∈N0

{τk ≥ t} and N(s, t) = N(t)−N(s).

It has been shown in [9], Lemma 2.6, that the number N(s, t) of subintervals
defined by the greedy sequence in an interval [s, t] ⊂ [0, T ] is bounded by

N(s, t) ≤ 2p−1

µp
(
(t− s)p + |w|pp,s,t

)
. (33)

In particular, one obtains a finite partition of the interval [0, T ] using this
construction.

Proof of Lemma 3.8. We denote by 0 = τ0 < · · · < τN = T the greedy
sequence of times with µ = K2. Hence,

(τi+1 − τi) + |w|p,τi,τi+1 ≤ K2

for i = 0, . . . , N − 1, where N = N(0, T ) satisfies (33). Then, by (28), we
have

|y|q,s,t ≤ K1 + |ys| (34)

for all s, t ∈ [τi, τi+1], s ≤ t. In view of(27), this yields

|yτi+1 | ≤ ∥y∥∞,τi,τi+1 ≤ K1 + 2|yτi |
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for all i = 0, . . . , N − 1. If N = 1, then (29) trivially holds. Now let N ≥ 2
and fix i ∈ {0, . . . , N − 1} such that τi < t ≤ τi+1. Inductively we get

K1 + |yτi | ≤ K1 +K1 + 2|yτi−1 | ≤ 2(K1 + |yτi−1 |) ≤ · · · ≤ 2i(K1 + |y0|).

Hence,
|y|q,τi,τi+1 ≤ K1 + |yτi | ≤ 2i(K1 + |y0|).

By Lemma 3.6, we obtain

|y|q,0,T ≤ N
q−1
q

(
N−1∑
i=0

|y|qq,τi,τi+1

) 1
q

≤ N
q−1
q (K1 + |y0|)

(
N−1∑
i=0

2iq

) 1
q

≤ (K1 + |y0|)e2N . (35)

Taking (33) into account, we observe that

|y|q,0,T ≤ (K1 + |y0|)e2
pK−p

2 (|T |p+|w|pp,0,T ).

In view of the inequality (27), we conclude

∥y∥∞,0,T ≤ ∥y∥q,0,T ≤ (K1 + 2|y0|)e2
pK−p

2 (T p+|w|pp,0,T ).

Now suppose (34) simplifies to

|y|q,s,t ≤ K1.

Then we can directly apply the first inequality in (35) to get

|y|q,0,T ≤ NK1.

By (33), the assertions in (30) and (31) follow.

3.2 Background on Russo-Vallois forward integration

We now turn to the Russo-Vallois forward integral [43, 44], which is defined
as in (3) above. The key tool from the theory of forward integration in
our context is the integration-by-parts formula. It involves the following
notion of a generalized covariation. Suppose that (Xt)t∈[0,T ] and (Yt)t∈[0,T ]

are continuous stochastic processes (extended by constant extrapolation to
t > T , if necessary). For every ε > 0, the ε-covariation is defined as

C(ε, Y,X)(t) =

∫ t

0

(Xs+ε −Xs)(Ys+ε − Ys)

ε
ds.

The generalized covariation is then defined to be the limit in the sense of
uniform convergence in probability, as ε goes to zero, of C(ε, Y,X). In the
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case of existence, it is denoted by [X,Y ]t. We write [X]t = [X,X]t for the
generalized quadratic variation and note that, (provided all terms exist),

|[X,Y ]t| ≤ ([X]t[Y ]t)
1/2 (36)

The integration-by-parts formula (Proposition 1 in [44]) now states that

XtYt = X0Y0 +

∫ t

0
Xsd

−Ys +

∫ t

0
Ysd

−Xs + [X,Y ]s, (37)

(provided all terms on the right-hand side exist).
The following theorem relates forward integration to Itô integration and

to Young integration.

Theorem 3.9. (1) Suppose (Bt)t∈[0,T ] is an F-adapted Brownian motion and

(Ht)t∈[0,T ] is an F-adapted process satisfying
∫ T
0 |Hs|2ds <∞, P -a.s. Then,

the forward integral (
∫ t
0 Hsd

−Bs)t∈[0,T ] exists and coincides with the Itô in-

tegral (
∫ t
0 HsdBs)t∈[0,T ].

(2) Suppose (Xt)t∈[0,T ] is a stochastic process with paths in Cp([0, T ],R) and
(Ht)t∈[0,T ] is a stochastic process with paths in W q([0, T ],R) for p, q ≥ 1

such that 1
p + 1

q > 1. Then, the forward integral (
∫ t
0 Hsd

−Xs)t∈[0,T ] exists

and coincides with the (pathwise) Young integral (
∫ t
0 HsdXs)t∈[0,T ]. More-

over, [
∫ ·
0Hsd

−Xs] = 0 on [0, T ].

Proof. Part (1) is Theorem 2 in [44]. Part (2) is proved in Proposition 3 of
[44] under additional Hölder assumptions. We next provide a proof for the
p-variation case.

Step 1: We show that the forward integral exists and coincides with the
Young integral.

For ε > 0, let

Xε−
t =

1

ε

∫ t

0
Xr+ε −Xr dr.

Then, Xε− is continuously differentiable with derivative Ẋε−
t = ε−1(Xt+ε −

Xt) and

I−(ε,H, dX)(t) =

∫ t

0
HsẊ

ε−
s ds =

∫ t

0
HsdX

ε−
s ,

where the integral on the right-hand side is the Riemann-Stieltjes integral
with respect to the smooth integrator Xε− and, thus, equals the Young
integral of H with respect to Xε−. Fix some p′ > p such that 1/p′+1/q > 1.
Then, by (27) and by the Love-Young inequality in the form of Lemma 3.7,∥∥∥∥I−(ε,H, dX)−

∫ ·

0
HsdXs

∥∥∥∥
∞,0,T

≤
∥∥∥∥∫ ·

0
Hsd(X

ε− −X)s

∥∥∥∥
p′,0,T

≤ Cp′,q∥H∥q,0,T |Xε− −X|p′,0,T .
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Hence, the forward integral (
∫ t
0 Hsd

−Xs)t∈[0,T ] exists and coincides with the
Young integral, if

lim
ε→0

|Xε− −X|p′,0,T = 0, P -a.s. (38)

In order to establish (38),we define Zε
t = Xε−

t −Xt for t ∈ [0, T ]. Since

Xε−
t =

1

ε

∫ t

0
Xr+ε −Xr dr =

1

ε

∫ t+ε

t
Xr dr −

1

ε

∫ ε

0
Xr dr

we obtain, for 0 ≤ s ≤ t ≤ T ,

Zε
t − Zε

s =
1

ε

∫ t+ε

t
Xr −Xt dr −

1

ε

∫ s+ε

s
Xr −Xs dr,

=
1

ε

∫ ε

0
(Xt+r −Xt)− (Xs+r −Xs) dr.

Thus, by Jensen’s inequality,

|Zε
t − Zε

s |

≤ 1

ε

∫ ε

0
|Xt+r −Xt − (Xs+r −Xs)| dr

≤
(
1

ε

∫ ε

0
|Xt+r −Xt − (Xs+r −Xs)|p

′−p|Xt+r −Xt − (Xs+r −Xs)|p dr
) 1

p′

≤ 2
1− p

p′ sup
r,u∈[0,T ]
|u−r|≤ε

|Xr −Xu|
1− p

p′

(
2p−1 1

ε

∫ ε

0
|Xt+r −Xs+r|p + |Xt −Xs|p dr

) 1
p′

≤ 2
1− 1

p′ sup
r,u∈[0,T ]
|u−r|≤ε

|Xr −Xu|
1− p

p′

(
1

ε

∫ ε

0
|X(·+r)|

p
p,s,t dr + |X|pp,s,t

) 1
p′

.

In view of Proposition 3.4, it is easy to check that

φ(s, t) =
1

ε

∫ ε

0
|X(·+r)|

p
p,s,t dr + |X|pp,s,t

is superadditive on ∆([0, T ]). Hence, Lemma 3.3 implies

|Zε|p′,0,T ≤ 2
1− 1

p′ sup
r,u∈[0,T ]
|u−r|≤ε

|Xr −Xu|
1− p

p′

(
1

ε

∫ ε

0
|X(·+r)|

p
p,0,T dr + |X|pp,0,T

) 1
p′

≤ 2
1− 1

p′
(
2|X|pp,0,T

) 1
p′

sup
r,u∈[0,T ]
|u−r|≤ε

|Xr −Xu|
1− p

p′ .

As the paths of X are uniformly continuous on [0, T ], we obtain (38).
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Step 2: We show that [X]t = 0 for every process X with paths in Cp([0, T ]).
Choosing p′ ∈ (p, 2), the same Young-Love inequality argument as above

with Xs+ε −Xs in place of Hs and Xε− in place of Xε− −X shows

∥C(ε,X,X)∥∞,0,T ≤ Cp′,p′∥X·+ε −X∥p′,0,T |Xε−|p′,0,T .

By (38), the term |Xε−|p′,0,T stays P -a.s. bounded as ε → 0. Moreover,
the proof of (38) can be modified in a straightforward way to show ∥X·+ε −
X∥p′,0,T → 0 P -a.s. as ε→ 0. Hence, [X] = 0 on [0, T ].

Step 3: We show that [
∫ ·
0Hsd

−Xs] = 0 on [0, T ].

By Step 1 and Lemma 3.7, the process Zt =
∫ t
0 Hsd

−Xs has paths in
Cp([0, T ]). Thus, Step 2 applies to Z.

In the proof of Theorem 2.5, we will make use of the integration-by-parts
formula in the following form:

Theorem 3.10. Suppose (Bt)t∈[0,T ] is an m2-dimensional Brownian motion
and (wt)t∈[0,T ] is an F-adapted process with paths in Cp([0, T ],Rm1) as in

the general setting of Subsection 2.1. Suppose A, Â, Cj, Ĉj, Di, D̂i (j =
1, . . . ,m1, i = 1, . . . ,m2) are F-adapted processes taking values in Rm×n

(without hat), resp. in Rn×k (with hat). Assume that∫ T

0

(
|As|+ |Âs|+

m2∑
i=1

(
|Di

s|2 + |D̂i
s|2
))
ds <∞, P -a.s.,

and that the processes Cj, Ĉjhave paths of bounded q-variation for some
q ≥ 1 satisfying 1

p + 1
q > 1. Let

Xt = X0 +

∫ t

0
Asds+

m1∑
j=1

∫ t

0
Cj
sd

−wj
s +

m2∑
j=1

∫ t

0
Dj

sd
−Bj

s

Yt = Y0 +

∫ t

0
Âsds+

m1∑
j=1

∫ t

0
Ĉj
sd

−wj
s +

m2∑
j=1

∫ t

0
D̂j

sd
−Bj

s .

Then, for every t ∈ [0, T ],

XtYt =X0Y0 +

∫ t

0

(
XsÂs +AsYs +

m2∑
j=1

Dj
sD̂

j
s

)
ds

+

m1∑
j=1

(XsĈ
j
s + Cj

sYs)d
−wj

s +

m2∑
j=1

(XsD̂
j
s +Dj

sYs)d
−Bj

s

Sketch of the proof. We consider the scalar-valued case m = n = k = 1
only, but note that the extension to the matrix-valued case is straightfor-
ward. By Theorem 3.9, all forward integrals exist. By Corollary 2 in [44] and
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by polarization, the generalized covariation of two continuous local martin-
gales coincides with the usual cross-variation of local martingales (see, e.g.,
Chapter 1.1.5 in [30]). Then, by bilinearity of the generalized covariation in
conjunction with the zero quadratic variation property of the Young inte-
grals (Theorem 3.9, (2)) and (36),

[X,Y ]t =

m2∑
j=1

m2∑
i=1

[

∫ ·

0
Di

sdB
i
s,

∫ ·

0
D̂j

sdB
j
s ]t =

m2∑
j=1

∫ t

0
Dj

sD̂
j
sds.

Thus, (37) applies.

Remark 3.11. Suppose that the forward integral
∫ t
0 Hsd

−Xs exists and that
Z is a random variable. Then, by the definition of the forward integral, it
easily follows that ∫ t

0
ZHsd

−Xs = Z

∫ t

0
Hsd

−Xs.

In particular, under the assumptions of Theorem 3.9, (1),

Z

∫ t

0
HsdBs =

∫ t

0
Hsd

−Bs =

∫ t

0
ZHsd

−Bs.

The integral on the right-hand side cannot be interpreted as Itô integral, be-
cause the integrand (ZHs)s∈[0,T ] is not F-adapted, unless Z is F0-measurable.

4 Proofs

4.1 On the proof of Theorem 2.3

In this subsection, we briefly explain some of the key arguments leading to
Theorem 2.3. We first consider the SDE system for X u and recall that it can
be decomposed into one subsystem driven by the p-variation process w, and
another one driven by the Brownian motion B. We will mainly concentrate
on the first subsystem, which reads,

ξut = ξ0(u) +

∫ t

0
b(r, ξur , u) dr +

m1∑
j=1

∫ t

0
σj(r, ξur , u) d

−wj
r.

By Theorem 3.9, the integral with respect to w is a Young integral. Then,
existence and uniqueness under (H1)–(H3) are a direct consequence of The-
orem 3.6 in [9]. Note that [9] is concerned with Young differential equations
driven by a deterministic p-variation function. This is the typical framework
for Young differential equations (cp. also [32]). We, thus, apply their results
pathwise, i.e., for a fixed realization w(ω) of the p-variation process w. As
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the cost functional J in (5) averages over the realizations by taking an ex-
pectation, we need to control the growth of the solutions in dependence of
w. This is the reason to impose the boundedness assumptions on b and σ,
which are, in fact, not required for existence and uniqueness.

Lemma 4.1. Under (H1)–(H3), there is a constant C1 independent of u and
(the realization of) w such that for every 0 ≤ s ≤ t ≤ T :

|ξu|p,s,t ≤
1

2C1
(1 + |ξu|p,s,t)((t− s) + |w|p,s,t).

A routine proof, which relies on the Young-Love inequality (26) and
standard Lipschitz estimates, can be found in [48], Lemma 2.27. As a con-
sequence of the previous lemma, we observe that

(t− s) + |w|p,s,t ≤ C1 ⇒ |ξu|p,s,t ≤ 1. (39)

Combining (39) with (31) yields

∥ξu∥p,0,T ≤ L+ 2p−1C−p
1

(
T p + |w|pp,0,T

)
, (40)

where L is any upper bound for u 7→ |ξ0(u)|. Then, by (6),

sup
u∈U

E[∥ξu∥l∞,0,T ] <∞

for every l ≥ 1. Summarizing, the boundedness assumption on b and σ
ensures that the p-variation norm of ξu grows linearly in |w|pp,0,T , while
without the boundedness assumption the solutions can grow exponentially
in |w|pp,0,T , cp. Proposition 1 in [32]. The p-variation estimate for ξu obtained
in (40) will turn out to be crucial for controlling the growth of the Fréchet
derivative of ξ to which we turn now.

We first provide a heuristic derivation of the SDE for the Fréchet deriva-
tive of ξ in the parameter. To this end, fix u ∈ U , a vector ū ∈ Rd of length
1, and choose ϵ sufficiently small such that uϵ := u + ϵū ∈ U . Then, the
difference quotient for the directional derivative reads

ξuϵ
t − ξut
ϵ

:=
ξ0(uϵ)− ξ0(u)

ϵ

+

∫ t

0

b(r, ξuϵ
r , uϵ)− b(r, ξur , uϵ)

ϵ
+
b(r, ξur , uϵ)− b(r, ξur , u)

ϵ
dr

+

m1∑
j=1

∫ t

0

σj(r, ξuϵ
r , uϵ)− σj(r, ξur , uϵ)

ϵ
+
σj(r, ξur , uϵ)− σj(r, ξur , u)

ϵ
d−wj

r.
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Passing formally to the limit ϵ → 0 suggests that the directional derivative
of ξ in direction ū at u is given by the solution yu,ū of the linear SDE

yu,ūt = Dξ0(u)ū+

∫ t

0

(
bξ(r, ξ

u
r , u)y

u,ū
r + bu(r, ξ

u
r , u)ū

)
dr

+

m1∑
j=1

∫ t

0

(
σjξ(r, ξ

u
r , u)y

u,ū
r + σju(r, ξ

u
r , u)ū

)
d−wj

r.

Assuming, for the moment, that the Fréchet derivative yu of ξ at u exists,
we obtain yu,ū = yu · ū. Thus, yu solves

yut = Dξ0(u) +

∫ t

0
(bξ(r, ξ

u
r , u)y

u
r + bu(r, ξ

u
r , u)) dr

+

m1∑
j=1

∫ t

0

(
σjξ(r, ξ

u
r , u)y

u
r + σju(r, ξ

u
r , u)

)
d−wj

r, (41)

corresponding to the first n1 lines of the matrix valued SDE (7) for Yu. This
heuristic argument can be made rigorous in a similar way as, e.g., in [24] (in
the framework of controlled SDEs driven by a fractional Brownian motion,
where Hölder norms are applied) or in Proposition 8 of [32] (where parameter
dependence in the initial condition in a p-variation setting is considered),
see Section 2.1.3 in [48] for the details. As before, all arguments leading
to the differentiability of the Young SDE ξu are applied pathwise. Hence,
in order to interchange differentiation and expectation when deriving the
gradient representation (8), uniform integrability of the difference quotients
is required. In view of the mean-value theorem and the de la Vallée-Poussin
criterion for uniform integrability, this problem can be reduced to bounding
the Ll(Ω, P )-norm of ∥yu∥∞,0,T uniformly in u ∈ U . The following lemma
explains how to derive suitable bounds for a simplified equation (to avoid
unnecessary technicalities).

Lemma 4.2. Suppose m1 = 1, z0 : U → Rn1 is bounded, f : Rn1 → Rn1×n1 is
bounded and Lipschitz continuous and that the Rn1-valued process zu solves

zut = z0(u) +

∫ t

0
f(ξus )z

u
s dws, 0 ≤ t ≤ T,

(in the sense of Young integration). Then, there is a constant C independent
of u and (the realization of) w such that

∥zu∥p,0,T ≤ 2|z0(u)|eC(T p+|w|pp,0,T ).

Proof. Fix L ≥ 0 sufficiently large such that f is bounded by L and L is
a Lipschitz constant for f . By the Young-Love inequality in the form of
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Lemma 3.7, there is a universal constant Cp such that for every 0 ≤ s ≤ t ≤
T ,

|zu|p,s,t ≤ Cp∥f(ξu· )zu· ∥p,s,t|w|p,s,t.
In view of Lemma 3.5,

∥f(ξu· )zu· ∥p,s,t ≤ 2∥f(ξu· )∥p,s,t∥zu· ∥p,s,t ≤ 2L(1 + |ξu|p,s,t)(|zus |+ |zu|p,s,t).

Hence,
|zu|p,s,t ≤ 2LCp(1 + |ξu|p,s,t)(|zus |+ |zu|p,s,t)|w|p,s,t. (42)

By (39), there is a constant C1 independent of u and w such that |ξu|p,s,t ≤ 1,
if (t − s) + |w|p,s,t ≤ C1. Let C2 := min{C1, (8LCp)

−1}. Then, if (t − s) +
|w|p,s,t ≤ C2,

|zu|p,s,t ≤ 4LCp(|zus |+ |zu|p,s,t)|w|p,s,t ≤
1

2
(|zus |+ |zu|p,s,t),

i.e., |zu|p,s,t ≤ |zus |. Hence, Gronwall’s inequality (Lemma 3.8) yields

∥zu∥p,0,T ≤ 2|z0(u)|eC(T p+|w|pp,0,T )

for C = 2pC−p
2 .

An important observation of the proof is, that p-variation estimates for
zu depend on the p-variation regularity of ξu via the coefficient f(ξu). The
boundedness assumptions on b and σ allow to control |ξu|p,s,t via Lemma 4.1
and lead to an exponential bound for the p-variation norm of zu in terms
of |w|p,s,t. In view of the exponential moment bound (6), and taking the
boundedness of z0 as a function in u into account, we conclude that for
every l ≥ 1

sup
u∈U

E[∥zu∥l∞,0,T ] <∞.

With a little extra effort (but essentially the same argument), the same type
of estimate can be obtained for yu in place zu.

Having the results on the differentiability of ξu in the parameter at hand,
one can proceed to study the second subsystem of (4) given by

xut = x0(u) +

∫ t

0
b̂(r, ξur , x

u
r , u) dr +

m2∑
j=1

∫ t

0
σ̂j(r, ξur , x

u
r , u) d

−Bj
r ,

where the forward integrals coincide with Itô integrals by Theorem 3.9. Ex-
istence and uniqueness are standard results under the Lipschitz conditions
implied by (B1)–(B3), see, e.g., Chapter 1.6 in [49]. Differentiability of SDEs
with respect to a parameter is also classical in the semimartingale case, see,
e.g., Theorem 39 in [42]. For the particular SDE satisfied by xu some tech-
nicalities related the coupling of ξu into the equation must be taken into
account, but the proofs follow routine argument. Of course, in contrast to
Young integration, Itô’s stochastic calculus is tailor-made for obtaining the
required Ll(Ω, P )-bounds via the Burkholder-Davis-Gundy inequality.
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4.2 On the proof of Theorem 2.5

In this section, we sketch the proof of Theorem 2.5. We first discuss exis-
tence and uniqueness of the matrix-valued homogeneous equations (9)–(10).
Given the specific form of these equations, it is straightforward to check that
solution processes need to be of the form

Φs0
t =

(
ϕs0t 0

ϕ̃s0t ϕ̂s0t

)
, Ψs0

t =

(
ψs0
t 0

ψ̃s0
t ψ̂s0

t

)
,

for every t ∈ [s0, T ]. Here, the ‘component’ processes solve the lower-
dimensional matrix-valued SDEs

ϕs0t = In1 +

∫ t

s0

buξ (r)ϕ
s0
r dr +

m∑
j=1

∫ t

s0

σu,jξ (r)ϕs0r d−wj
r

ϕ̂s0t = In2 +

∫ t

s0

b̂ux(r)ϕ̂
s0
r dr +

m2∑
j=1

∫ t

s0

σ̂u,jx (r)ϕ̂ur d
−Bj

r

ϕ̃s0t =

∫ t

s0

b̂ux(r)ϕ̃
s0
r + b̂uξ (r)ϕ

s0
r dr +

m2∑
j=1

∫ t

s0

σ̂u,jx (r)ϕ̃s0r + σ̂u,jξ (r)ϕs0r d
−Bj

r

and,

ψs0
t = In1 −

∫ t

s0

ψs0
r b

u
ξ (r) dr −

m∑
j=1

∫ t

s0

ψs0
r σ

u,j
ξ (r) d−wj

r

ψ̂s0
t = In2 −

∫ t

s0

ψ̂s0
r

b̂ux(r)− m2∑
j=1

σ̂u,jx (r)2

 dr −
m2∑
j=1

∫ t

s0

ψ̂s0
r σ̂

u,j
x (r) d−Bj

r ,

ψ̃s0
t = −

∫ t

s0

ψ̃s0
r b

u
ξ (r) + ψ̂s0

r

b̂uξ (r)− m2∑
j=1

σ̂u,jx (r)σ̂u,jξ (r)

 dr
−

m1∑
j=1

∫ t

s0

ψ̃s0
r σ

u,j
ξ (r) d−wj

r −
m2∑
j=1

∫ t

s0

ψ̂s0
r σ̂

u,j
ξ (r)d−Bj

r

respectively. By Theorem 3.9, the first equation of each of the systems
is pathwise a Young differential equation driven by the p-variation process
w, for which existence and uniqueness can be reduced to Proposition 2.2
in [10]. A bound of the form C exp{C|w|pp,0,T } for the p-variation norm
of the solutions can be derived by the techniques explained in Lemma 4.2,
which, in view of the exponential moment bound (6), implies that ϕs0 , ψs0 ∈
Ll
F(Ω, C

p,0[s0, T ],Rn1×n1). The second and the third equation in the system
for Φs0 and the second equation in the system vor Ψs0 are linear matrix-
valued SDEs driven by a Brownian motion in the sense of Itô integration
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(applying Theorem 3.9, again). Existence, uniqueness and Ll-integrability
are classical for these equations, see, e.g., Chapter 1.6 in [49]. Thus, the
most interesting equation is the one for ψ̃s0 , which features a linear term in
ψ̃s0 inside the forward integral w.r.t. to the p-variation process w and an
inhomogeneity in terms of the forward integral w.r.t to the Brownian motion
B. A formal application of the variation-of-constants formula provides the
candidate solution

ψ̃s0
t :=

[
−
∫ t

s0

ψ̂s0
r

b̂uξ (r)− m2∑
j=1

σ̂u,jx (r)σ̂u,jξ (r)

 (ψs0
r )−1 dr

−
m2∑
j=1

∫ t

s0

ψ̂s0
r σ̂

u,j
ξ (r)(ψs0

r )−1 dBj
r

]
ψs0
t =: Xtψ

s0
t .

Now, the integration-by-parts formula in Theorem 3.10 yields

Xtψ
s0
t = −

∫ t

s0

ψ̂s0
r

b̂uξ (r)− m2∑
j=1

σ̂u,jx (r)σ̂u,jξ (r)

+ (Xrψ
s0
r )buξ (r)

 dr

−
m∑
j=1

∫ t

s0

(Xrψ
s0
r )σu,jξ (r) d−wj

r −
m2∑
j=1

∫ t

s0

ψ̂s0
r σ̂

u,j
ξ (r) dBj

r ,

i.e, ψ̃s0 = Xψs0 is a solution to the last SDE in the Ψs0-system. Note that
ψs0 is indeed invertible and ϕs0 = (ψs0)−1, which can again be verified by
integration-by-parts. The Ll-integrability of ψ̃s0 is a simple consequence of
Hölder’s inequality, the Burkholder-Davis-Gundy inequality and the already
established integrability properties of ψ̂s0 , ψs0 , and ϕs0 . Uniqueness can be
derived by computing ψ̃s0ϕs0 in the same way (where ψ̃s0 is an arbitrary
solution to the last SDE in the Ψs0-system) and using once more that ϕs0 =
(ψs0)−1.

With existence, uniqueness, and the required integrability properties of
Φs0 and Ψs0 at hand, a direct computation, using Theorem 3.10 once more,
shows Ψs0Φs0 = In1+n2 , i.e., Φ

s0 and Ψs0 are the inverses to each other.
Write Φ = Φ0 and define

Yt :=

(
Dξ0(u)
Dx0(u)

)
+

∫ t

0
(Φr)

−1

(buu(r)
b̂uu(r)

)
−

m2∑
j=1

(
0

σ̂u,jx (r)σ̂u,ju (r)

) dr
+

m1∑
j=1

∫ t

0
(Φr)

−1

(
σu,ju (r)

0

)
d−wj

r +

m2∑
j=1

∫ t

0
(Φr)

−1

(
0

σ̂u,ju (r)

)
d−Bj

r .

Then, a final application of the integration-by-parts formula verifies that
Yu
t = ΦtYt solves (7).
Note that this argument also implies existence of a solution for (7).

Uniqueness can be derived in the same way, by computing Ψ0
tYu

t for some
arbitrary solution Yu

t to (7).
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4.3 On the proof of Theorem 2.6

Before we derive the adjoint equation for (Λt)t∈[0,T ], we first prove the gra-
dient representation (12).

Lemma 4.3. The gradient of the cost functional J admits the representa-
tion (12).

Proof. Inserting (11) into (8), and taking Remark 3.11 into account, we get

∇J(u) = E

[ M∑
µ=1

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµ

(
Dξ0(u)
Dx0(u)

)

+
M∑
µ=1

∫ Tµ

0
E[gµ(X u

Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

·
[(

buu(r)

b̂uu(r)

)
−

m2∑
j=1

(
0

σ̂u,jx (r)σ̂u,ju (r)

)]
dr

+
M∑
µ=1

m1∑
j=1

∫ Tµ

0
E[gµ(X u

Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
σu,ju (r)

0

)
d−wj

r

+

M∑
µ=1

m2∑
j=1

∫ Tµ

0
E[gµ(X u

Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
0

σ̂u,ju (r)

)
d−Bj

r

]
.

Interchanging summation and integration we, then, obtain

∇J(u) = E

[ M∑
µ=1

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµ

(
Dξ0(u)
Dx0(u)

)

+

∫ T

0

∑
µ;Tµ≥r

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

·
[(

buu(r)

b̂uu(r)

)
−

m2∑
j=1

(
0

σ̂u,jx (r)σ̂u,ju (r)

)]
dr

+

m1∑
j=1

∫ T

0

∑
µ;Tµ≥r

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
σu,ju (r)

0

)
d−wj

r

+

m2∑
j=1

∫ T

0

∑
µ;Tµ≥r

E[gµ(X u
Tµ
)]⊤g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
0

σ̂u,ju (r)

)
d−Bj

r

]
.

Substituting the definition (13) of Λ into this expression, finally yields (12).

Proof of Theorem 2.6. Integrability of Λ is inherited from Φ and Ψ. Recall
that Φ−1

t = Ψt by Theorem 2.5. Inserting the expression (10) for Ψt −ΨTµ
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into the definition of Λ and interchanging summation and integration again,
we obtain, thanks to Remark 3.11,

Λt =
∑
Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
t

=
∑
Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµ(Φ

−1
Tµ

+Ψt −ΨTµ)

=
∑
Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
) +

∫ T

t

∑
Tµ≥r

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

·

(buξ (r) 0

b̂uξ (r) b̂ux(r)

)
−

m2∑
j=1

(
0 0

σ̂uξ (r) σ̂u,jx (r)

)2
 dr

+

m1∑
j=1

∫ T

t

∑
Tµ≥r

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
σu,jξ (r) 0

0 0

)
d−wj

r

+

m2∑
j=1

∫ T

t

∑
Tµ≥r

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)ΦTµΦ

−1
r

(
0 0

σ̂u,jξ (r) σ̂u,jx (r)

)
d−Bj

r .

Recalling the definition of Λr, the proof is finished.

4.4 On the proof of Theorem 2.8

As in Subsection 4.1, we will put emphasis on the techniques of proof for the
Young SDEs. The key difficulty is to control the dependence of the constants
on the driving path w in order to come up with Ll(Ω, P )-estimates. For the
sake of illustration, we consider the following simplified variant of the linear
equation for yu in (41):

zut = z0(u) +

∫ t

0
f(ξus )z

u
s dws, 0 ≤ t ≤ T, (43)

under the assumptions of Lemma 4.2. Given a partition ΠE = (ti)i=0,...,n of
[0, T ], we consider the Euler scheme

zn,ut = zn,uti
+ f(ξuti)z

n,u
ti

(wt − wti), t ∈ (ti, ti+1], zn,u0 = z0(u). (44)

Note that the Euler scheme actually should depend on the Euler approxi-
mation ξn,u for ξu via the coefficient f(ξn,uti

), leading to an extra error term,
but the scheme in (44) already contains all essential difficulties, including
the dependence of the coefficient on the path of ξu in (43).

Theorem 4.4. Under the standing assumptions and the assumptions specified
in Lemma 4.2, there is a constant C independent of ΠE = (ti)i=0,...,n, u, and
(the realization of) w such that

∥zu − zn,u∥p,0,T ≤
(

max
i=0,...,n−1

|ti+1 − ti|+ |w|p,ti,ti+1

)2−p
CeC|w|pp,0,T .
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In view of the exponential moment bound (6), Theorem 4.4 and Hölder’s
inequality imply existence of a constant Cz,l such that

E[∥zu − zn,u∥l∞,0,T ]
1/l ≤ Cz,l(δ2l(Π

E))2−p

for every l ≥ 1 (cp. Theorem 2.8), where δl is defined in (22).
The exponential bound on |w|pp,0,T in Theorem 4.4 suggests an appli-

cation of Gronwall’s lemma. However, Lemma 3.8 is not well-suited for
the Euler approximation. Indeed, for ti < s < t < ti+1 any estimate for
|zu − zn,u|p,s,t will depend on zn,uti

(where ti is outside the interval [s, t]),
while Lemma 3.8 requires an estimate in terms of |zus − zn,us |. The following
variant of Gronwall’s lemma is tailor-made to deal with such a situation and
will be applied in the proof of Theorem 4.4.

Lemma 4.5 (Gronwall type lemma on the Euler partition).
Let ΠE = (ti)i=0,...,n be a partition of [0, T ] and let x ∈ W p([0, T ],Rn×d),
where p ∈ (1, 2). Furthermore let w : [0, T ] → Rm (m = d or m = 1) be
a continuous function of finite p-variation, K1, a > 0 be constants. If for
every ti ∈ ΠE, i ∈ {0, . . . , n− 1}, we have

|x|p,ti,ti+1 ≤ a(K1 + |xti |)(|ti+1 − ti|+ |w|p,ti,ti+1), (45)

and if there exists a constant K2 ≤ 1
a such that for every tl, tk ∈ ΠE with

0 ≤ tl < tl+1 < tk ≤ T

|tk − tl|+ |w|p,tl,tk ≤ K2 ⇒ |x|p,tl,tk ≤ K1 + |xtl |, (46)

then

|x|p,0,T ≤ 1

2
(K1 + |x0|)

(
2pK−p

2

(
T p + |w|pp,0,T

)
+ 1
)

· exp
(
2p3K−p

2

(
T p + |w|pp,0,T

)
+ 2
)
.

Compared to Lemma 3.8, the estimate (46) only needs to hold for in-
tervals whose boundary points are from the Euler partition ΠE, while the
corresponding estimate (28) in Lemma 3.8 must be verified for all subin-
tervals [s, t] ⊂ [0, T ]. The price to pay is the extra condition (45) on the
p-variation of x on the small subintervals [ti, ti+1].

For the proof, we first need to introduce some notation. Write Πg =
(τi)i=0,...,N for the greedy sequence defined via (32) with µ = K2. As the
points in the greedy sequence, in general, are not included in the Euler
partition ΠE, we will approximate them by neighboring points in the Euler
partition. This leads to the subpartition Πc of ΠE consisting of the time
points t ∈ ΠE satisfying

∃τ ∈ Πg such that t = tn(τ) or t = tn(τ),
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where

n : [0, T ] → N, s 7→ min{i ∈ {0, . . . , n}| ti ∈ ΠE and ti ≥ s}
n : [0, T ] → N, s 7→ max{i ∈ {0, . . . , n}| ti ∈ ΠE and ti ≤ s}.

Generic points in Πc will be denoted by θj (with the convention θj < θj+1).
The construction of Πc is illustrated in Figure 1.

Figure 1: Graphical illustration of the construction of the partition Πc.

We mention the following properties of Πc:

i) If τ = t for a τ ∈ Πg and t ∈ ΠE, then there exists θ ∈ Πc such that
θ = t = tn(τ) = tn(τ).

ii) There can be multiple partition points τ ∈ ΠE such that θj = tn(τ)
and θj+1 = tn(τ), e.g. τ1, τ2 in Figure 1.

In the situation of ii), let τj−1 < θi ≤ τj < · · · < τj+m ≤ θi+1 < τj+m+1

Then, m = N(θi, θi+1), where N(s, t) has been defined right before (33).
Moreover, by Lemma 3.6 and the defining property (32) of the greedy se-
quence,

|θi+1 − θi|+ |w|p,θi,θi+1

≤ |τj+m+1 − τj−1|+ |w|p,τj−1,τj+m+1

≤
m+1∑
i=0

|τj+i − τj−1+i|+

(
(m+ 2)p−1

m+1∑
i=0

|w|pp,τj−1+i,τj+i

) 1
p

≤
m+1∑
i=0

|τj+i − τj−1+i|+ (m+ 2)
1− 1

p

m+1∑
i=0

|w|p,τj−1+i,τj+i

≤ (N(θi, θi+1) + 2)
1− 1

p

N(θi,θi+1)+1∑
i=0

(|τj+i − τj−1+i|+ |w|p,τj−1+i,τj+i)

≤ (N(θi, θi+1) + 2)
2− 1

pK2. (47)

Concerning Πc, we also introduce the notation

N : [0, T ] → N, s 7→ min{i ∈ N0| θi ∈ Πc and θi ≥ s}
N : [0, T ] → N, s 7→ max{i ∈ N0| θi ∈ Πc and θi ≤ s}

We also define N (s, t) := N (t) − N (s). Then, by construction N (s, t) ≤
2N(s, t) + 1 for all (s, t) ∈ ∆([0, T ]).
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We note that an alternative way to transfer the greedy sequence tech-
nique to partitions has been recently suggested by [11], which can be used
to bound the discrete-time p-variation norm (i.e., for functions restricted to
the grid only) of solutions to stochastic difference equations.

Proof of Lemma 4.5. Recall that the greedy sequence is constructed for the
constant µ = K2. The number of subintervals defined by the partitions Πg

and Πc is denoted by N = N(0, T ) and N = N (0, T ) respectively.
We consider the p-variation of x on the subintervals [θi, θi+1] of the par-

tition Πc for i ∈ {0, . . . ,N − 1}, and distinguish the following cases.
Case 1 : There exists τl ∈ Πg and i ∈ {0, . . . ,N −1} such that θi = tn(τl)

and θi+1 = tn(τl) (e.g. [θ1, θ2], [θ3, θ4] in figure 1). By construction it follows
that there exists j ∈ {0, . . . , n} such that θi = tj and θi+1 = tj+1. We
estimate using (45), (47), and aK2 ≤ 1,

|x|p,θi,θi+1
≤ a(K1 + |xθi |)(|θi+1 − θi|+ |w|p,θi,θi+1

)

≤ (K1 + |xθi |)(N(θi, θi+1) + 2)
2− 1

p . (48)

Case 2 : There exists τj , τj+1 ∈ Πg and i ∈ {0, . . . ,N − 1} such that
θi = tn(τj) and θi+1 = tn(τj+1) (e.g. [θi, θi+1] for i ∈ {0, 2, 4} in Figure 1).

Then there exists a finite number k− l = m ≥ 1 of subintervals of ΠE in the
interval [θi, θi+1]. Let θi = tl < tl+1 < · · · < tl+m = tk = θi+1, if m = 1 we
have by (45)

|x|p,θi,θi+1
= |x|p,tl,tl+1

≤ a(K1 + |xtl |)(|tl+1 − tl|+ |w|p,tl,tl+1
).

By assumption on the form of [θi, θi+1], we have

|tl+1 − tl|+ |w|p,tl,tl+1
≤ |τj+1 − τj |+ |w|p,τj ,τj+1 ≤ K2 ≤

1

a
,

which yields
|x|p,θi,θi+1

= |x|p,tl,tl+1
≤ K1 + |xθi |. (49)

Now let m ≥ 2, since

|tk − tl|+ |w|p,tl,tk ≤ K2,

we have by (46) that

|x|p,θi,θi+1
= |x|p,tl,tk ≤ K1 + |xtl | = K1 + |xθi |. (50)

Summarizing, by taking (48), (49) and (50) into account, we have

|x|p,θi,θi+1
≤ (N(θi, θi+1) + 2)

2− 1
p (K1 + |xθi |) (51)

for every i ∈ {0, . . . ,N − 1}. We show inductively that

|xθi |+K1 ≤ e2(N(0,θi)+N (0,θi))(K1 + |x0|) (52)
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for every i ∈ {0, . . . ,N}, noting that the base case i = 0 is trivial. Now
assume (52) holds for some i ∈ {0, . . . ,N − 1}, then, by (51),

|xθi+1
|+K1 ≤ |xθi |+ |x|p,θi,θi+1

+K1

≤ (|xθi |+K1)((N(θi, θi+1) + 2)
2− 1

p + 1)

Noting that

(x+ 2)
2− 1

p ≤ (x+ 2)
3
2 ≤ 1

2
e2(x+1)

for every x ≥ 0, we obtain

|xθi+1
|+K1 ≤ (|xθi |+K1)e

2(N(θi,θi+1)+1).

Since N (θi, θi+1) = 1, the induction hypothesis yields

|xθi+1
|+K1 ≤ (|x0|+K1)e

2(N(0,θi)+N (0,θi)+N(θi,θi+1)+N (θi,θi+1))

≤ (|x0|+K1)e
2(N(0,θi+1)+N (0,θi+1)),

which completes the proof of (52).
Combining (51) and (52), we have, for 0 ≤ i ≤ N − 1,

|x|p,θi,θi+1
≤ (N(θi, θi+1) + 2)

2− 1
p (K1 + |xθi |)

≤ 1

2
e2(N(θi,θi+1)+1)e2(N(0,θi)+N (0,θi))(K1 + |x0|)

≤ 1

2
e2(N(0,θi+1)+N (0,θi+1))(K1 + |x0|).

These considerations enable us to finish the proof. We have

|x|p,0,T ≤

N (0, T )p−1

N (0,T )−1∑
i=0

|x|pp,θi,θi+1

 1
p

≤ N (0, T )
1− 1

p
1

2
(K1 + |x0|)

N (0,T )−1∑
i=0

e2p(N(0,θi+1)+N (0,θi+1))

 1
p

≤ N (0, T )
1

2
(K1 + |x0|)e2(N(0,T )+N (0,T )).

Now keep in mind that N (0, T ) ≤ 2N(0, T ) + 1 by construction of Πc. This
implies

|x|p,0,T ≤ (2N(0, T ) + 1)
1

2
(K1 + |x0|)e6N(0,T )+2.

Taking (33) into account, we know that

N(0, T ) ≤ 2p−1K−p
2

(
T p + |w|pp,0,T

)
,
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and we conclude

|x|p,0,T ≤ 1

2
(K1 + |x0|)

(
2pK−p

2

(
T p + |w|pp,0,T

)
+ 1
)

· exp
(
2p3K−p

2

(
T p + |w|pp,0,T

)
+ 2
)
.

We are now in the position to present the proof of Theorem 4.4.

Proof of Theorem 4.4. Step 1: Preliminary estimates and some notation.
We fix u ∈ U and the partition ΠE = (ti)i=0,...,n and choose L ≥ 1 sufficiently
large such that L is a Lipschitz constant for f and an upper bound for
|f | and |ξ0|. Write A := f(ξu), zn := zn,u, and z := zu and let δi :=
|ti+1 − ti|+ |w|p,ti,ti+1 and δ := maxi=0,...,n−1 δi.

We first derive bounds for the p-variation seminorm of A and Az. By
Lemma 3.5, |A|p,s,t ≤ L|ξ|p,s,t for every 0 ≤ s ≤ t ≤ T . Hence, by (39),
there is a constant C1 > 0 (independent of u, ΠE, and w) such that

(t− s) + |w|p,s,t ≤ C1 ⇒ |A|p,s,t ≤ L. (53)

Moreover, by Lemma 4.1 and (40),

|A|p,ti,ti+1 ≤ L

2C1
(1 + L+ 2p−1C−p

1 (T p + |w|pp,0,T )δi

Similarly, by Lemma 4.2, (40), and (42), there is a constant C2 (independent
of u, ΠE, and w) such that

|z|p,ti,ti+1 ≤ C2(1 + |w|pp,0,T )e
C2(T p+|w|pp,0,T )δi

By Lemma 3.5,

|Az|p,ti,ti+1 ≤ ∥A∥∞,ti,ti+1 |z|p,ti,ti+1 + ∥z∥∞,ti,ti+1 |A|p,ti,ti+1 .

Combining the previous estimates and bounding ∥z∥∞,ti,ti+1 by Lemma 4.2,
we find a constant C ′ (independent of u, ΠE, and w) such that

|Az|p,ti,ti+1 ≤ C ′eC
′|w|pp,0,T δi (54)

for every i = 0, . . . , n− 1. We define

C ′
1 := C ′

1(w) := C ′eC
′|w|pp,0,T

K1 := K1(w) := (Cp + 1)C ′
1(w)(T + |w|p,0,T )p−1δ2−p

K2 =
(
C−1
1 + 4L+ 8CpL

)−1
, (55)

where Cp ≥ 1 is the constant from the Young-Love inequality for q = p.
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Step 2: Verification of (45) for z − zn.
Define ∆t := zt − znt . We fix a grid point ti and let ti ≤ s ≤ t ≤ ti+1. Then,

∆t −∆s =

∫ t

s
Arzr −Aszsdwr + (Aszs −Atizti)(wt − ws)

+Ati(zti − znti)(wt − ws).

Hence, by the Young-Love inequality (25), (54), and (55),

|∆t −∆s| ≤ Cp|Az|p,s,t|w|p,s,t + |Az|p,ti,s|w|p,s,t + L|∆ti ||w|p,s,t
≤ L

(
|∆ti |+ (Cp + 1)|Az|p,ti,ti+1

)
|w|p,s,t

≤ L
(
|∆ti |+ (Cp + 1)C ′

1δ
2−pδp−1

)
(|t− s|+ |w|p,s,t)

≤ L (|∆ti |+K1) (|t− s|+ |w|p,s,t) (56)

noting that L ≥ 1 and δ ≤ (T + |w|p,0,T ). Then, by Lemma 3.3,

|∆|p,ti,ti+1 ≤ L (|∆ti |+K1) (|ti+1 − ti|+ |w|p,ti,ti+1). (57)

Step 3: Estimates for z − zn on the grid.
We now fix tλ, tκ ∈ ΠE such that tλ ≤ tκ. Then,

∆tκ −∆tλ =
κ−1∑
i=λ

∫ ti+1

ti

(Arzr −Atizti)dwr +Ati(zti − znti)(wti+1 − wti).

The first term can be estimated (summand by summand) by the Young-Love
inequality (25), while for the second term the variant of the Love-Young
estimate (26) for Riemann sums (see [14], Corollary 3.87) applies. We, thus,
obtain,

|∆tκ −∆tλ | ≤ Cp

κ−1∑
i=λ

|Az|p,ti,ti+1 |w|p,ti,ti+1 + Cp∥A(z − zn)∥p,tλ,tκ |w|p,tλ,tκ

=: (I) + (II).

For the first term, we note that, by (54) and Lemma 3.6,

(I) ≤ CpC
′
1

κ−1∑
i=λ

(|ti+1 − ti|+ |w|p,ti,ti+1)|w|p,ti,ti+1

≤ CpC
′
1(tκ − tλ)δ + CpC

′
1δ

2−p
κ−1∑
i=λ

|w|pp,ti,ti+1

≤ CpC
′
1(tκ − tλ)δ

2−p (T + |w|p,0,T )p−1 + CpC
′
1δ

2−p|w|p,tλ,tκ |w|
p−1
p,0,T

≤ K1(|tκ − tλ|+ |w|p,tλ,tκ).
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For the second term, Lemma 3.5 yields

(II) ≤ 2Cp∥A∥p,tλ,tκ∥∆∥p,tλ,tκ |w|p,tλ,tκ
≤ 2Cp(L+ |A|p,tλ,tκ)∥∆∥p,tλ,tκ(|tκ − tλ|+ |w|p,tλ,tκ).

Gathering terms, we obtain,

|∆tκ −∆tλ |
≤ (K1 + 2Cp(L+ |A|p,tλ,tκ)∥∆∥p,tλ,tκ) (|tκ − tλ|+ |w|p,tλ,tκ). (58)

Step 4: Verification of (46) for z − zn.
Fix tl, tk ∈ ΠE such that tl < tl+1 < tk and |tk − tl|+ |w|p,tl,tk ≤ K2 for the
constant K2 defined in (55). Let tl ≤ s ≤ t ≤ tk. We distinguish two cases:

a) s, t ∈ [ti, ti+1] for some ti, i.e., s and t are in the same subinterval.

b) s ∈ [tλ−1, tλ) and t ∈ (tκ, tκ+1] for tλ ≤ tκ, i.e., s and t are in different
subintervals.

In case a), we obtain, thanks to (56) and recalling (27),

|∆t −∆s| ≤ L (|∆tl |+ |∆|p,tl,tk +K1) (|t− s|+ |w|p,s,t) (59)

In case b), we decompose

|∆t −∆s| ≤ |∆t −∆tκ |+ |∆tκ −∆tλ |+ |∆tλ −∆s|

Applying (59) to the first and third term and using (58) for the second one,
we get, in view of (53) and since s ≤ tλ ≤ tκ ≤ t,

|∆t −∆s| ≤ 2L (|∆tl |+ |∆|p,tl,tk +K1) (|t− s|+ |w|p,s,t)
+ (K1 + 4CpL∥∆∥p,tl,tk) (|t− s|+ |w|p,s,t).

In view of (59), this estimate is valid for every tl ≤ s ≤ t ≤ tk (and not just
in case b)). Hence, by Lemma 3.3 and the definition K2,

|∆|p,tl,tk ≤ ((2L+ 4CpL)(|∆tl |+ |∆|p,tl,tk) + 3LK1) (|tl − tk|+ |w|p,tl,tk)

≤ 1

2
(|∆|p,tl,tk + |∆tl |+K1).

Thus,
|∆|p,tl,tk ≤ |∆tl |+K1. (60)

Step 5: Application of Gronwall’s lemma for Euler partitions.
By (57) and (60) we may apply Gronwall’s inequality in the form of Lemma 4.5.
Taking into account that ∆0 = z0 − zn0 = 0, we obtain,

∥z − zn∥p,0,T = |z − zn|p,0,T

≤ K1

2

(
2pK−p

2

(
T p + |w|pp,0,T

)
+ 1
)
exp

(
2p3K−p

2

(
T p + |w|pp,0,T

)
+ 2
)
.
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Inserting the definition of K1 and K2, we observe that the right-hand side

can be bounded by δ2−pCeC|w|pp,0,T for some constant C independent of ΠE,
u, and w.

The Euler schemes for the Young SDEs in the first n1 lines of X u and
Yu can be analyzed by the same techniques, which we illustrated in the
proof of Theorem 4.4. Due to the boundedness of the coefficient functions,
the Young SDEs in X u are actually much simpler and do not require the
Gronwall lemma on Euler partitions in the form of Lemma 4.5.

The Euler schemes for the component processes in the last n2 lines of X u

and Yu are driven by a Brownian motion. They can be analyzed by standard
methods (see, e.g., [31]). There is a little extra work, because the coefficients
in the Euler scheme of these equations depend on the Euler approximations
of the Young SDEs. In particular, the error estimates for the Young SDEs
enter the error analysis of the SDEs driven by the Brownian motion. For this
reason, the strong convergence rates deteriorate from 1/2 to min(2−p, 1/2).

We finally turn to the Euler approximation (20) to the adjoint equation.
For fixed tk ∈ ΠE and recalling (18), we define

Φtk,u,n
ti+1

= Φtk,u,n
ti

+ ηn,uti,ti+1
Φtk,u,n
ti

, i > k, Φtk,u,n
tk

= In1+n2 .

A direct computation shows

Λn,u
ti

=
∑

µ;Tµ≥ti

E[gµ(X n,u
Tµ

)]g′µ(X
n,u
Tµ

)Φti,u,n
Tµ

, (61)

while, by the definition of Λu in (13),

Λu
t =

∑
µ;Tµ≥t

E[gµ(X u
Tµ
)]g′µ(X u

Tµ
)Φt,u

Tµ
. (62)

Now, fix s ∈ [0, T ] and let tk be the smallest grid point bigger or equal
to s. Then, Φtk,u,n can be considered as Euler scheme for Φs,u. The same
convergence rates as for the Euler approximation to Yu can be derived by
the same techniques with the constants being independent of s. In view of
(61)–(62), these rates carry over to the approximation of Λu by Λn,u.

5 Case study and numerical experiments

5.1 Monte-Carlo implementation

As demonstrated in Subsection 2.3, we can approximate the cost function
and its gradient with respect to the parameter via Euler schemes. Since
for the calculation of the discretized cost function and the discretized gradi-
ent we need to evaluate expected values, we apply the Monte-Carlo method
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to come up with an implementable scheme. A comprehensive introduc-
tion to Monte-Carlo methods is given by [23]. Using A independent copies
(X n,u,a,Yn,u,a)a=1,...,A of the Euler schemes in (15), (16) restricted to the
discrete-time grid ΠE , we can approximate the discretized cost function and
the discretized gradient by the Monte-Carlo estimators

Jn,A(u) =
1

2

M∑
µ=1

(
1

A

A∑
a=1

gµ(X n,u,a
Tµ

)

)2

(∇J)n,A(u) =
M∑
µ=1

(
1

A

A∑
a=1

gµ(X n,u,a
Tµ

)

)(
1

A

A∑
a=1

g′µ(X
n,u,a
Tµ

)Yn,u,a
Tµ

)
. (63)

Using the central limit theorem, it is well established that the corresponding
approximation error behaves asymptotically like O(A− 1

2 ), see [23].
Accordingly, we will replace the expectations by the sample mean in the

Euler scheme for the adjoint equation, leading to the backward recursion

Λn,u,a
ti

= Λn,u,a
ti+1

+ Λn,u,a
ti+1

ηn,u,ati,ti+1
+

∑
µ;Tµ=ti

(
1

A

A∑
α=1

gµ(X n,u,α
ti

)

)
g′µ(X

n,u,a
ti

),

initialized at

Λn,u,a
tn =

∑
µ;Tµ=T

(
1

A

A∑
α=1

gµ(X n,u,α
T )

)
g′µ(X

n,u,a
T ),

where

ηn,u,ati,ti+1
=

(
bξ(ti, ξ

n,u,a
ti

, u) 0

b̂ξ(ti, ξ
n,u,a
ti

, xn,u,ati
, u) b̂x(ti, ξ

n,u,a
ti

, xn,u,ati
, u)

)
(ti+1 − ti)

+

m1∑
j=1

(
σjξ(ti, ξ

n,u,a
ti

, u) 0

0 0

)
(wj,a

ti+1
− wj,a

ti
)

+

m2∑
j=1

(
0 0

σ̂jξ(ti, ξ
n,u,a
ti

, xn,u,ati
, u) σ̂jx(ti, ξ

n,u,a
ti

, xn,u,ati
, u)

)
(Bj,a

ti+1
−Bj,a

ti
).

Note that the realizations (Λn,u,a)a=1,...,A are not independent due to the
presence of the sample means.

The following proposition is the analogue of Theorem 2.11 in the Monte-
Carlo setup. Its proof remains unchanged except replacing the mean by the
sample mean in the last step of the proof.

Proposition 5.1. For every u ∈ U , we have

(∇J)n,A(u) = 1

A

A∑
a=1

(
Λn,u,a
t0

DX u
0 +

n−1∑
i=0

Λn,u,a
ti+1

ηn,u,ati,ti+1

)
. (64)
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This proposition states, that we get exactly the same result when real-
izing the Monte-Carlo paths and calculating the gradient via the discrete
sensitivity equation (63) or the adjoint method (64). Since we are now
able to approximate the value of the cost function, as well as its gradient
with respect to the parameter (using two different methods), we can apply
smooth gradient-based optimization algorithms to find the minimum of the
cost function. As already mentioned, the adjoint method has the advantage
that instead of (n1+n2) · d forward solves of the recursion for Yn,u, we only
have to perform n1 + n2 backward solves. Hence, the computational cost
of a gradient evaluation does not depend on the number of parameters in
the adjoint approach. In particular, in the case of time-dependent param-
eters this reduces the numerical effort substantially in comparison to the
sensitivity method.

5.2 Case study: Calibrating a fractional Heston-type model

In this subsection, we illustrate how the results from the previous sections
can be applied to calibrate a financial model with a volatility process driven
by process of finite p-variation for p ∈ (1, 2). There are several models which
incorporate the long memory phenomenon of volatility, by using a fractional
Brownian motion with Hurst parameter H ∈ (0.5, 1) as driving process for
the volatility, see, e.g., [8, 7, 3, 36, 33]. We choose a fractional version of the
Cox-Ingersoll-Ross (CIR) process given by

vt = v0 +

∫ t

0
κ(θ − vr) dr +

∫ t

0
ζ
√
vr dB

H
r ,

where BH is a fractional Brownian motion with Hurst parameter H ∈
(0.5, 1). It has been shown in [33] and [36] that this equation has a unique
positive solution, when the integral

∫ t
0 ζ

√
vr dB

H
r is interpreted as a path-

wise Young integral. Furthermore in [33], the authors show that the process
vt is mean reverting to the parameter θ, hence the parameters can be in-
terpreted similarly to the standard CIR model. Another feature, which we
want to incorporate, is the correlation between the volatility process and
the asset price process. To this end, fix T > 0 and let (Ω,F , P ) be a proba-
bility space carrying a two-sided Brownian motion (B1

t )t∈R and a Brownian
motion (B2

t )t∈[0,T ] independent of B
1. Then, a fractional Brownian motion

BH
t with Hurst parameter H ∈ (0.5, 1), can be constructed via the following

integral transformation of B1, see [34]:

BH
t = CH

(∫ t

0
(t− u)H− 1

2 dB1
u +

∫ 0

−∞
(t− u)H− 1

2 − (−u)H− 1
2 dB1

u

)
,

where

CH =

√
2HΓ(32 −H)

Γ(H + 1
2)Γ(2− 2H)

.
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By defining Bt = ρB1
t +
√
1− ρ2B2

t , we obtain a standard Brownian motion
Bt, which is correlated with B1 via Corr(Bt, B

1
t ) = ρ for all t ∈ [0, T ]. We

write F for the augmentation of the filtration generated by (BH
t , Bt)t∈[0,T ].

Note that ρ is not the correlation between BH and the Brownian motion
driving the asset price process B, but between B and the Brownian motion
B1 from which BH has been constructed. This way we generate the desired
correlation between the volatility process v and the asset price S in the
following model, in a similar way as in [36]:

vt = v0 +

∫ t

0
κ(θ − vs) ds+

∫ t

0
ζ
√
vs dB

H
s

St = S0 +

∫ t

0
(r − d)Ss ds+

∫ t

0

√
vsSs d(ρB

1
s +

√
1− ρ2B2

s ). (65)

Here the spot price S0, the riskless rate r and the dividend yield d are given.
We assume the market we are trading in, only consist of the asset S and a
riskless bond e−rt for t ∈ [0, T ].

We aim at calibrating the model with respect to the parameters u =
(v0, κ, θ, ζ, ρ) to a set of market observed European call option prices. In or-
der to apply the results derived in the theoretical part, we have to smoothen
the coefficient functions of the SDE system (65). We basically follow the
approach in [29], when using a piecewise polynomial error function π1 to
smoothen out the positive part π(x) := (x)+ := max(x, 0) at 0 and a sim-
ilar construction for the function π2 which smoothens out the square root
function at 0. These functions are given by

π1(x) =


0, x < −ε1
− 1

16(ε1)3
x4 + 3

8ε1
x2 + 1

2x+ 3ε1
16 , −ε1 ≤ x ≤ ε1

x, x > ε1

for x ∈ R and an error parameter ε1 > 0 which we choose to be 0.01 for all
calculations. The second function is given by

π2(x) =


0, x < −ε2
− 1

256ε6,52

(−15x7 + 7ε2x
6 + 65ε22x

5 − 33ε32x
4

−117ε42x
3 + 77ε52x

2 + 195ε62x+ 77ε72), −ε2 ≤ x ≤ ε2√
x, x > ε2

for x ∈ R and an error parameter ε2 > 0 which we choose to be 0.001 for all
calculations. To achieve boundedness of these two functions, we theoretically
compose them with a smooth truncation function. Choosing the truncation
level sufficiently large, this truncation can be ignored in practice, since vt
is mean reverting and for a moderate time horizon we do not expect the
log-price of the asset in our model to explode along typical realizations.
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This reasoning is justified by our numerical findings. The dynamics of the
adjusted fractional Heston-type model are, then, given by

vt = v0 +

∫ t

0
κ(θ − π1(vs)) ds+

∫ t

0
ζπ2(vs) dB

H
s

St = S0 +

∫ t

0
(r − d)Ss ds+

∫ t

0
π2(vs)Ss d(ρB

1
s +

√
1− ρ2B2

s ) (66)

and after a log-transformation Ŝt = log(St) in the asset equation, this yields

vt = v0 +

∫ t

0
κ(θ − π1(vs)) ds+

∫ t

0
ζπ2(vs) dB

H
s

Ŝt = Ŝ0 +

∫ t

0
(r − d)− 1

2
π2(vs)

2 ds+

∫ t

0
π2(vs) d(ρB

1
s +

√
1− ρ2B2

s ).

Note that under these adjustments (the truncated version of) π2(vr) is
bounded and hence the SDE (66) has the explicit solution

St = S0e
((r−d)t− 1

2

∫ t
0 π2(vs)2 ds+

∫ t
0 π2(vs) dBs).

The dividend-adjusted discounted price process e−(r−d)tSt is then a martin-
gale with respect to P and the price for a call option with maturity Tµ and
strike Kµ at time 0 in this model (taking P as pricing measure) is given by

e−rTµE

[(
e
Ŝu
Tµ −Kµ

)
+

]
by the risk-neutral pricing formula. We approximate this value by

Cmod
µ (u) = e−rTµE

[
π1

(
e
Ŝu
Tµ −Kµ

)]
and the cost function, thus, translates to

J(u) =
1

2

M∑
µ=1

E

[
gµ

(
vuTµ

Ŝu
Tµ

)]2
=

1

2

M∑
µ=1

(
Cmod
µ (u)− Cobs

µ

)2
,

where gµ(x1, x2) = e−rTµπ1(e
x2−Kµ)−Cobs

µ and Cobs
µ is the observed market

price for a call option with maturity Tµ struck at Kµ. As parameter set for
the calibration problem, we choose

U := {(v0, κ, θ, ζ, ρ) ∈ R5| v0 ∈ (0.0001, 1), κ ∈ (0.0001, 2), θ ∈ (0.0001, 2),

ζ ∈ (0.0001, 4) ρ ∈ (−0.99, 0.99)}

Note that a fractional Brownian motion with Hurst parameter H > 1
2

has Hölder continuous paths with Hölder index H ′ for every 1/2 < H ′ < H,
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H v0 κ θ ζ ρ
µ Sd µ Sd µ Sd µ Sd µ Sd

0.5 0.072 0.0030 0.809 0.0990 0.071 0.0022 0.438 0.0428 -0.657 0.0208
0.55 0.070 0.0016 0.838 0.0662 0.054 0.0008 0.413 0.0365 -0.657 0.0115
0.6 0.070 0.0018 0.971 0.1197 0.045 0.0013 0.424 0.0400 -0.667 0.0156
0.65 0.070 0.0017 1.030 0.0733 0.042 0.0016 0.409 0.0287 -0.690 0.0155
0.7 0.069 0.0018 1.055 0.0669 0.043 0.0018 0.383 0.0221 -0.724 0.0189
0.75 0.069 0.0016 1.085 0.0609 0.043 0.0012 0.362 0.0182 -0.759 0.0152
0.8 0.067 0.0011 1.163 0.0920 0.045 0.0012 0.360 0.0164 -0.822 0.0235
0.85 0.067 0.0014 1.327 0.1149 0.047 0.0010 0.369 0.0208 -0.925 0.0233
0.9 0.065 0.0012 1.199 0.0651 0.046 0.0004 0.354 0.0141 -0.990 0.0001
0.95 0.066 0.0011 1.076 0.0537 0.039 0.0005 0.368 0.0168 -0.990 0.0000

Table 1: Calibrated parameters for different values of H ∈ (12 , 1).

see, e.g., [41], p.274. Hence, in view of Remark 2.2, it satisfies assump-
tion (W ) for every p ∈ (1/H, 2). Moreover, the Hölder assumption in Re-
mark 2.9 can be verified for every Hölder index H ′ < H. Finally, the as-
sumptions (H1), (H2), (H3), (B1), (B2), (B3), (E1), (E2), (G) are also fulfilled
(taking the choice of U into account).

We calibrate the model to market prices for call options on the EU-
ROSTOXX 50 as of October 7th, 2003. The data set is reported in [45] and
consists of the prices for 144 call options (in total) with six different matu-
rities 0.0361, 0.2000, 1.1944, 2.1916, 4.2056, 5.1639 (in years). We exclude
the call option data for the strikes 2499.76 and 4990.91 in order to remove
static arbitrage opportunities from the data set. After this modification of
the data set, it still consists of 136 call option prices. Following [45], we set
S0 = 2461.44, r = 0.03, and d = 0.

For the numerical calibration, we minimize the Monte-Carlo estimate
Jn,A of the discretized cost functional using the Matlab fmincon function
with the trust region reflective algorithm and a function tolerance of 10−6

feeding in the gradient approximation (∇J)n,A which is computed via the
adjoint representation in Proposition 5.1. We initialize the parameter values
at

v0 = 0.1, κ = 1, θ = 0.05 , ζ = 0.3, ρ = −0.7

and first run the calibration with 10, 000 Monte Carlo samples and a time
grid which divides the time between each of the neighboring maturities into
40 subintervals (leading to n = 240 and a mesh size of 0.0504). The re-
sulting parameters are stored and taken as input for a second optimiza-
tion stage with 100, 000 Monte Carlo samples and a time-grid consisting
of 480 subintervals, halving each of the 240 intervals of the first stage.
The empirical mean and the empirical standard deviation of the parame-
ters found in the second stage over 25 independent repetitions of the algo-
rithm are reported in Table 5.2 for various choices of the Hurst parameter
H ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.
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H AvgErr (sample mean) AvgErr (emp. standard dev.) Avg runtime in sec

0.5 8.788 · 10−4 7.229 · 10−6 973.30
0.55 6.913 · 10−4 7.014 · 10−6 654.87
0.6 6.890 · 10−4 7.628 · 10−6 553.73
0.65 6.577 · 10−4 7.598 · 10−6 453.74
0.7 6.987 · 10−4 7.501 · 10−6 390.58
0.75 8.059 · 10−4 7.659 · 10−6 374.23
0.8 8.821 · 10−4 6.467 · 10−6 422.38
0.85 9.869 · 10−4 6.725 · 10−6 538.93
0.9 2.156 · 10−3 9.565 · 10−6 541.30
0.95 3.276 · 10−3 7.675 · 10−6 977.54

Table 2: Summary statistics for the calibration results.

In order to evaluate the fit of the calibration procedure, we simulate,
for each choice of the Hurst parameter H, a new independent Monte Carlo
sample of size 100.000 and compute the Monte Carlo estimator Ĉmod

µ (u∗) for

the model price Cmod
µ (u∗) along the finer time grid, where u∗ is the optimal

parameter vector found in the calibration routine (see Table 5.2). Table 5.2
contains some summary statistics for the estimated average error avgErr =

1
136S0

∑136
µ=1 |Ĉmod

µ (u∗)−Cobs
µ | over the 136 option prices. Precisely, we report

the sample mean and the empirical standard deviation of avgErr over 100
independent repetitions as well as the run time for the calibration step (in
dependence of the Hurst parameter). Our results suggest that the best fit
to the data can be achieved by adding a moderate long-range dependence
into the stochastic volatility process corresponding to a Hurst parameter of
about H = 0.65.

The option price function of the calibrated model with Hurst parameter
H = 0.65 is plotted in Figure 2 for the six maturities, for which price data
is available (marked by ‘x’). The figure illustrates the excellent fit of the
calibrated model across all maturities and strikes.

5.3 Additional numerical experiments

We finally perform some numerical experiments in order to illustrate the
rates of convergence derived in Theorem 2.8 and Remark 2.9 and the com-
putational benefit from simulating the gradient of the cost functional via
the adjoint equation Λu as compared to the sensitivity equation Yu.

Note that, in the fractional Brownian motion case, by (23) and Re-
mark 2.9, for every H ′ < H

E[|(∇J)n,A(u)− (∇J)(u)|] = O
(
A− 1

2 + |ΠE |(2H′−1)∧ 1
2

)
.

In the experiment below, we fix the sample size as A = 100, 000, but refine
the time partition by decomposing the time between two maturities into 2i

subintervals for i = 4, . . . , 9, leading to a partition into ni = 6·2i subintervals
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Figure 2: Call price function of the calibrated model (H = 0.65) and ob-
served option prices (marked by ‘x’).
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in total. This corresponds to a mesh size of 0.126 · 2−(i−4). Note that, by
the triangle inequality,

E
[∣∣(∇J)ni,A(u)− (∇J)ni−1,A(u)

∣∣] = O
(
A− 1

2 + 2−i((2H′−1)∧ 1
2
)
)
.

We choose H = 0.8 leading to (2H ′−1)∧ 1
2 = 1

2 for sufficiently large H ′ < H
and fix

u = (v0, κ, θ, ζ, ρ)
⊤ = (0.016, 1, 0.02, 0.3,−0.7)⊤.

In this setting, we sample 20 independent copies

((∇J)n4,A,j(u), · · · (∇J)n9,A,j(u))j=1,...,20

of ((∇J)n4,A(u), · · · (∇J)n9,A(u)) and consider the error

Erri =
1

20

20∑
j=1

∣∣(∇J)ni,A,j(u)− (∇J)ni−1,A,j(u)
∣∣

for i = 5, . . . , 9. The theoretical considerations above suggest that Erri
decays as 2−i/2 provided the time-discretization error dominates the Monte
Carlo error. This is confirmed by the log-log plot of the mesh size 0.126 ·
2−(i−5) of the (i− 1)th partition versus Erri in Figure 3, where the dashed
reference line exhibits a slope of 0.5.
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Figure 3: Log-log plot of the mesh size 0.126 · 2−(i−5) against Erri for
i = 5, . . . , 9 and H = 0.8.

We finally compare the run time for computing (∇J)n,A based on the
representation (63), for which we employ the Euler approximation of the
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Number of parameters 5 9 13 17 21 25

RT adjoint 19.0 18.0 18.0 18.0 18.0 18.0

RT sensitivity 22.0 26.0 30.0 35.0 39.0 43.0

Table 3: Runtime (RT; in sec) for the computation of the gradient of the
cost function with the two different methods.

sensitivity equation, and based on the discretizaton of the adjoint equation,
see (64). To this end, we replace the constants κ, θ, ζ, and ρ by piecewise
constant functions in time, where each of these functions can take I values.
Hence, the total number of parameters, then, becomes 4I+1. The run times
reported in Table 3 correspond to a single evaluation of the gradient (∇J)n,A
based on a Monte Carlo sample of size A = 100, 000 and a time-discretization
into n = 480 subintervals. In line with the theoretical considerations, the
run time for computing the gradient via the adjoint method does not de-
pend on the number of model parameters, while the computational time
for simulating the sensitivity equation linearly increases with the number of
parameters. The reported run times, thus, demonstrate the computational
benefits for applying the adjoint method based on the new type of antic-
ipating backward SDE (14) for model calibration, in particular when the
parameter vector is high-dimensional.
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